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ABSTRACT

We describe, in this paper, a snapshot-based algorithm
which makes use of distributed control. The algorithm
is an extension of Mattern’s snapshot algorithm and
employs a leader election algorithm to pick a GVT ini-
tiator. The leader election algorithm executes concur-
rently with the GVT algorithm. We prove the cor-
rectness of the algorithm and compare its performance
to several algorithms - Samadi’s, Bellenot’s, and Mat-
tern’s original algorithm. In the performance com-
parison, we make use of a Shuffle Exchange Network
and a PCS network, evaluating the simulation time,
peak memory consumption, and the (control) message
complexity of the algorithms. The performance of our
algorithm in all three categories is far superior to Bel-
lenot and Samadi’s algorithms. It also provides a (less
dramatic) improvement over Mattern’s algorithm. Key
words: Time Warp, GVT, snapshot, cut.

1 INTRODUCTION

A good deal of research has been done on obtaining
global snapshots in distributed systems (Chandy and
Lamport 1985; Lai and Yang 1987; Mattern 1993).
The information afforded by a global snapshot can
be useful for a variety of purposes such as termina-
tion detection, resource management, and debugging
a distributed program. In an optimistic simulation it
can find use in computing the Global Virtual Time
(GVT) for memory management and for controlling the
progress of the simulation. The GVT is the minimum
of all of the local virtual times (LVTs) of the logical pro-
cesses (LPs) in the simulation and of the timestamps of
the messages in transit. Knowledge of the GVT allows
fossil collection to take place and provides a mechanism
for determining the termination of the simulation. Un-
fortunately, it is impossible to know the exact GVT at
real time ¢ in the simulation without stopping the sim-
ulation. Consequently, it is necessary to compute ap-

proximations to the GVT as the simulation progresses.

We present a snapshot-based algorithm for the com-
putation of GVT in this paper which is essentially an
outgrowth of Mattern’s algorithm (Mattern 1993). As
such it does not rely upon a centralized GVT manager,
thereby obviating the need to dedicate a large part of a
processor’s resources to the task and decreasing the for-
mation of communication bottlenecks. Any processor
involved in the simulation can initiate the algorithm.
However, one processor is chosen as a GVT manager
by a distributed leader election algorithm to record the
GVT and broadcast it to the other processors. The
algorithm may be used in a non-FIFO environment.

We compare our algorithm to well-known GVT al-
gorithms - Samadi’s (Samadi 1985) and Bellenot’s
algorithm (Bellenot 1990) as well as Mattern’s origi-
nal algorithm. In making the comparisons, we use a
large switching network — a Shuffle Exchange Net-
work (SXN) — and a Personal Communication Sys-
tems (PCS) network as our test beds. The number of
LPs in both of networks ranges from 31,000-146,600.
As we shall see, our distributed algorithm outperforms
the above GVT algorithms.

The remainder of this paper is organized as follows.
Section 2 contains a description of some well-known
GVT algorithms, Section 3 contains a description of
Mattern’s algorithm, Section 4 contains a description
of our algorithm and discusses its relation to Mattern’s
algorithm, Section 5 contains our experimental results,
and Section 6 contains the conclusion.

2 GVT ALGORITHMS

GVT algorithms can be categorized as being either cen-
tralized or distributed. Centralized GVT algorithms
make use of a central GVT initiator (or manager). The
initiator sends requests to all of the LPs to ascertain
each LP’s LVT and to determine the minimum times-
tamp of messages in transit.

As mentioned before, the GVT is the minimum of



the local virtual times of the LPs and of the times-
tamps of the messages in transit. An approach to com-
puting the minimum timestamp of messages in transit
is to make use of acknowledgements; hence it is only
necessary to compute the minimum timestamp of un-
acknowledged messages.

Since it is not possible for LPs to compute LVTs
at the same instant in real time, it is necessary for
the LPs to report their LVTs within some time inter-
val in order to compute a meaningful GVT. This is
accomplished in a number of the algorithms (Samadi
1985; Preiss 1989; Bellenot 1990) by utilizing intervals
of time [start;, stop;], one for each LP;, such that each
LP; computes its LVT within the interval. The GVT
initiator is responsible for determining these intervals.

