210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

An Empirical Evaluation of
Performance-Memory Trade-Offs in Time Warp

Samir R. Das, Member, IEEE, and Richard M. Fujimoto, Member, IEEE

Abstract —The performance of the Time Warp mechanism is experimentally evaluated when only a limited amount of memory is
available to the parallel computation. An implementation of the cancelback protocol is used for memory management on a shared
memory architecture, viz., KSR to evaluate the performance vs. memory tradeoff. The implementation of the cancelback protocol
supports canceling back more than one memory object when memory has been exhausted (the precise number is referred to as the
salvage parameter) and incorporates a non-work-conserving processor scheduling technique to prevent starvation.

Several synthetic and benchmark programs are used that provide interesting stress cases for evaluating the limited memory
behavior. The experiments are extensively monitored to determine the extent to which various factors may affect performance.
Several observations are made by analyzing the behavior of Time Warp under limited memory: 1) Depending on the available
memory and asymmetry in the workload, canceling back several memory objects at one time (i.e., a salvage parameter value of
more than one) improves performance significantly, by reducing certain overheads. However, performance is relatively insensitive to
the salvage parameter except at extreme values. 2) The speedup vs. memory curve for Time Warp programs has a well-defined
knee before which speedup increases very rapidly with memory and beyond which there is little performance gain with increased
memory. 3) A performance nearly equivalent to that with large amounts of memory can be achieved with only a modest amount of
additional memory beyond that required for sequential execution, if memory management overheads are small compared to the
event granularity. These results indicate that contrary to the common belief, memory usage by Time Warp can be controlled within

reasonable limits without any significant loss of performance.

Index Terms —Discrete event simulation, parallel and distributed simulation, virtual time, Time Warp, rollback, checkpointing,

memory management, performance evaluation.

1 INTRODUCTION

T IME Warp [14] is an optimistic mechanism used to syn-
chronize asynchronous parallel or distributed compu-
tations. It uses the notion of virtual time to detect out-of-
order execution of causally dependent tasks and recovers
from such errors using a rollback mechanism. To date, it
has been largely applied to parallel or distributed simula-
tion of discrete event systems, though other applications,
e.g., concurrency control in database systems [12], [17], and
parallel execution of general purpose programs [9] have
also been proposed.

The principal advantages of Time Warp over more con-
ventional, blocking-based, synchronization protocols is that
Time Warp offers the potential for greater exploitation of
parallelism and, perhaps more importantly, greater transpar-
ency of the synchronization mechanism to the simulation
programmer. Time Warp has demonstrated a fair amount of
success in speeding up simulations of combat models [32],
communication networks [3], [27], queuing networks [8], and
digital logic circuits [2], among many others.

One major critique of Time Warp is its apparent large
and inefficient use of memory. Time Warp uses a check-

e S.R. Das is with the Division of Computer Science, the University of Texas
at San Antonio, San Antonio, TX 78249-0667. E-mail: samir@cs.utsa.edu.

¢ R.M. Fujimoto is with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332-0280. E-mail: fujimoto@cc.gatech.edu.

Manuscript received June 25, 1995. An earlier version of this paper appeared in the
Seventh Workshop on Parallel and Distributed Simulation, May 1993.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95270.

pointing technique to implement the rollback mechanism.
Past states of the processes need to be saved to enable roll-
back. In addition, the Time Warp system may hold a large
amount of incorrect computations that will be rolled back
or canceled in the future. Large simulations may also incur
severe performance degradations due to the overheads in
the virtual memory system of the underlying architecture.
Memory usage in Time Warp can be unbounded in princi-
ple. Even though there is a garbage collection mechanism
(called fossil collection) for reclaiming memory, this alone
may not be enough to complete the Time Warp execution
with a reasonable amount of memory. This makes it im-
perative to study techniques to limit the memory usage of a
Time Warp execution and their performance impacts.

A number of memory management schemes have been
proposed to reduce the space usage of Time Warp. We clas-
sify these approaches into two categories: passive and active.
Passive schemes reduce average space utilization, but must
abort the program, when the execution actually runs out of
memory. Infrequent state saving [20] and incremental state
saving [4] strategies are of this type. By contrast, active
schemes are able to run the simulation within the available
memory (so long as there is some minimal amount of
memory available) and are able to recover memory “on
demand.” Intuitively, these latter schemes attempt to re-
tract some possibly correct computations and/or states that
are ahead in virtual time to make room for more “recent”
computation to proceed. Lin [18], and Lin and Preiss [19]
made a comprehensive study on space usage of such memory

1045-9219/97$10.00 ©1997 IEEE

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 211

management schemes. While many approaches have been
proposed, there has been only a modest amount of work
investigating the performance of the passive memory man-
agement schemes (see, for example, [7]), and even less in
evaluating active mechanisms. There are only two studies
evaluating the performance of active mechanisms:

1) In [1], an analytic model for a specific class of homo-
geneous synthetic simulation models was developed,
and

2) more recently, work was reported for a scheme that
reclaims state memory on demand, but the perform-
ance was evaluated only for a homogeneous queuing
network model [26].

In this paper, we present a comprehensive empirical
evaluation of a rollback based active memory management
protocol called cancelback [15]. In this context, we also de-
scribe an efficient implementation of the cancelback proto-
col in an existing multiprocessor Time Warp kernel.

The cancelback protocol is attractive because it has the
“storage optimal” property [15], [19]. The storage optimal
property states that the cancelback protocol is able to com-
plete the Time Warp computation within the amount of
memory required for the equivalent sequential computa-
tion. However, more memory usually gives better perform-
ance and the storage optimal property says nothing con-
cerning the performance one should expect for different
amounts of memory or the factors that will affect perform-
ance. Because performance depends heavily on implemen-
tational overheads, an experimental evaluation of the per-
formance vs. memory trade-off is required. One goal of this
study is to determine the minimum amount of memory re-
quired for efficient execution in practical implementations.

