
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

Compiled Code in Distributed Logic Simulation

Jun Wang and Carl Tropper

School of Computer Science
McGill University

Montreal, Quebec, Canada
jwang90, carl@cs.mcgill.ca

ABSTRACT

A logic simulation approach known as compiled-code
event-driven simulation was developed in the past for
sequential logic simulation. It improves simulation per-
formance by reducing the logic evaluation and propaga-
tion time. In this paper we describe the application of
this approach to distributed logic simulation. Our ex-
perimental results show that using compiled code can
greatly improve the stability and overall performance
of a Time-Warp based logic simulator. We also present
a technique called fanout aggregation that makes use of
information on circuit partitions and considerably im-
proves the run-time performance of our (distributed)
compiled code simulator. It does not produce a similar
improvement when used in conjunction with an inter-
preted simulator because of run-time overhead.

1 INTRODUCTION

Logic simulation plays a very important role in the dig-
ital integrated circuit (IC) design process. Historically,
two primary classes of logic simulators have been devel-
oped: compiled-code simulators that create a computer
program for each specific circuit, and event-driven sim-
ulators that are based on the general event-driven simu-
lation paradigm. While the former eliminates the need
for a central scheduler, the latter has the advantage of
processing only the circuit elements that have a state
change.

Compiled-code event-driven simulation (Lewis
1991)(Wang and Maurer 1990)(Au, Weise, and Selig-
man 1991) is a hybrid approach that attempts to
combine the advantages of both compiled-code and
event-driven simulation. Since circuit structure is
known at compile-time, compiled-code can be gener-
ated to represent the structure so as to reduce logic
evaluation and propagation time. At the same time,
it uses an event-driven simulation kernel to avoid
evaluating all circuit elements indiscriminately.

As circuit size grows, logic simulation has become

a bottle-neck in the IC design process. One approach
to speeding up the simulation task is distributed logic
simulation (Chamberlain 1995), in which the simula-
tion is executed on multiple CPUs. Synchronization
and communication among the processes involved in
a distributed simulation involves the sending of time-
stamped messages between the CPUs executing the
simulation. Therefore, lowering the message overhead
is very important for better performance. Furthermore,
in a Time-Warp based distributed simulation (Jefferson
1985), reducing the number of rollbacks plays a critical
role in determining the performance of the simulator.

In this paper, we discuss the idea of using compiled
code in distributed event-driven logic simulation. As
with its sequential counterpart, we attempt to improve
the simulation performance by creating a compiled-
code program for the circuit structure, separate from
the event-driven simulation engine. Furthermore, while
generating code, we can make use of information avail-
able at compile-time to optimize the generated code. In
particular, we describe a technique called fanout aggre-
gation that combines messages sent from a logic gate to
another CPU, thereby reducing message and scheduling
overhead. This technique can also be used in an inter-
preted simulator. However, it has a run time overhead
associated with it since the aggregation is performed
at run-time by checking the partition of the fan-outs
and then aggregating them, thereby producing mixed
results in our experiments. Used with compiled code,
the technique incurs no run-time overhead and works
effectively.

The rest of the paper is organized as follows. Sec-
tion two gives a brief overview of compiled-code event-
driven logic simulation. In section three we describe the
utilization of compiled code in distributed event-driven
logic simulation, and the optimization technique fanout
aggregation. In section four we present test results on
some benchmark circuits and our analysis of the results.
Finally, section five contains our conclusions.

Wang and Tropper

2 BACKGROUND

From the algorithmic point of view, logic simulators
can be broadly classified into two categories: oblivi-
ous and event-driven. In oblivious simulation, for each
input vector, all the logic elements in the circuit are
evaluated, regardless of whether any changes have oc-
curred on their inputs. For good performance, the cir-
cuit under simulation is usually translated directly into
a straight line of compiled-code that evaluates the logic
gates. This is possible because of the oblivious na-
ture of the simulation. To ensure correctness, gates are
levelized(Chiang and Palkovic 1986)(Wang and Mau-
rer 1990)(Wang, Hoover, Porter, and Zasio 1987) such
that before a gate is evaluated, all its fan-ins would have
been evaluated. Simulation is performed by executing
the generated program directly and no external simu-
lation engine is required. The advantage of compiled
oblivious simulation is that logic evaluation and prop-
agation operations are performed extremely fast. The
generated code usually contains very few conditionals
and no loops. Also, it is very efficient for repeated sim-
ulation runs. The disadvantage is that a lot of use-
less work is done for gates whose state is not changed.
And because scheduling is implicitly implemented in
the generated code, compiled-code based simulations
are limited to synchronous circuits with zero-delay or
unit-delay, although some researchers have tried to ex-
tend it to arbitrary delay models(Shriver and Sakallah
1992)(Lee and Maurer 1996).