We briefly summarize several well-known algorithms
with which we compare the performance of our own
algorithm in this paper. In Samadi’s algorithm (Samadi
1985), a central GVT manager sends a start; message
to each LFP;. Each LP;, in turn, acknowledges the start
message with an acknowledgement message containing
the min{vt;} where vt; = {timestamps in the input
queue, timestamps of unacknowledged messages in the
output queue}. Upon computing the GVT, the GVT
initiator sends new GVT value to all of the LPs.

Bellenot’s algorithm (Bellenot 1990) makes use of
a ring topology. In the algorithm, the GVT initiator
passes around a token signalling the start of the com-
putation at each LP;, followed by a second round in
which each LP performs a min reduction on the vt;
and includes the result in the token. Upon completion
of the second round, the GVT initiator launches a third
round in which the token contains the new value for the
GVT.

A fundamental difficulty with the last two algo-
rithms is the fact that the GVT initiator must de-
termine when to launch the algorithms without input
from the LPs. Unnecessary invocations for which the
algorithm results in a minimal advance in GVT waste
processing time and bandwidth in the form of control
messages. On the other hand, long intervals between
GVT computations can result in poor memory utiliza-
tion.

3 GVT APPROXIMATION
USING CUTS

The algorithm which we describe in this section is an
extension of global snapshot algorithms based on the
notion of obtaining a (consistent) cut. As such, we
describe several tenets of those algorithms.

The objective of a global snapshot algorithm is to

obtain the global state of a distributed system. The
distributed system is presumed to adhere to causality,
i.e. to preserve Lamport’s “happened-before” relation-
ship (Lamport 1978).

The notion of a cut underlies the construction of
global snapshot algorithms (Mattern 1993). A cut (Fig-
ure 1) essentially divides the events of a system into
those occurring before the cut and those occurring af-
ter the cut. Messages then travel between the “past”
and the “future”, as defined by the cut. A consistent
cut is one in which no messages travel from the future
into the past (Figure 1). Otherwise, we call the cut
inconsistent. In order to obtain a global snapshot, lo-
cal snapshots are gathered from individual processes
“along the cut.” In order for the global snapshot to be
meaningful, it is necessary that the algorithm satisfies
a consistent cut.
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Figure 1: A time diagram with a cut

Lai and Yang (Lai and Yang 1987) developed an
elegant algorithm for obtaining such a cut. Their
algorithm applies to non-FIFO systems, and only in-
vokes the piggy-backing of status information in one
bit onto all messages. The algorithm is as follows: (1)
Every process is initially white and turns black when
taking a local snapshot. (2) Every message sent by
a white (black) process is colored white (black). (3)
Every process takes a local snapshot before a black
message is received. Ensuring that a local snapshot
is taken before a black message is received at a process
is accomplished by examining messages for their color
before processing them. In the event that a message
is black, the local snapshot is taken prior to processing
the message.

One way of implementing the algorithm is to circu-
late a control message which colors each of the visited
processes black, i.e. upon receipt of a control message,
a process colors itself black, as illustrated in Figure 2.

At the same time, the local state of the process can
be appended to the control message (or sent directly
to the process initiating the algorithm). However, it is
possible that white messages are in transit while the
local snapshots are being collected (Figure 2). Conse-
quently, it is necessary to record the states of the chan-
nels. A way of doing this, suggested by Mattern, is for



Receipt of the first cut message

Figure 2: The receipt of a black message by a white
process

black processes to send copies of these messages to the
initiator and to use a termination detection algorithm
to determine when they have all arrived.

Mattern describes a GVT algorithm which builds
upon the notion of obtaining a consistent cut via the
coloring technique described above. The basic principle
of the algorithm is illustrated in Figure 3 from Mattern
(Mattern 1993). Two cuts (C and C') are created by
circulating a token.
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Figure 3: The GVT approximation principle

The reason for creating the two cuts is to avoid the
possibility of a white message causing a rollback at a
process after it reports its lvt. In order to avoid this
problem, the second cut must be placed “far enough” to
the right of the first cut. Mattern accomplishes this by
appending a vector counter to the token which records
the number of white messages sent to and received from
other nodes already visited by the token. Upon receipt
of the token by a GVT initiator, it can determine if
all of the white messages which it sent were received
and if it has received all of the messages sent to it. If
so, then it can compute the GVT, otherwise a second
round (i.e. cut) is necessary. The token also returns
the minimum of the lvts of all of the processes and the
minimum timestamp of all messages sent after C.