The remainder of this paper is organized as follows. In
Section 2, we briefly describe the Time Warp protocol and
define the terminology that is used throughout. In Section 3,
we describe the cancelback protocol and other active mem-
ory management schemes for Time Warp. In Section 4, we
discuss specific problems related to efficiently implement-
ing cancelback on a multiprocessor architecture, and the
solutions we have adopted. Section 5 discusses results from
synthetic simulation workloads to evaluate the perform-
ance of the cancelback protocol. Section 6 extends these
results to specific benchmark models. In Section 7, we ana-
lyze various factors controlling the limited memory behav-
ior of Time Warp and the properties of the application
simulation and the execution system that determine these
factors. We also indicate how we can view limiting avail-
able memory as a way to throttle Time Warp execution.
Conclusions are presented in Section 8.

2 THE TIME WARP PROTOCOL

A Time Warp program consists of a collection of logical
processes (LPs) that execute on (possibly) different physical
processors. The LPs execute timestamped events and inter-
act by exchanging events (also called messages, so we use
the terms “event” and “message” synonymously here). The
timestamp indicates the event’s virtual time of occurrence
and is assumed to be specified by the application program.

For discrete event simulation programs, virtual time is iden-
tical to simulation time and the events are simulation events.
An event has two timestamps associated with it:

1) The timestamp at which it occurs, called the receive
timestamp, and

2) the timestamp of the sending LP when the event was
scheduled, called the send timestamp.

We shall use the term “timestamp” to indicate receive
timestamp, unless specified otherwise. Each LP in a Time
Warp system must process the messages scheduled on it in
timestamp order in order to guarantee correctness. If an LP
processes events out of timestamp order, e.g., because it
receives a message (called straggler) with a timestamp
smaller than some other message(s) that it has already
processed, the LP rolls back the event computations that
were processed out of sequence, and reexecutes them
(including the newly arrived stragglers) in timestamp or-
der. Rollback entails undoing event computations. Com-
putation of an event can

1) modify the state’ of the LP and
2) send other messages to (possibly) other LPs.

Thus, undoing an event computation entails

1) restoring the state of the LP to that which existed
prior to processing the event, and

2) “unsending” messages that were sent during the
course of processing the event.

To enable rollbacks,

1) the state of each LP is periodically saved, and
2) a negative copy of each outgoing message is saved
with the sending LP.

The negative copy is called an antimessage and differs only
in a sign field from the original, positive message. When an
event computation is undone upon a rollback, the state of
the LP is restored from a past, correct copy. Unsending a
previously sent message is accomplished by sending the
corresponding anti-message that “cancels” or “annihilates”
the previously sent positive message. If the canceled mes-
sage had already been processed (by another LP) when
the antimessage is received, the receiver is first rolled
back (possibly generating additional antimessages) prior
to the message cancellation.

In order to reclaim memory (e.g., processed messages
and snapshots of the LP’s state), and to allow operations
that cannot be rolled back (e.g., 170), global virtual time
(GVT) is defined. GVT is a lower bound of the timestamp
of any rollback that might later occur. To guarantee pro-
gress, the Time Warp system should always ensure an
eventual increase in GVT. Normally, GVT is defined op-
erationally as the smallest receive timestamp of any un-
processed or partially processed message or antimessage in
the system. However, some memory management schemes
may require a different operational definition. Later, we
will discuss this question further.

GVT defines the commitment horizon of the simulation.
Events with timestamp less than GVT are referred to as

1. Note that in Time Warp, LPs do not share states, though extensions of
Time Warp to implement state sharing have been proposed [9].

212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

committed events. They will never be rolled back. Irrevoca-
ble operations that were invoked by committed events can
be performed, and, generally speaking, storage occupied by
them or their states can be reclaimed. The latter operations
are called fossil collection.

3 ACTIVE MEMORY MANAGEMENT SCHEMES FOR
TiME WARP

Time Warp consumes memory by storing three types of
objects, viz., copies of state vectors, positive messages, and
negative messages. Objects with receive time” earlier than
GVT are called past objects. Objects with send time earlier
than or equal to GVT, but receive time later than or equal to
GVT are called present objects. All other objects with send
time (and, therefore, receive time) later then GVT are called
future objects (see Fig. 1). It is apparent that the present
messages and states are the only ones that are required in a
corresponding sequential simulation, when the simulation
time is equal to the current value of GVT in the parallel
simulation. All past objects are committed and can be fossil
collected. Present and future objects are also called un-
committed objects (except for the present antimessages
which are also committed and can be fossil collected.)

GVT

1 increasing virtual time

[R B

send

b1

send

receive send Present receive receive

Future
time time time time time time

Past

(optimistically

(fossil collect)
generated)

(required)

Fig. 1. Time Warp objects.

Several techniques have been proposed that reclaim
memory by removing future objects and, thereby, causing
rollback of the sender of the corresponding object. Message
Sendback was proposed by Jefferson in his original work on
Time Warp [14] as a flow control scheme. When a message
arrives at a receiving process’ input queue, and there is no
room to store it, the receiving process makes room by
sending back a message (possibly different from the one
that was just received) to its original sender. This sender
must then rollback® to the state it was in when it sent the
message, and resend the message as it executes forward
again. The “natural choice” [14] of the message to be sent
back is the one with the largest send time.

Gafni’s protocol [11] generalizes message sendback by
removing a stored object (input message, state vector, or
output message) from a process P that runs out of memory.
If the discarded object is an input message, it is returned to

2. For a state vector, the virtual send time is the time it is created, and
virtual receive time is the time it is used or read.

3. To accommodate such sendbacks, the operational definition of GVT
must be modified to ensure that sendback does not cause rollback beyond
GVT. In message sendback, GVT is the minimum of 1) all local clocks and
2) send times of all messages in transit [18]. This definition is also used in
TWOS [16] that implements message sendback in its flow control.

the sender, as in message sendback. If it is an output mes-
sage, it is transmitted to its receiver where it will cancel the
corresponding positive message, and P rolls back to the
state before it sent the original positive message. If the
stored object is a state, it is discarded and P rolls back to the
previous state. Typically, the stored object with the highest
send time is selected to be sent back.