Event-driven simulation, on the other hand, utilizes a
central event queue and processes only the state changes
occurring in the circuit. This usually implies an inter-
pretive implementation where the simulator creates in-
ternal data structures to represent the circuit, and logic
evaluation and propagation are performed on these data
structures. The advantage of event-driven logic simula-
tion is that it only processes the activities in the circuit.
Another advantage is that it is capable of handling all
circuit models (synchronous or asynchronous) and tim-
ing models (zero-delay, unit-delay, or arbitrary delay).
The disadvantage is the scheduling overhead and the
fact that it takes longer to evaluate and propagate logic
values due to the need to traverse the data structures.

Compiled-code event-driven simulation attempts to
take advantage of the strengths of both approaches.
The simulation is event-driven in nature, but the cir-
cuit structure is translated into compiled-code. How-
ever, the compiled-code is not a straight line of code
as in oblivious simulation. Instead, it is a collection of
chunks of code with each chunk performing the eval-
uation or propagation for one gate. Each chunk can
be implemented as a procedure or simply distinguished
by a leading label. The simulation kernel can also be

greatly simplified (Lewis 1991)(Wang and Maurer 1990)
to be a central dispatcher. The simulation is performed
by jumping back and forth between the chunks of code
and the dispatcher as directed by the generated events.
Figure 1 is an example modified from (Lewis 1991) that
shows a simple circuit and a chunk of code to propagate
the output of gate A.

The distinction between compiled-code event-driven
simulation and purely event-driven simulation can also
be described in terms of partial evaluation(Au, Weise,
and Seligman 1991), a technique that turns a generic
program into a specialized program by combining the
generic program with some known constant inputs. The
compiled code of the circuit structure is the constant
data, and together with the simulation engine forms a
specialized event-driven simulation program.

Among the major advantages of compiled event-
driven simulation are:

• Fast logic value propagation.

• Efficiency for repeated simulation runs.

• Possibilities of compile-time optimizations.

• Simplified scheduler with less scheduling overhead.

3 DISTRIBUTED COMPILED-CODE

EVENT-DRIVEN SIMULATION

3.1 Distributed Logic Simulation

As circuit complexity grows steadily, researchers have
been looking at parallel and distributed simulation as a
way to speed up simulation of digital ICs. In distributed
logic simulation, multiple CPUs are utilized. The cir-
cuit is first partitioned into a number of parts and each
part is assigned to one of the CPUs, which then carry
out the simulation in parallel in an attempt to shorten
simulation time. Communication among the CPUs is
achieved by exchanging timestamped messages. In or-
der to ensure simulation correctness, synchronization
protocols are employed. Two major class of synchro-
nization protocols have been developed: conservative
and optimistic. Conservative protocols(Chandy and
Misra 1981) achieve synchronization by making use of a
blocking protocol, while in an optimistic protocol such
as Time Warp(Jefferson 1985), a logical process (LP)
proceeds without any concern for other LPs until a
message in its past (a straggler message) is received,
at which point the LP ”rolls back” to a (simulated)
time prior to the time of the straggler message. Mes-
sages which were sent to other LPs after the straggler
are canceled by sending anti-messages.

Wang and Tropper

A

B

C

D

fanout A:
node val[A] = next node val[A];
node active[A] = FALSE;
if(!gate active[B]) {

gate active[B] = TRUE;
*gate active ptr++ = &simulate B;

}
if(!gate active[C]) {

gate active[C] = TRUE;
*gate active ptr++ = &simulate C;

}
if(!gate active[D]) {

gate active[D] = TRUE;
*gate active ptr++ = &simulate D;

}

Figure 1: Example circuit and propagation code for
gate A.

To date, distributed logic simulators have been im-
plemented as event-driven simulators. As mentioned
above, this also means the simulator is interpretive.
Figure 2 shows the structure of a distributed inter-
pretive event-driven logic simulator.