4 THE ALGORITHM

The algorithm which we propose is based upon Mat-
tern’s algorithm (Mattern 1993) (discussed in the previ-
ous section). However, our algorithm differs from Mat-
tern’s algorithm in several important ways. In the first

place, it makes use of a scalar counter as opposed to
the vector counter used by Mattern. This is primarily
because the use of a vector counter is time consum-
ing, as the token must wait (during the second cut) at
each process that the token visits until all of the mes-
sages sent to it have been received. This waiting can
also result in a poor estimate for the GVT. Mattern’s
algorithm does not address the issue of selecting a pro-
cess to launch the algorithm. Consequently, it is pos-
sible for all of the processes to launch the algorithm,
a very expensive proposition. Our algorithm selects
the GVT initiator via Chang and Roberts’s distributed
leader election algorithm (Chang and Roberts 1979, Tel
1994) from among the processes which wish to initiate
the algorithm. Finally, it is important to point out that
our algorithm collects information which can be useful
for the implementation of other control functions such
as load balancing or memory management (Choe 1998).

In the implementation of our algorithm, we identify
the individual nodes of a multi-computer (upon which
our Time Warp system is implemented) with the pro-
cesses of Mattern’s algorithm. We make use of one heap
within each node to schedule events. The pseudo-code
for our algorithm is contained in Figure 4.

Initially, all of the processors are white, and prior to
a snapshot, the processor remains white. Each message
which is sent by a white processor is colored white.
Processors which are visited by control messages change
their color to black. Messages which are sent by a black
processor are colored black.
~ (-
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Figure 5: Election of GVT initiator (numbers next to
the nodes represent the loads on a processor.)

Figure 5 depicts the coloring scheme of an 8 node
network. Processors pi1, ps, p2, and p4 initiate the col-
oring (or seeking a new GVT). We define the load of a
processor as memory space occupied by the number of
events and states since the previous GVT. Processors
can initiate the coloring at a fixed frequency* (here, 1
sec.). In Figure 5, the shaded processors initiate the

*We initially allowed processors to initiate the coloring when
their load exceeded a certain threshold. However, determining
a proper threshold proved to be difficult. Too large a threshold
resulted in too few GVT invocations, while too small a threshold
resulted in too many control messages.



var color,: boolean init white, color: boolean init white;
pidy: integer init unique, pidinit,pid;"it: integer init undef;
lvt,: integer init 0, [vt: integer init oo;
ts,: integer init oo, ts: integer init oo;
load,: integer init 0, load: integer;
county: integer init 0, count: integer init 0;
gvt: integer init oo;
ctlmsg: {pidinit,lvt, ts, count, color,load} init ¢;
m € Pred,,l € Succy;

Snp: (* sending control message *)

begin
(1) if colorn, = white and GVT- firing then
begin
colory, := black, pidiniz = pidi™** := pidn;
load, := sizeof(event) * |events| + sizeof(state) * |states|;
record local states (lvt,,load,);
end
(5) forall l € Succn, send K pidinit, min(lvty, lot), min(tsn, ts), count, + count,load > to [;
end

R,: (* receiving control message *)
{A message < ctlmsg > has arrived.}
begin
(1) receive K pidinit, lvt, ts, count,load > from m;
(2) compute min(lvt,) at processor n;
(3) if color, = white then
begin
color, := black, pidi"“ 1= pidinit;
send K pidinit, min(lvtn, lvt), min(tsa,ts), countn + count,load > to [;
end
(* pn is black, hence it is already participating in the election *)
(8) if color, = black and pidini: # pidn then
if load, > load then stop snapshot from m;

else
begin
pidi™ == pidinit;
send K pidinit, min(lvt,,lvt), min(ts,, ts), count, + count, load > to [;
end
endif

(10) if color,, = black and pid;,;: = pid, then
if count,, + count = 0 then

begin
gut == min((lvty,lvt), (tsn,ts));
color, := white, pid;"” := undef;
send K pidi™it, gut, color, > to m,I;
end
else
begin
send K min(lvt,, lvt), min(ts,,ts), count, > to l;
count, = count := 0;
end
endif
end
SI: (* sending basic message *)
begin
(1) if color, = white and sending-event then count, := count, + 1;

(2) if colorn = black then compute min(tsn);
(3) send < msyg, color,, > to the receiving processor;
end
R.,: (* receiving basic message *)
{A message < msg, color > has arrived.}

begin
(1) receive < msg, color,> from the sending processor;
(2) if color = white then count, := count, — 1;
(8) process the message;

end

Figure 4: GVT Computation (at processor n)



coloring. Each processor sends a control message to
all of its (graph-theoretic) descendants. We discuss the
contents of the control message and their functions be-
low.