Message sendback and Gafni’s protocol do not have the
storage optimal property: They may not be able to complete
the simulation within the sequential amount of memory.4
The cancelback protocol [15], however, is storage optimal.
Unlike message sendback and Gafni’s protocol, cancelback
is targeted for a shared memory architecture where there is
a single shared pool of memory. All processes allocate ob-
jects from this shared pool and return free objects to this
pool after reclamation. In this protocol, if a process P needs
storage for any object u, it is assumed that u is always allo-
cated, but after allocation there may not be any remaining
free memory. If that is the case, the protocol invokes fossil
collection. If fossil collection fails to reclaim storage, the
protocol discards a stored object from some process exactly
as in Gafni’s protocol, to free memory. The discarded object
may or may not be u. Any object with sendtime greater than
the current GVT® (i.e., any future object) can be discarded.

Lin described a similar protocol called artificial rollback
[18], [19]. Here, if any process runs out of memory and fos-
sil collection fails to reclaim enough storage, the process
farthest ahead in virtual time is rolled back. The resulting
cancellations free storage. The rollback distance is consid-
ered to be a design parameter. For efficiency reasons, Lin
recommends rolling back the process with the latest local
clock to the second latest local clock. The process continues
until a certain amount of storage has been reclaimed. The
minimum amount of storage to be reclaimed is a parameter.
Lin also suggests the integration of a nonwork conserving
processor scheduling policy with artificial rollback to limit
the number of active processors so that the memory con-
sumption rate matches the amount of available memory [18].

Avrtificial rollback is similar to cancelback, and, thus,
shares the storage optimality property when implemented on
a shared memory system. However, it may be easier to im-
plement in many systems. For example, there is no need to
distinguish between messages in forward and reverse transit.
Similarly, there is no possibility that a positive message in
reverse transit and a negative message in forward transit will
miss each other and fail to annihilate. However, such differ-
ences are not expected to create a significant performance
differential. Thus, even though this study investigates the
performance of Time Warp with the cancelback protocol,
similar results are expected for the artificial rollback protocol.

Recently, Preiss and Loucks suggested an active protocol
that can reclaim memory on demand, but does not involve
rollback [26]. This protocol, called pruneback, reclaims only
uncommitted state objects and is primarily targeted for
distributed memory systems. Pruneback was shown to
outperform artificial rollback for certain homogeneous
queuing network models [26].

4. In fact, it can be shown that the worst case space usage by these protocols
is the number of processors times the sequential amount of memory [26].
5. Cancelback protocol uses the original operational definition of GVT.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 213

4 EFFICIENT IMPLEMENTATION OF THE CANCELBACK
ProT1ocoL

Efficient implementation of cancelback is nontrivial in
practice. In the following, we briefly discuss the perform-
ance issues associated with implementing cancelback.

4.1 Instantaneous Message Delivery

One important problem in implementing cancelback is the
assumption of zero message delivery time [15]. In real
architectures, message sends are not instantaneous. If proc-
esses ask for memory at a rate faster than it is freed by can-
celback (the latter rate is determined by the speed of roll-
back, message send, and annihilation), there must be a fair-
ness scheme to ensure that any process that asked for
memory will eventually receive it. Without this provision, it
is possible that the process that is the farthest behind (the
GvT® regulator) starves forever and the simulation cannot
progress.

Starvation can be easily avoided by invoking cancelback
atomically,7 or having a low level synchronization protocol
that records all memory requests and guarantees that all are
eventually served. Serving requests in first-come-first-serve
order is one way to ensure this. Although the above ap-
proach avoids starvation, it may not necessarily lead to
good performance. If the process furthest behind in the
computation (the GVT regulator) must “wait its turn” to allo-
cate memory, this computation, which is very likely to be on
the critical path, may be unnecessarily delayed.

In our implementation, starvation is avoided by another
approach. The GVT regulator is given priority to allocate
any memory buffer reclaimed by cancelback.? It is evident
that the simulation will always progress if the GVT regula-
tor is not starved for memory. The other LPs may allocate
such reclaimed memory only after the GVT regulator suc-
cessfully allocates memory and makes progress. This
scheme also eliminates busy cancelback [15], where the
same message is repeatedly canceled back and regenerated
a large number of times.

4.2 N Event Cancelback

Invocation of cancelback is expensive because of the global
computation involved that includes GVT computation and
choosing suitable events to cancelback. It is more efficient
to reclaim more than one object on a single invocation of
cancelback. We call the number of objects to be reclaimed
the salvage parameter. This parameter is similar to a pa-
rameter used by Lin in his artificial rollback protocol [18].
Assuming a salvage value of n, n = 1, a failed fossil collec-
tion invokes cancelback to cancel the n highest send times-
tamped future objects in the entire system. Note that from a
correctness standpoint, any n future objects may be canceled.

6. For cancelback with nonzero message delivery times, a new opera-
tional definition of GVT is required. Here, GVT is the minimum of 1) all
local simulation times, 2) the receive timestamps of the messages in for-
ward transit, and 3) send timestamps of all messages in backward transit
(i.e., discarded and on the way to the sender) [18].

7. This will have performance overhead that may be excessive.

8. This is a non-work-conserving processor scheduling scheme as proces-
sor may block even if the LPs mapped onto them may have messages to
process. A similar scheme is also suggested in connection with the artificial
rollback protocol [18], [19].

Here, n highest send timestamped events are chosen as these
are the most optimistic among all future events, and, thus,
are expected to bear a greater chance of being incorrect than
the others. If the number of future objects is less than n, all
future objects are sent back. We shall see later that the
choice of the salvage parameter significantly affects Time
Warp performance.