3.2 Compiled Code in Distributed Logic Sim-

ulation

As an alternative, we create a distributed compiled-
code event-driven simulator in which the event-driven
simulation kernel is retained, but the data structures
representing the circuit to be simulated are created as
separate programs. First, we partition the circuit into
desired number of parts. Then for each part, we cre-
ate a C file that contains code for the logic propaga-
tion of each gate belonging to that part. The C files
are then compiled into shared objects and dynamically
loaded and linked to the simulation kernel at run-time,
as shown in Figure 3. The overhead of compiling the
C files can be greatly reduced by compiling them in
parallel, since they are completely independent of one
another (each file corresponds to a partition).

It should be noted that translating a circuit descrip-
tion into C code works not only for a structural descrip-

 Netlist

Parser

Int. data structure

Simulation kernel

Figure 2: Typical interpretive event-driven simulator.

 Netlist

Parser

Internal netlist

 Code generator

Compiler

 Shared object

 Program code

 Simulation kernel

Figure 3: Compiled-code event-driven simulator.

tion, but also for a behavioral description which is com-
mon in modern hardware description languages (HDL)
such as Verilog (IEEE 2001). In interpretive simula-
tors, a behavioral description is usually translated into
internal data structures and executed in an interpretive
way. With compiled code, a behavioral description can
be directly translated into C code, which is more ef-
ficient at run-time than interpreted code. In addition,
the C code can be further optimized with an optimizing
C compiler.

As pointed out above, a direct effect of compiled code
is more efficient processing of logic propagation. Fur-
thermore, it also allows compile-time optimization tech-
niques to be easily applied. For example, since the cir-
cuit structure is known at compile-time, all of the prop-
agation loops are unrolled. Other possible compile-time
optimizations include:

Wang and Tropper

1. Elimination of buffers and inverters, which essen-
tially reduces the circuit size(Maurer 1997).

2. Gate grouping, which reduces run-time scheduling
overhead(Maurer 1997).

3. Gate levelization.

4. Identifying of gate trees or strongly-connected
components.

One major difference from sequential compiled-code
event-driven simulation is the necessity to do parti-
tioning. With partitioning information available at
compile-time, more optimizations can be performed.
For example, when a fanout gate f of a gate g is in
another part, we need to send a message to that part
when the output of g is changed. With the part of f

known at compile-time, we can generate code for g to
directly send a message to that specific part, thus elim-
inating the need to check the part of f at run-time.
Figure 4(a) shows code generated for gate A in the ex-
ample circuit in Figure 1. Suppose gate B and C are
in part 2 while gate A is in another part, when gate A

propagates its value, the generated code sends messages
directly to part 2 without any run-time checking.

3.3 Fanout Aggregation

A simple yet very effective optimization technique
called fanout aggregation also makes use of partitioning
information. Using the circuit in Figure 1 as an exam-
ple, assume both B and C are in the same part, say
part 2, while A is in another part. When the output of
A changes, we send one message for each of B and C, as
shown in Figure 4(a). The receiver of the messages will
schedule one event for each message. Obviously, since
B and C are in the same partition, we can combine the
two messages into one, thereby reducing the number of
messages. Reducing the number of messages causes a
reduction of the probability of rollbacks in Time Warp.
Furthermore, when an aggregation message is received,
only one event needs to be scheduled. Thus, we also
reduce the number of scheduled events.

Example code generated with fanout aggregation is
shown in Figure 4(b). One aggregation message is sent
for both B and C instead of two messages in Figure
4(a).

This technique can also be used in an interpreted
simulator. At run-time, the partition information of
the fan-outs are checked, and those belonging to the
same partition are combined. This run-time overhead,
however, would to a certain extent offsets the benefits.
With compiled code, as demonstrated in Figure 4(b),
the aggregation is done at compile-time, therefore, there
is no run-time overhead.

void propagate(int index)
{

switch(index) {
case A:
send assign msg(2, B, 1, val);
send assign msg(2, C, 1, val);
gates[D]→set(1, val);

break;
...