When a control message arrives for the first time at
a processor p,, the processor is colored black, set the
pidinit in the cut message to the pidi™* (a GVT initia-
tor known at p,), and then passed to the descendant
processor. Otherwise, the load of the processor is com-
pared to the load on the sending processor and in the
event that it is larger, it does not forward the control
message of the sending processor, but instead sends its
own load to its descendants. In the event that the load
on the processor is smaller than the load included in
the control message, it forwards the control message
and does not participate in election any more. Ulti-
mately, the initiating processor with the largest load is
selected as the “GVT initiator.” The control message
makes use of the following variables:

pid,: the unique identifier of processor n.

pidi™®: the identifier of the GVT initiator (known at py,).

luty: local virtual time = min{lvts of all of the LPs on
processor n}.

ts,: minimum timestamp of black message(s) = min{ts
of all of the black messages sent by processor n}.

count: a scalar counter used to determine if white
messages are in transit.

colory: the color of processor py, initially set to white.

load,: the memory occupied by events and states since
the previous GVT.

A count, field maintained at each processor keeps
track of the number of white messages which are sent
and received by the processor. Each time a white mes-
sage is sent,, it is incremented by 1 and each time a white
message is received, it is decremented by 1. The con-
trol message maintains the (partial) sum of the count
field of the processors it visits in the variable count.
Upon receiving its own control message, the GVT ini-
tiator checks the count variable in order to determine
if another GVT round is necessary. If count = 0, it
propagates a new GVT to the network. Otherwise,
it launches another GVT round (recall that all of the
other processors will not launch a GVT computation,
as they are “eliminated”). When count = 0, all of the
white messages sent by processors have been received.

On its way, the control message also computes the
minimums of the lvts and the ts of the nodes it has vis-
ited, min(lvt,, lvt) and min(tsy,ts), and records them
in the vt and ts field. While it is entirely possible for
multiple launchings of the GVT token before a GVT is
actually computed, our experimental experience is that
two rounds are generally sufficient.

4.1 Correctness Proofs

We prove the correctness of the GVT algorithm by es-
tablishing the safety and the liveness of the algorithm.
Safety corresponds to the algorithm producing an esti-
mate which is less than (or equal to) the exact GVT.
Liveness corresponds to the algorithm producing mono-
tonically increasing estimates.

We first establish the safety property. Let GVT(¢)

be the exact GVT at time ¢t and GVT'(t) be the ap-
proximate GVT as computed by our algorithm at time
t.

THEOREM 4.1 (SAFETY) Let t be the instant at which
GVT(t) is computed. Then GVT(¢t) < GVT(¢).

PRrROOF. GVT is computed by the initiator <=
count = 0. (line 11 in R,, of the algorithm) count =
0 <= there are no white messages in transit. Hence,
we need only concern ourselves with the timestamps of
black messages in transit when computing the GVT,
ie. GVT(t) = min{luts of all LPs at time ¢, times-
tamps of black messages in transit at time ¢}. From
the algorithm,

GVT(t) = min{min(lvt), min(ts)}

where min(lvt) = minimum of the lvts for all of the LPs
and min(ts) = minimum timestamps of all of the black
messages since each LP became black. The min(ts) <
timestamps of all black messages in transit at ¢ since
the black messages in transit at time ¢ form a subset
of all the black messages sent since each LP became
black. Furthermore, at time ¢ no lvt can be less than
the minimum timestamp of the black messages in tran-
sit at time ¢. (These are the only messages which can
roll back an LP since the token has visited all of the
LPs except the initiator prior to time ¢.)

Hence, we conclude that GT/\T/(t) < GVT(t). ]
We now establish the liveness of the algorithm.