4.3 Georgia Tech Time Warp System

We use the Georgia Tech Time Warp (GTW-SM; SM
stands for shared memory) system to evaluate the per-
formance of the cancelback protocol for Time Warp [5].
The GTW-SM system is portable across shared memory
multiprocessors and has been ported to the BBN Butterfly,
Sequent Symmetry, Sun SPARC, SGI Power Challenge,
and Kendall Square Research KSR-Series multiprocessors.
Experiments reported in this paper were all performed on
the KSR-1. Each processing node in the KSR-1 has a two-
way superscalar processor with a 25 MHz clock. Each proc-
essing node has a 32 MB cache. The processor caches are
connected by a high-speed slotted ring interconnect. The
interconnect routes data among the caches to implement
data sharing and consistency. An invalidation based
hardware cache coherence protocol implements a shared
virtual address space amongst all processing nodes. This
memory system architecture is known as the ALL-
CACHE™ memory system. There is no physical main
memory (in the traditional sense) in this architecture. In
effect, the disk serves as the main memory and, thus, the
architecture is often referred to as COMA (cache only
memory architecture). A location in the system virtual ad-
dress space can reside in any (and possibly in more than
one) cache and the cache coherence protocol ensures con-
sistency respecting locality of reference. This makes the
machine appear to be, at least approximately, a Uniform
Memory Access (UMA) system, to an application with suf-
ficient locality of access.

There is a certain advantage to this approximate UMA
behavior in the context of the cancelback protocol. The
protocol requires the use of a single shared pool of memory
objects. Thus, an object can be allocated by any LP irrespec-
tive of the physical location of the object. Even though the
object is located in a remote cache at the time of allocation,
the object is automatically brought to the local cache after
allocation and can be accessed locally until the object is de-
allocated and returned to the free pool.

One of the interesting design choices of the GTW-SM
system is the use of causality pointers to implement
antimessages. When a message (positive) is sent, a pointer
is left from the sending message to the new message, which
essentially serves as the antimessage. Thus, message can-
cellation entails traversing this pointer and annihilating
(with appropriate rollback, if necessary) the message. In
addition to space saving, this saves message copying and the
time to match messages with antimessages. This technique is
called direct cancellation [8]. Even though direct cancella-
tion is possible only in shared memory systems, an appro-
priate hashing technique can be devised in distributed
memory systems to emulate causality pointers. Since the
causality structure in the system can be represented as a

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

tree, only two pointers per event are sufficient to imple-
ment the causality record.

We use a single logical shared free pool of a fixed num-
ber of memory buffers. Each memory buffer includes storage
for an event message, one copy of the state vector, and two
pointers used to implement the causality record (see Fig. 2).
State is saved before processing each event. Though the
GTW-SM system can support different state sizes for differ-
ent LPs and different message sizes, for ease of experimen-
tation and analysis, we shall assume all states (and mes-
sages) have the same size. Thus, the unit of memory alloca-
tion is a single buffer of constant size (size may vary with
the application) that includes all necessary data, both spe-
cific to the kernel (e.g., pointers implementing antimes-
sages) and the application (e.g., message data or state vec-
tor). When an LP sends a message to another LP, the send-
ing LP allocates one such buffer, fills in the data portion,
and enqueues it to a receiving queue of the destination
processor. The state and causality portions of the buffer is
filled in when the message is actually processed.

Send time
Receive time
Sending LP
Receiving LP
Message data

Copy of state

Causality record

Fig. 2. The structure of a memory buffer.

A single shared free list may be a potential bottleneck if
all memory allocations and deallocations utilize a single
shared lock. To reduce contention, each processor main-
tains its own free pool. If a processor fails to fossil collect,
the remaining free buffers in the system (in other proces-
sors) are redistributed equally among all processors. If the
number of free buffers is less than the number of processors
(this could happen under severe memory limitation), the
processor(s) that requested memory are allocated buffers.
If there is no free buffer on any processor, cancelback is
invoked. Note that we still have a “logically” shared free
pool. However, this scheme eliminates contention for the
shared pool when there is sufficient memory in the system.

The application simulation program is partitioned into
several logical processes (LPs) that execute events. Events
can read/write the LP’s state and can send events to other
LPs or to itself. For each message send, the kernel allo-
cates a memory buffer from the shared pool to the appli-
cation. Memory buffers are deallocated and returned to
the shared free pool when events are canceled or fossil
collected. Rollbacks are normally nonpreemptive.9 How-
ever, rollback induced by cancelback is made preemptive.
Otherwise, the system can deadlock when operated under
memory constraints.

Evaluation of global predicates such as GVT computa-
tion or choosing one or more suitable events for cancelback
are implemented by stopping all processors using barrier
synchronization locks. An efficient and scalable barrier syn-
chronization algorithm called the tournament barrier is used
for fast synchronization [23]. The processors resume again
with a barrier after such computations have been com-
pleted. The global computation within each pair of barriers
is optimized as much as possible. Such computation is in-
voked only when the system runs out of memory by trying
to send an event. After synchronizing at a barrier, all proc-
essors compute their local virtual time (LVT) in parallel
taking into account messages in transit. Then, GVT is com-
puted as the minimum of the LVTs. All processors then try
to fossil collect in parallel. If fossil collection fails to reclaim
any storage, one or more future event(s) with the highest
send timestamps are canceled back and, accordingly, the
corresponding source process(es) are rolled back. Then, the
processors again perform a barrier synchronization to com-
plete this global computation phase, and resume normal
Time Warp operation.

5 EXPERIMENTAL RESULTS

As discussed before, the memory consumed by the sequen-
tial simulation forms a lower bound on the memory re-
quired by Time Warp.lo Thus, in our experiments, we
measure memory usage as the additional memory beyond
Mgq (memory required by the sequential execution). This
additional memory must be consumed by future objects
(assuming the past objects and present antimessages are
immediately fossil collected). Thus, evaluating the per-
formance-memory tradeoff is essentially evaluating the
performance of Time Warp by placing a limit on the num-
ber of future objects that can exist in the system. Note that
in our experimental testbed, we have only one type of ob-
ject (memory buffer). No infrequent or incremental state
saving is used. Memory buffers being our unit of memory
allocation and deallocation, use of these techniques will not
change the total number of objects in use, though it may
reduce the size of individual objects.