}
}

(a)

void propagate(int index)
{

agg item aggs[MAX ITEMS];
switch(index) {

case A:
aggs[0].index = B;
aggs[0].pin = 1;
aggs[1].index = C;
aggs[1].pin = 1;
send agg assign msg(2, aggs, 2, val);
gates[D]→set(1, val);

break;
...

}
}

(b)

Figure 4: (a)Code for propagation of gate A (b) Code
with fanout aggregation.

4 EXPERIMENTAL RESULTS

We have implemented a distributed compiled-code
event-driven logic simulator based on the Distributed
Verilog Simulator (DVS) as described in (Li and Trop-
per 2003). A separate program accepts netlists as in-
put, partitions the internal netlist, and produces C
files. A command-line option directs whether or not
the code generator should perform fanout aggregation.
The C files are then compiled into shared objects and
are loaded by the simulator proper at run-time.

We tested the simulator on some of the largest
ISCAS-89 benchmark circuits(Brglez, D.Bryan, and
Kozminski 1989). Each circuit was supplied with 100
random test vectors. Table 1 shows the number of
gates, D flip-flops, and primary inputs and outputs. We
compared the performance of the simulator to that of an
interpreted simulator. The interpreted simulator differs
from the compiled simulator only in that logic propa-
gation is performed by traversing data structures. We
made use of two versions of the interpreted simulator
as well. One performed fanout aggregation at run time
while the other did not.

All experiments were conducted on a four node
network of AMD Athlon 64 computers running
the Linux operating system. The computers were
connected by a fast ethernet switch. MPICH
(http://www-unix.mcs.anl.gov/mpi/mpich/) was the
underlying messaging system.

Wang and Tropper

Table 1: Circuit profile.

Circuit Gates DFFs Inputs Outputs
s15850 9772 534 77 150
s35932 16065 1728 35 320
s38417 22179 1636 28 106
s38584 19253 1426 38 304

Table 2: Running time in seconds.

Circuits iagg cagg reduction
s15850 13.75 12.02 12.6%
s35932 9.69 6.11 37.0%
s38417 20.85 15.86 24.0%
s38584 NA 20.29 NA

For each circuit, we performed partitioning with an
implementation of the Fiduccia-Mattheyses algorithm
(Fiduccia and Mattheyses 1982).

We choose to exhibit results for a two node network
because neither version of the interpreted simulator
could complete a simulation on four nodes. This was a
consequence of the communication overhead of the fast
ethernet relative to the CPU speed of the Athlon 64
CPU’s. While the compiled code version did complete
on four nodes, its execution times were larger than on
two nodes for much the same reasons.

Tables 2- 5 depicts the running time, the total num-
ber of messages sent during the simulation, the total
number of scheduled events and the total number of
rollbacks, respectively for a two node network. The col-
umn labeled ”iagg” contains results for the interpreted
simulator with fanout aggregation while the ”cagg” col-
umn contains results for the compiled simulator with
fanout aggregation. A third column shows the reduc-
tion in percentage of each performance measure for
”cagg” compared with the same measures for ”iagg”.
Each entry in the tables is the average value of five
simulation runs.

The interpreted version without fanout aggregation
did not complete on two nodes. When fanout aggrega-
tion was added to the picture, simulations of all of the
circuits with the exception of s38584 completed their
executions.

These observations suggest that compiled code helps
to stabilize optimistic logic simulators.

Comparing the results obtained for the interpreted
and compiled code simulators with fanout aggregation,
we see that the compiled code version results in far bet-
ter simulation performance than the interpreted ver-

Table 3: Messages sent during simulation.

Circuits iagg cagg reduction
s15850 103501 93130 10.0%
s35932 42228 26469 37.4%
s38417 182598 162166 11.2%
s38584 NA 96687 NA

Table 4: Scheduled events.

Circuits iagg cagg reduction
s15850 899124 839739 6.7%
s35932 876028 637484 27.3%
s38417 2006682 1870297 6.8%
s38584 NA 1207710 NA

Table 5: Number of rollbacks.

Circuits iagg cagg reduction
s15850 4607 4059 11.9%
s35932 505 506 0.0%
s38417 3892 2827 27.4%
s38584 NA 2545 NA

sion. Fewer events are scheduled, fewer messages are
sent, the number of rollbacks is significantly smaller
and the execution time is much smaller. The results for
s38417, for example, show 6.8% fewer scheduled events,
11.2% fewer messages, 27.4% fewer rollbacks and a run-
ning time which is 24.0% smaller.