——

THEOREM 4.2 (LIVENESS) Ift; < ta, then GVT(t1) <
GVT(t2).

—~—

PrOOF.  After the computation of GVT(t1), it is
possible for one of the LPs to be rolled back by a black
message, but not by a white message (the white mes-
sages have all arrived). However, the minimum times-
tamp of the black messages in transit is included in the
deﬁrlit/ion of GVT and by virtue of this definition, the

GVT(t2) cannot decrease subsequent to the computa-

——

tion of GVT(t1). The theorem follows. [ |



THEOREM 4.3 Processor coloring and choosing a GVT
initiator in the course of processor election can be
achieved within finite time.

PROOF.  Suppose that the channels in the network
have finite transmission time, that transmission is fault-
free, and that a processor takes finite time § to be col-
ored. If all of the processors begin to color at the same
instant, the time for coloring will be §. Otherwise, if the
processors are colored sequentially, in the worst case,
it takes N§ + €, where € is the time for the token to
traverse the network and N total number of processors
participating in the simulation. Therefore, choosing a
GVT initiator requires time < NJ + €. [ |

4.2 Complexity Analysis

In our algorithm, we assume that there are m initiating
processors out of n processors. One of the m initiating
processors is elected as the GVT initiating processor.
In the worst case, every processor launches the GVT
computation at the same instant and the complexity
of coloring is O(n?). Therefore, the coloring phase has
the same complexity as the coloring phase in Mattern’s
algorithm, but the collecting phase behaves like the cen-
tralized approach because there exists only one initiat-
ing processor chosen among the processors. Thus, the
collecting phase is O(n), the same as the centralized
approach. On the other hand, the complexity in the
collecting phase of Mattern’s algorithm is the same as
the one in the coloring phase.

If we assume that the topology of the network is
a ring and the unidirectional leader election algorithm
proposed by Chang and Roberts (Chang and Roberts
1979; Tel 1994) is used, the complexity of the color-
ing corresponds ©(n?) order of messages in the worst
case and O(nlogn) in the average case. Mattern (Mat-
tern 1989) also provided interested results showing that
quadratic message complexity is an exceptional case
and that the worst case estimate is rather conservative.
Our simulation results support this point as our empir-
ical results point to a complexity in the coloring phase
of O(nlogn). The centralized approach has a complex-
ity of O(n) in both phases. Table 1 summarizes the
message complexities of each control type.

5 SIMULATION RESULTS
5.1 Test bed

We modified and tested our algorithm making use of a
Time Warp simulator built by Avril (Avril and Trop-
per 1995). The Simulator was originally developed

on a BBN Butterfly GP1000, a MIMD (Multiple In-
struction stream-Multiple Data stream) machine with
shared memory architecture consisting of 32 proces-
sors. Even though it was developed on a shared mem-
ory system, implementation was developed for support-
ing send() and receive() non-blocking primitives under
the message passing system. We did not exploit the
machine-dependent advantages of the shared memory,
hence there are no declared global variables in each
processor. Only channels connecting processors and an
input/output buffer for each processor are declared and
allocated in globally shared memory.

We ported the simulation suites onto the Silicon
Graphics PowerChallenge super-computing server. The
PowerChallenge system is a MIMD machine based on
shared memory consisting of homogeneous processors
(called Symmetric Multi-Processors (SMP)) intercon-
nected by high-speed buses. The system has 64-bit
MIPS super-scalar RISC processors providing 360 dou-
ble precision MFLOPS and 360 MIPS/90 Mhz and 64
MB of memory for each processor.

5.2 Applications
5.2.1 Shuffle Exchange Network

We simulated three shuffle exchange networks - a
100x100, a 165x165, and a 200x200 SXN. The networks
had a total of 36,951, 100,102 and 146,672 LPs respec-
tively.

The Shuffle Exchange Network (Maxemchuk 1989;
Robertazzi 1993) is a cylindrical multi-stage network
with an in- and out-degree of two. For a stress test,
we modified the original shuffle exchange network by
interconnecting nodes in the first and last column and
substituting one of input buffers with a local source and
one of output buffers with a local sink, as seen in Figure
6. Nodes in each row are connected in a ring, thus
this topology is also called a shuffle ring network. The
structure of each node is shown in Figure 7. Except for
nodes with local source and sink in the first and last
column stage, ranging from 1 — 2% of the switching
nodes, the remainder of the nodes do not have local
source or sink, but have links with adjacent nodes.