It is instructive to note that the number of future objects
is dependent on the degree of optimism (i.e., the variations
of the LVTs) in the Time Warp system. Optimism again
depends on several factors: physical parallelism in the exe-
cution system, homogeneity in the behavior of the LPs, load

9. It is known that nonpreemptive rollbacks can cause deadlocks in cer-
tain pathological situations, e.g., incorrect event computation may enter an
infinite loop. However, we avoid this issue in our system in favor of a sim-
pler implementation.

10. This lower bound can be achieved in practice only if it is assumed that
the LP state is saved between processing each pair of consecutive events
and the following are fossil collected—1) positive messages with receive
timestamp less than GVT, 2) negative messages with send timestamp less
than or equal to GVT, and 3) copies of state with send timestamp (time of
generation) less than GVT and receive timestamp less than or equal to GVT.
Thus, the GVT regulator LP can fossil collect all states with sendtimes less
than GVT. But all other LPs must have a copy of state with sendtime less
than GVT. However, special handling of the GVT regulator LP for fossil
collection may not be possible in practice. In such a situation, the lower
bound of Time Warp memory usage should be the sequential amount of
memory plus space to hold one state object per LP. This additional space is
just a constant. For brevity, we shall ignore this additional space in our
discussion.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 215

balance, amount of asynchrony in the simulated system,
etc. We constructed a set of experiments with synthetic
workloads that vary in degree of optimism in different
ways. We also report experiments with real simulation
models (two different communication networks) that cor-
roborate the behavior observed with the synthetic workload
experiments.

5.1 Symmetric PHOLD Workload

The PHOLD workload was originally described in [10] as a
parameterized synthetic workload model for performance
evaluation of parallel simulation systems. In this workload,
a constant number of messages (called the message popula-
tion) circulate among the LPs. The timestamp increments
are selected from some stochastic distribution. Messages
are equally likely to be forwarded to any other LP. Each LP
is mapped onto a distinct processor. The computation grain
per event is selected from an exponential distribution with
mean of five millisecond."™ Several experiments were per-
formed to measure speedup as the message density (defined
as the message population divided by the number of LPs) is
varied. Speedup is measured relative to the performance of
a sequential event list simulator, where the event set is im-
plemented as a splay tree.

With respect to Time Warp, this simulation’s behavior is
similar to simulations of symmetric, closed queuing net-
works. In all our experiments with this benchmark, eight
LPs are used with each LP mapped onto one KSR-1 proces-
sor. A message population of 256 was used.

The performance of Time Warp is monitored to obtain a
detailed accounting of the execution time. A processor
spends its time in

1) performing memory management activities including
GVT computation, fossil collection, and invocation of
cancelback (if necessary) within the barrier synchro-
nization locks,

2) executing code for other Time Warp overheads such as
rollbacks, message cancellation, message delivery, etc.,

3) busy waiting for memory to be reclaimed, to enable
progress,

4) computing events.

The performance results that follow indicate time spent in
each of these functions.

5.1.1 Varying the Amount of Memory

Fig. 3a shows the result of the first set of experiments, and
graphically demonstrates the space-time tradeoff for Time
Warp execution for this instance of the PHOLD workload
model. The amount of time spent in each of the four activi-
ties mentioned earlier is shown in this figure. The salvage
parameter is set to 1 for this set of experiments. From the
categorization of the execution time of a typical processor,
we see that as we start increasing memory from its mini-
mum (the amount required for the sequential simulation),

11. Five millisecond granularity may be considered large compared to
most practical discrete event simulation models. We shall later consider
realistic benchmarks with finer granularity.

12. Recall that the GVT regulator has priority to allocate memory re-
claimed by cancelback. So other processes have to wait until the GVT
regulator makes progress.

execution time falls rapidly and then quickly stabilizes. This
demonstrates that Time Warp can achieve as much
speedup with only four to eight buffers per processor as
with unlimited memory.

300 T T T T T
250 Execution time breakdown shown 1
N in the following order (top to bottom):
Za; 200 | Memory management overhead R
Z Other TW overhead
g 150 Busy wait for memory |
= Event computation
2
Ed
s]
0 1 1 1 1 1
0 20 40 60 80 100 120
Additional Mcmory (# buffers)
(a) Salvage parameter = 1
300 T T T T T

Exccution time breakdown shown
in the following order (top to bottom):

’g 200 Memory management overhead b
< Other TW overhead

g 150 Busy wait for memory 1
= Event computation

3

3 100 b

O 1 I 1 1 L
0 20 40 60 80 100 120
Additional Memory (# buffers)

(b) Salvage parameter = 20

Fig. 3. Execution time profile for two different salvage parameters for
the PHOLD model on eight processors. The date is cumulative. The
total execution time is described by the topmost curve.

The execution profile reveals that the memory manage-
ment overheads are very high at low amounts of memory
and fall very rapidly as memory is added. This is because at
very low values, the system runs out of memory very fre-
quently. Other Time Warp overheads are also large at low
memory because of an increase in the number of rollbacks
(arising from invocations of cancelback) and cancellations.
However, the decline of these overheads with increasing
memory is less dramatic than that for memory management
because with increasing memory the system operates with
more and more optimism and some cancelback rollbacks are
replaced by straggler induced rollbacks. Busy wait time for
memory is reduced as the amount of memory is increased.
Computation time for events is almost independent of mem-
ory. We also observe that there is a distinct “knee” in the exe-
cution time vs. memory curve (at approximately additional
memory equal to 60) beyond which improvement in execu-
tion time is minimal with increased memory. This knee is an
important characteristics of the performance-memory curve.