The reason for the success of the compiled code sim-
ulation lies in its speeding up of logic evaluation and
propagation. As a consequence messages are deliv-
ered more quickly between processors, resulting in a de-
creased number of rollbacks. Fanout aggregation causes
events to be delivered between processors more quickly
and also results in the scheduling of fewer events.

5 CONCLUSIONS

Combining compiled-code with event-driven logic sim-
ulation has the advantage of shortening the processing
time for logic propagation events as well as opening the
door to compile-time optimizations such as fanout ag-
gregation.

In this paper we compared the performance of a dis-
tributed compiled code logic simulator to that of a dis-
tributed interpreted simulator with and without fanout
aggregation. The compiled code simulator exhibited a

Wang and Tropper

far superior performance to the interpreted simulator on
a two node network with fanout aggregation. In fact,
Its performance without fanout aggregation was either
better then or at worst close to that of the interpreted
one with fanout aggregation.

Perhaps more significant is the stability which com-
piled code lends to distributed optimistic logic simu-
lation. The interpreted code simulator could not com-
plete on 4 nodes with or without fanout aggregation and
could not complete its execution on two nodes without
fanout aggregation. In contrast, the compiled code sim-
ulator always completed its execution on either two or
four nodes, with or without fanout aggregation.

Our future work will focus on reducing the overhead
of the scheduler, as well as identifying new compile-
time optimization techniques that can further improve
simulation performance. We also plan to investigate
the scalability of compiled code algorithms on larger
circuits. The ISCAS circuits which we used to run the
experiments described in this paper are the largest of
the publicly available circuits.

REFERENCES

Au, W., D. Weise, and S. Seligman. 1991. Automatic
generation of compiled simulation through program
specialization. Proceedings of the 28th ACM/IEEE
Design Automation Conference.

Brglez, F., D.Bryan, and K. Kozminski. 1989. Com-
binational profiles of sequential benchmark circuits.
Proceedings of IEEE Symposium on Circuits and Sys-
tems .

Chamberlain, R. 1995. Parallel logic simulation of vlsi
systems. Proceedings of the 32nd ACM/IEEE Design
Automation Conference.

Chandy, K., and J. Misra. 1981. Asynchronous dis-
tributed simulation via a sequence of parallel compu-
tations. Communications of the ACM 24 (11): 198–
206.

Chiang, M., and R. Palkovic. 1986, March. Lcc simu-
lators speed development of synchronous hardware.
Computer Design 25 (5): 87–92.

Fiduccia, C., and R. Mattheyses. 1982. A linear-time
heuristic for improving network partitions. Proceed-
ings of the 19th Design Automation Conference.

IEEE 2001. IEEE std. 1364-2001, IEEE standard ver-
ilog hardware description language.

Jefferson, D. 1985, July. Virtual time. ACM Transac-
tions on Programming Languages and Systems 7 (3):
404–425.

Lee, Y., and P. Maurer. 1996, Dec.. Bit-parallel multi-
delay simulation. IEEE Transactions on CAD of In-
tegrated Circuits and Systems 15 (12): 1547–1554.

Lewis, D. 1991, June. A hierarchical compiled code

event-driven logic simulator. IEEE Transactions on
Computer-Aided Design 10 (6): 726–737.

Li, L., and C. Tropper. 2003. Dvs: An object-oriented
framework for distributed verilog simulation. Pro-
ceedings of the 17th Workshop on Parallel and Dis-
tributed Simulation.

Maurer, P. 1997, July. The inversion algorithm for dig-
ital simulation. IEEE Transactions on CAD of Inte-
grated Circuits and Systems 16 (7): 762–769.

Shriver, E., and K. Sakallah. 1992. Ravel: Assigned-
delay compiled code logic simulation. Proceedings
of International Conference on Computer-Aided De-
sign.

Wang, L.-T., N. Hoover, E. Porter, and J. Zasio. 1987.
Ssim: a software levelized compiled-code simulator.
Proceedings of the 24th ACM/IEEE Design Automa-
tion Conference.

Wang, Z., and P. Maurer. 1990. Lecsim: A levelized
event driven compiled logic simulator. Proceedings
of the 27th ACM/IEEE Design Automation Confer-
ence.