5.2.2 PCS Network

A PCS is a wireless communication network which pro-
vides communication services for mobile users (Li and
Qiu 1995; Alleyne 1997). The service area is tessel-
lated with a small service area called a cell. Each cell
has a transmitter with a fixed number of channels. In
general, a regular hexagon is used to represent a cell.



Table 1: Comparisons of Message complexity

Control type Algorithm || Coloring | Collecting
Centralized - O(n) O(n)
Decentralized Mattern O(n?) O(n?)®

Partly distributed Ours® 0(n?) O(n)

“We assumed that a leader election algorithm is not used to pick an initiator. Otherwise, the collecting complexity is O(n).
®Qur algorithm may be considered to be partly distributed because a GVT initiator is chosen by a leader election algorithm, while
Mattern’s algorithm allows all processes to initiate at once. This is clearly inefficient.

Figure 6: 4x4 Shuffle Exchange Network

Figure 7: Structure of a switching node in SXN

When a user makes a call, a channel is assigned
to the calling user in order to communicate with an-
other. If all of the channels are allocated, then the call
is blocked. If a user moves from one cell to another one
during a call, a new channel from the cell is allocated to
provide for the continuous connection of the call. This
channel reassignment is said to be a hand-off. If all
of the channels are still busy, the user’s call has to be
terminated.

In simulating the PCS network, due to the use of
finite size of cells, a “boundary effect” may exist. The
cutting-off of the simulation at the edge of the simu-
lated service area can affect the simulation results. If
a mobile user crossed outside the simulated area, the
user could disappear or appear at the boundary edge
in the opposite direction.

In general, a simulation using less than 50 cells may
be subject to the boundary effect. Lin and Mak (Lin
and Mak 1994) suggested wrapping the hexagonal mesh
(H-mesh) into a homogeneous graph with an in- and
out-degree of six rather than square mesh (S-mesh) and

showed that inaccuracy of the simulation result can be
significantly reduced in this case. Let the dimension n
of a mesh be the number of nodes on each peripheral
edge of the mesh. An hexagonal mesh with dimension
three is illustrated in Figure 8 where each boundary
cell is not shown to have six degrees.
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Figure 8: Wrapped Hexagonal Mesh with n=3

A phone call is modeled by an event and a cell is sim-
ulated by an LP. Each cell has fixed number of channels.
For simplicity, we do not consider a dynamic channel
assignment scheme. We suppose that each cell has 500
fixed channels. A call is further classified into a static
call or a mobile one depending upon initial conditions
such as initial velocity or direction when it is created.
The velocity of the mobile call is assumed to be con-
stant.

In our simulation, each call can have 0-30 Km/hr
range of velocity and 7 directions: (1) East, (2) South
East, (3) South West, (4) West, (5) North West, (6)
North East, and (7) Still. The velocity and direction
is determined by using a uniform distribution and the
call completion time is determined by an exponential
distribution with 300 seconds mean time. A cell diam-
eter is 1 km. A mobile call is created at the center of
the cell. Contrary to this, a static call can be created
in a range of position in the cell. If the mobile call is
generated at a boundary cell, the call will appear to
another cell located in an opposite direction without
vanishing. The call arrival to a cell including incoming
and generating calls follows a Poisson distribution. We
simulated a PCS network H(60) with 31,864 LPs.



5.3 Experimental Results

In order to evaluate the performance of our algorithm
we compared it to Bellenot’s algorithm (Bellenot 1990),
Samadi’s algorithm (Samadi 1985), and Mattern’s
algorithm (Mattern 1993).

Two variants of our algorithm called Snapshot(1)
and Snapshot(2) were developed. In Snapshot(1) if, af-
ter the GVT computation, the GVT initiating proces-
sor has an above average load, the processor remains
the initiator, while in Snapshot(2) the GVT initiator
gives up its initiating rights and a new election for
the GVT initiator ensues shortly thereafter. As a first
step, we compared the performance of these two algo-
rithms to each other and to that of Mattern’s original
algorithm.