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

5.1.2 Effect of the Salvage Parameter

Fig. 3b shows the effect of increasing the value of the sal-
vage parameter n. This figure shows the execution profile
for n set to 20. There is a modest decrease in the total exe-
cution time for this increased value of n. The nature of the
profile with respect to event computation time and busy
wait time is also different. For low amounts of memory,
more time is spent in event computations, and less time is
spent waiting for memory. This is because computations
execute forward and are rolled back (via rollbacks due to
cancelback) rather than block waiting for memory to be-
come available as the salvage parameter is increased.

One other interesting aspect of this curve is the increase
and subsequent reduction in the event computation time
with decreasing memory. This is seen at low values of
memory. The increase is due to more rollbacks from cancel-
back. However, the subsequent reduction is because of the
decrease in the effective value of the salvage parameter itself,
which, in turn, causes fewer rollbacks due to cancelback.
The effective value of the salvage parameter is bounded
from above by the number of additional buffers available.
This is the maximum number of future events in the sys-
tem. Thus, when additional memory falls below the speci-
fied value of the salvage parameter, the latter’s effective
value becomes equal to the memory, and decreases as
memory is reduced.

For an increased value of memory (more than 20 buff-
ers), efficiency is still lower with the high salvage parame-
ter, but there is a marginal improvement in memory man-
agement overhead that reduces the execution time by a
small amount. This effect is due to less frequent calls to fos-
sil collection/cancelback.

Fig. 4 shows the variation of the execution time with sal-
vage parameter. The memory is fixed near the knee of the
execution time vs. memory curve at 40 memory buffers.
There is a steady increase in the event processing time with
salvage parameter, because of the increasing number of re-
execution of rolled back events. However, as expected there
is a marginal drop in the idle time and memory management
overheads with increases in the salvage value. This explains
the shape of the curve in Fig. 4. This curve shows that there
exists an optimal value for the salvage parameter that maxi-
mizes performance with a given amount of memory.

5.1.3 Effect of Message Density and Physical
Parallelism

We conducted two sets of experiments to examine the lim-
ited memory behavior as the problem size and number of
processors change. In one set of experiments, message den-
sity is varied keeping the number of processors fixed (equal
to eight). In the other, the number of processors is varied
with message density fixed (equal to 32). Again, there is
only a single LP per processor. The salvage parameter value
is fixed at 1. See Figs. 5 and 6, respectively, for the perform-
ance-memory curves. The speedup is shown here instead of
the absolute execution time. An increase in message density
(without any change in timestamp increment behavior)
reduces rollbacks.” However, increase in message density
(without any change in the timestamp increment distribu-
tion and physical parallelism) does not affect the rate of

60 T T T T

Exccution time brcakdown shown

50 in the following order (top to bottom):

0 40 1
(5]
2
o
£ 30 |
;)'
)
i 20 | 1
Memory management overhead
Other TW overhead
10 - Busy wait for memory 1
Event computation
0 1 1 1 1 L

5 10 15 20 25 30
Salvage Paramcter

Fig. 4. Execution time profile for varying salvage parameter for the
PHOLD workload. The memory is fixed at 40 extra buffers. The data is
cumulative. The total execution time is described by the topmost curve.

6 r r r r r r r r r
5 L
4 -
o
=
i 3t
%
2
2 F density =32 —— .
g density = 16 -+
i density =8 o
1k density =4 - 1

() 1 1 1
0 20 40 60 80 100 120 140 160
Additional Mcmory (# buffers)

180 200

Fig. 5. Performance of the PHOLD workload with varying memory for
different message densities on eight processors.

forward computation (in events computed per unit real
time) and the rate of event commitment (events committed
per unit real time). Thus, an increase in message density
increases the number of future events. This in turn in-
creases the frequency of fossil collection/cancelback invo-
cations. Hence, the knee of the curve occurs progressively
at higher memory values (Fig. 5).

The same behavior is also observed in Fig. 6, where num-
ber of processors is increased with a fixed message density.
More processors generate a larger number of future events.
In fact, increases in physical parallelism contribute to the
pool of future events more directly (with a proportionate
increase) than an increase in message density. For this set of
curves, higher overheads per invocation of fossil collec-
tion/cancelback for a larger number of processors (due to
longer barrier synchronization times) are also responsible
for the shift of the knee towards larger amounts of memory
with an increasing number of processors.

13. This is because the rate of progress of the simulator in virtual time per
unit real time becomes slower with increase in message density, as now
more messages need to be processed to make a similar progress in virtual
time. On the other hand, as the timestamp increment does not change,
newly generated messages tend to fall increasingly in the virtual future of
the destination LPs, thus reducing rollbacks.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 217

16 T T T T T T T T T

157 24 proc. —— 1
14 + 16 proc. —~—
13+ 8 Proc. =& |

Speedup

() 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Additional Mcmory (# buffers)

Fig. 6. Performance of the PHOLD workload with varying memory with
different number of processors with fixed message density (= 32).

5.2 Asymmetric PHOLD Workload

Introducing some asymmetry in the PHOLD workload (by
making some processes faster by changing their event
granularity), increases the average number of future events
as the faster processes become overly optimistic. This is
equivalent to having processors of different speed in the
Time Warp system. The simulation workload otherwise
remains identical. The additional future messages, how-
ever, are generated over-optimistically by the faster proces-
sors and most of them would eventually be rolled back.
Thus, the knee of the performance memory curve is ex-
pected to occur at the same position regardless of the
asymmetry.

Fig. 7 shows the speedup data for the PHOLD workload
for both symmetric and asymmetric cases for message
population of 256 on eight processors. Two asymmetric
cases are shown:

1) half of the processors are 20% slower than the rest
(asymmetric 1.2) and

2) half of the processors are twice (asymmetric 2.0) as
slow as the rest.

Processors are made slower by inflating the event compu-
tation grain appropriately. All data correspond to a salvage
value of 1.