In implementing Mattern’s algorithm, we adopted a
centralized approach instead of using a fully distributed
one, thereby avoiding an election algorithm and provid-
ing a best case comparison for Mattern’s algorithm. Af-
ter determining that Snapshot(1) was the most efficient
of these algorithms, we compared it to the algorithms
mentioned above.

In making these comparisons, we made use of the
following measures of their performance: (1) Message
complexity, defined to be the number of control mes-
sages used by the algorithm. (2) Maximum memory
used per process during the course of the simulation.
This is an average over all of the processors employed
in the simulation. (3) Simulation execution time.

In order to ensure that the comparisons were fair,
we set the GVT interval to one second, i.e. after com-
puting a new GVT value, another GVT computation
is initiated at one second later.

5.3.1 Snapshot comparison

Table 2 contains a comparison of the number of control
messages sent by both of the snapshot algorithms as
well Mattern’s algorithm for a 100x100 SXN. We used
6 processors in the experiment. As we can see in the ta-
ble, Snapshot(1) uses some 75% fewer control messages
than does Snapshot(2). Mattern’s algorithm makes use
of some 18% more control messages over the course of
the simulation than does Snapshot(1).

Figure 9 portrays the simulation times of Snap-
shot(1), (2), and Mattern’s algorithm for the 100x100
SXN as a function of the number of processors. As
depicted by the figure, the performance of Mattern’s
algorithm is intermediate between that of Snapshot(1)
and (2). The (percentage) difference in the simulation
times between Snapshot(1) and Mattern’s algorithm
varies between 4-13% over the range of processors,
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Figure 9: Simulation time vs. number of processors for
SXN 100x100

while Snapshot(2) lagged behind Snapshot(1) by 8-
24%.

5.3.2 Message Complexity

We compared the number of control messages used by
Bellenot’s algorithm, Samadi’s algorithm, Snapshot(1)
and (2) for a simulation of a 100x100 SXN, using 6
processors. The results are shown in Table 2, which
contains both the number of control messages used and
the percentage difference between Snapshot(1) and the
other algorithms. As we can see, Snapshot(1) is clearly
superior to the other algorithms by a large margin, us-
ing 62 and 65%, respectively, of the control messages
of Bellenot’s and Samadi’s algorithms.

Figure 10 portrays the reason for these differences,
in terms of the average number of rounds which a to-
ken message is required for each GVT computation.
As we can see, in both Bellenot’s and Samadi’s algo-
rithms, the token is constrained to make two rounds,
while both Snapshot(1) and Mattern’s algorithm can
use fewer number than two rounds to compute the
GVT.

St Exchange Network (100X100)
3
T T
Bellnotand Samati 4—
Snapstol(1) +—
25 Mattern £ -

Figure 10: Average number of cut messages taken for
each GVT computation

The difference in the message complexity of Mat-
tern’s algorithm and our own algorithm may be found
in the condition wait until V[i] + count[i] < 0. This



Table 2: Number of Control Messages at SXN 100x100

Bellenot Samadi Snapshot(1) | Snapshot(2) Mattern
processors
# msgs. | % * | # msgs. % # msgs. #£ msgs. % | # msgs. %
6 17,600 | 62 | 17,899 | 65 10,858 19,008 | 75 | 12,832 | 18

“The figure derives from the comparison of Snapshot(1).

condition causes some delay at each process, thus re-
sulting in more simulation time and the use of more
control messages.

5.3.3 Memory Usage

Figures 11 (a) and (b) contain graphs of the average of
the peak memory used by all of the processors involved
in the simulation for a 100x100 and a 165x165 SXN
respectively. Both of these figures very clearly indicate
that Snapshot(1) results in substantial savings in mem-
ory compared to the other algorithms. For the 100x100
SXN, the difference between the memory consumption
of Snapshot(1) and each of the other algorithms is ap-
proximately 30% when 4 or 6 processors are employed.
At 8 processors, Samadi’s algorithm exhibits a 14% dif-
ference, while the other two algorithms continue to have
a 30% difference. Only when we reach 12 processors,
we find a narrowing in the gap of memory utilization.
Here Bellenot’s algorithm uses approximately the same
amount of memory, while Samadi’s differs by 11%. A
similar performance may be observed for the 165x165
SXN.