Fig. 7 demonstrates that all three curves have their knees
approximately at the same memory value. In the two
asymmetric curves, the knee is marginally shifted towards
the right because of higher memory management over-
heads, as cancelback needs to be called more frequently
because of the overly optimistic behavior.

This set of curves demonstrates that the number of fu-
ture events in the unlimited memory execution is not the
sole determinant of the limited memory performance. In
the asymmetric models, the average number of future
events is larger. But many of them (especially those with
larger virtual timestamp) are incorrect and are liable to be
retracted. So it does not degrade performance by limiting
their number by cancelback. Thus, the symmetric and
asymmetric PHOLD workloads behave similarly, when
compared to the corresponding unlimited memory execution,

8 . |
symmetric ——
1 asymmetric(1.2) -—+---
asymmctric(2.0) =

Speedup

0 I 1 1
0 50 100 150 200
Additional Memory (#buffcrs)

Fig. 7. Speedup curves for varying memory for asymmetric PHOLD
workload. The symmetric speedup data is shown for comparison.

except for higher memory management overheads for the
asymmetric workloads. We observe that to achieve good
performance, it is sufficient to provide enough extra space
(over the sequential memory requirement) to hold the
“correct” future events. Other future events may be elimi-
nated by cancelback without affecting the performance. We
are, however, relying on the hypothesis that the events with
larger timestamps have a higher probability of being incor-
rect.

5.3 More Asymmetry: The Arbitrary Flow Network
Model

This model is based on the simulation of a power distribu-
tion grid. In this model, there are source nodes that gener-
ate events but do not receive any from other nodes, sink
nodes that receive events but do not send any, and applica-
tion nodes that model the actual network being simulated.
Each node is modeled by an LP. The application nodes
communicate by sending timestamped messages of two
types: propagating and nonpropagating messages. Proc-
essing a propagating message results in one or more addi-
tional messages to be sent by the LP. Messages are sent to
other LPs based on a communication probability matrix.
Nonpropagating messages are intended to model data
transfers which do not result in additional communication.
If new messages are generated, only one will be propagat-
ing and the rest nonpropagating. When a propagating
message is processed, the timestamp increment is com-
puted based on a probability distribution. In addition, the
granularity of each event is computed based on another
probability distribution. The number of source, sink and
application nodes, the communication probability matrix,
and the timestamp increment and granularity distribution
for each node are parameters in the model. The same model
was used in [22] for evaluating the performance of a prob-
abilistic synchronization scheme in conjunction with Time
Warp.

In the chosen instance of the model, there are one source,
one sink, and eight application nodes. The granularity of all
events is normally distributed with mean 1.0ms per event.
Of the eight application nodes, six are fast and the rest are
slow. The fast nodes send messages with an average
timestamp increment of 100, while the slow nodes send

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

messages with an average timestamp increment of 1. All
timestamp increments are exponentially distributed. A fast
or slow node has a 0.6 probability of communicating with
its own group and a 0.2 probability of communicating with
the other group. These parameters provide a significant
amount of asymmetry in the simulation model.*

The number of unprocessed messages in the system
continuously grows with the progress of the simulation
because of the existence of the unthrottled source LP which
continues to generate messages for other LPs, and never
rolls back. As our Time Warp system can only provide a
finite amount of memory for the simulation, the cancel-
back protocol needs to be invoked for memory manage-
ment whenever the system runs out of memory. Cancel-
back automatically reclaims memory by undoing some
computations at high timestamps, thus, making room (by
creating memory) for the lower timestamped computations
to progress. We can vary the events set sizes on different
LPs by simply varying the amount of memory (measured
in terms of the number of event buffers) available for the
simulation.

The Arbitrary Flow Network model provides a chal-
lenging test case for experimenting with the limited
memory behavior of Time Warp. As the source process
never rolls back, it quickly consumes all the available
memory, even though the other processes remain far be-
hind in virtual time. In [22], it was observed that Time
Warp without any throttling cannot simulate this model on
a real machine, because its memory requirements are un-
bounded without any flow control mechanism.

Fig. 8 shows the execution profiles for this workload on
10 processors for different values of the salvage parameter.
Because of the unthrottled nature of the source process and
severe asymmetry in the system model, a large number of
future events are generated which need to be rolled back
by cancelback to ensure limited memory execution. This
workload puts more pressure on the memory management
system compared to the previous workloads. Thus, the
knee of the performance memory curve occurs at a some-
what larger memory value compared to PHOLD for all
salvage parameter values. (The initial decrease continues
until a memory value of approximately 300 extra buffers is
reached.) It is easy to see that a dominant portion of the
execution time goes for memory management overheads,
especially for small memory and low salvage parameter.
The best execution time here corresponds to a speedup of
about 4.2 on 10 processors.

One other interesting aspect of this set of curves is that
with a very large amount of memory, there is a modest rise
in execution time. This is attributed to a severe loss of spa-
tial locality in the program from using a very large amount
of memory. This increases false sharing of the virtual mem-
ory pages, thus, causing a large number of cache misses.”
This behavior can be reduced by using certain buffer man-
agement techniques that improve spatial locality transpar-
ently to the application program [25].

14. Asymmetry can be controlled by varying the number of slow and fast
processors, their timestamp increments, and communication probabilities.
The chosen parameters and the data presented are just representatives of
the asymmetric behavior.

1600 Exccution time breakdown shown 1
in the following order (top to bottom):
> 800 Memory management overhead
2 Other TW overhead
© 600 | Busy wait for memory g
g Event computation
5]
& 400
200 M
0 1 1 1 1 1 1 1 1
0 5000 10000 20000 30000 40000 50000
Additional Memory (# buffers)
(a) Salvage parameter = 1
1000 - Execution time breakdown shown 1
in the following order (top to bottom):
> 800 1 Memory management overhead
@ Other TW overhead
o 600 Busy wait for memory i
E Event computation
g
& 400 .
200
0 1 1 1 1 1 1 1 1
0 500010000 20000 30000 40000 50000
Additional Memory (# buffers)
(b) Salvage parameter = 20
1000 Execution time breakdown shown 1
in the following order (top to bottom):
= 800 1 Memory management overhead)
2 Other TW overhead
o 600 | Busy wait for memory]
g Event computation
51
& 400 9
200 r

O L
0 500010000 20000 30000 40000
Additional Memory (# bulfers)

50000

(c) Salvage parameter = 100

Fig. 8. Execution time profile for three different salvage parameters for
the arbitrary flow network model on 10 processors. The data is cumu-
lative. The total execution time is described by the topmost curve.