Shufe Exchange Netork (100100)
T T T T T T
14000 [ Belenot — o 140000 |-

Shuffe Exchange Nebvork (165165)
T T

Belenot —

anat anadi ——
Snapsho(l) - -~ Snapshof1) - -~

(a) SXN 100x100 (b) SXN 165x165

Figure 11: Peak memory usage for SXN 100x100 and
SXN 165x165

5.3.4 Execution Time

We present the simulation times for Bellenot’s
algorithm, Samadi’s algorithm, and Snapshot(1) in Fig-
ure 12 (a) for a 100x100 SXN. The same comparisons

are made for a 165x165 SXN in Figure 12 (b). For the
100x100 SXN, we see that Snapshot(1) has the small-
est execution time of the group. At 4 processors, it is
approximately 10% faster than the other algorithms,
while at 6 processors this difference rises to about 18%.
The differences are about the same for 8 processors,
while at 12 processors Bellenot’s and Samadi’s algo-
rithms are only slightly slower than Snapshot(1). The
differences in execution time for the 165x165 SXN are
greater. At 6 and 8 nodes, all of the differences are in
the neighborhood of 18%, while at 12 nodes, the range
is 5-12%.

We simulated a 200x200 SXN using 6 processors.
Bellenot’s algorithm was approximately 60% slower
than Snapshot(1), while Mattern’s algorithm was 16%
slower. The simulation using Samadi’s algorithm did
not complete.

Figure 12 (c) contains a comparison of the above
algorithms in the context of a simulation of a PCS net-
work. The execution times for the same algorithms are
plotted in the Figure 12 (c¢) for 4-12 processors. For 4
processor, the differences in execution time range be-
tween 15 and 24%, while at 6 processors the differences
are between 20 and 23%. After this point, the differ-
ence between the execution time of Snapshot(1) and
the other algorithms decreases.

6 CONCLUSION

We presented, in this paper, a distributed algorithm
for the computation of GVT in optimistic simulations.
The algorithm is based on a global snapshot algorithm
developed by Mattern. It employs a leader election
algorithm to determine a GVT initiator in the event
that more than one LP initiates the algorithm.

Two versions of the algorithm (Snapshot(1l) and
(2)) were developed and compared with Mattern’s
algorithm in the context of a Shuffle Exchange Network
simulation. We noted that Snapshot (1) used some 75%
fewer control messages than Snapshot(2) and some 18%
fewer messages than Mattern’s algorithm. Predictably,
the execution time of Mattern’s algorithm was interme-
diate between Snapshot(1) and (2).

We then compared Snapshot(1), Bellenot’s
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Figure 12: Simulation time vs. processors

algorithm, and Samadi’s algorithm. Our test beds
were a 100x100 SXN, a 165x165 SXN, a 200x200
SXN, and a H(60) PCS network. We compared the
algorithms on the basis of their message complexity,
peak memory usage, and their execution time.

In terms of message complexity, Snapshot(1) is far
superior to the other GVT algorithms using 62% fewer
messages.

Our results pointed out a large difference in the
peak memory consumption between Snapshot(1) and
the other algorithms. For example, in both the 100x100
and 165x165 SXN’s, the peak memory consumption
of Snapshot(1) was approximately 30% less than that
of the other algorithms for 4 processors. For obvious
reasons, as more processors are employed on the same
models, the gap in the memory usage decreased.

The differences between Snapshot(1) and the other
algorithms in execution time for the 100x100 and
165x165 SXNs are not as pronounced as they are for
memory usage and message complexity. For both of
these models, Snapshot(1) is approximately 10-18%
faster than the other algorithms. The difference in ex-
ecution time for a 200x200 SXN were larger - Snap-
shot(1) was 60% faster than Bellenot’s algorithm. For
the PCS simulation, we see a difference of 15-24% be-
tween Snapshot(1) and the other algorithms.

Our results indicate that Snapshot(l) makes a
smaller peak memory demand and uses fewer control
messages than Bellenot’s and Samadi’s algorithm. An
interesting extension of this research would be to com-
pare the same algorithms on a network of workstations
as the memory limitation on a network of workstations
would be far more severe than on a PowerChallenge
system. Under any circumstances, our results indicate
that Snapshot(1) would appear to be a good choice as
a GVT algorithm.
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