Let us now examine how the execution time varies with

the salvage parameter setting. From Fig. 8, we see that the

15. In KSR's cache protocol, a valid cache block can exist in a local cache
only if the corresponding page also exists in that cache (all cache blocks in
this page need not be in the valid state). If the page does not exist in the
cache, it must be allocated. With less spatial locality in the program, a cache
miss has a higher chance of seeing a corresponding page miss and subse-
quent page allocation. Page allocation is generally preceded by page re-
placement and resulting cache update transactions. This hypothesis was
verified using the event counters in the KSR’s processing nodes.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 219

execution time improves by a significant amount when the
salvage parameter is increased from a low value (1) to a
moderate value (20). The large average fanout of events in
this model is largely responsible for this behavior. If the
salvage parameter is 1, cancelback reclaims memory one
buffer at a time. If the GVT regulator needs to send k
events, where k > 1, fossil collection and cancelback are in-
voked for each of these k sends. On the other hand, if the
salvage parameter is set to a value larger than the maxi-
mum fanout, only one cancelback invocation per event is
necessary in the worst case. Thus, with this workload, we
see a faster improvement in the memory management
overhead and little effect in efficiency as we increase the
salvage parameter (see Fig. 9).

1000 1
Execution time breakdown shown
800 | in the following order (top to bottom):
’g Memory management overhead
f Other TW overhead
£ 600 Busy wait for memory 1
= Event computation
i 400 | % X]
83 . -
200 R
() 1 1 1 1 1
0 100 200 300 400 500 600

Salvage Paramcter

Fig. 9. Effect of varying the salvage parameter with a constant amount of
memory. Arbitrary flow network with additional memory = 600 buffers.

6 EXPERIMENTS WITH BENCHMARK SIMULATION
APPLICATIONS

Though many real simulations have properties that were
exhibited in the synthetic workloads described above, a set
of benchmark applications was studied to validate the be-
haviors observed in the synthetic workloads. The two
benchmarks selected are simulations of

1) astore and forward communication network in a hyper-
cube configuration with and without hot-spot traffic and

2) a Personal Communication Service (PCS) network
simulating a mobile communication system.

Both of these benchmarks have some properties ob-
served in many other real simulation models:

1) a large number of simulation objects (modeled as LPs)
and a large event population (possibly time varying),
and

2) very small grain computation (often 100us per event
or less on the KSR-1).

6.1 Store and Forward Communication Network
Simulation

The network is configured as a hypercube. There is a fixed

size message population in the network. Messages are

routed to randomly selected destination nodes using the

E-cube routing algorithm [13]. Message lengths are selected
from a uniform distribution and transmission time is pro-
portional to the message length. It is assumed that there are
two unidirectional links (one in each direction) between the
neighboring nodes in the hypercube. In addition to the
transmission latency, there may be queuing delays at the
links as only one message can be transmitted over a link at
one time. The queuing is FCFS and infinite buffer capacity
is assumed in the simulation model. After a message has
reached its destination node, another destination is picked
at random and the message is reinserted into the network.

In the simulation model of this network, a queuing
server is associated with each link. The service time of the
server is equivalent to the message transmission latency. In
the simulation model, service times are precomputed and
messages are forwarded immediately to the next server as
suggested in [24]. This improves lookahead and, hence,
performance. In one set of experiments, destination nodes
are selected using a uniform distribution. In two other sets
of experiments, hot spots are introduced with nodes within
a designated subcube having 50% probability of being des-
tination nodes. Introduction of hot-spots increases rollbacks
and load imbalance in the Time Warp system.

In the reported set of experiments, 128 LPs (128 node
hypercube) were used on eight processors with a message
population of 2,048 (See Fig. 10). A salvage parameter value
of 100 was chosen. Note that this message population plus
one is the memory required by the sequential simulation
and forms a lower bound on the memory required by Time
Warp. For better locality of communication, subcubes of the
hypercube are mapped onto individual processors. Three
different experiments were performed. In the first set of
experiments, message destinations are chosen at random
using uniform distribution. In the second (third), 1/4th
(1/8th) of the nodes are chosen as hot-spots and 50% of the
message traffic is directed towards them. Note that for
more severe hot-spots, there is more load imbalance and
hence more rollbacks. Also, the progress of the simulation
is controlled by hot-spot nodes. This accounts for loss of
simulation speed for more concentrated hot-spots. Note
that the knee occurs approximately at the same memory
value irrespective of the hot-spot. Though the hot-spot re-
duces the number of correct future messages in the simula-
tion (so that cancelback can force the simulation to execute
with a smaller amount of memory without a loss of per-
formance), it increases the memory management overheads
due to more over-optimism (thus, requiring more memory
for equivalent performance). The balancing effect of these
two opposite forces places the knee at about the same value
for all three curves.

6.2 PCS Network Simulation

A PCS (Personal Communication Services) network is a
wireless communication network, which provides commu-
nication services to mobile units. In the simulation model,
the service area of the network is partitioned into checker-
board-like subareas or cells. The simulation model consists
of cells and portables. Portables model mobile units. Each cell
represents a cellular receiver/transmitter that has some fixed
number of channels allocated to it. The portable represents a

220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

20000 . , : , ,
18000 |
16000 |
homo. ——
~ 14000 | Vdhot [N
3 VBhOU 8| oo
2 12000 f |
5 /
5 10000 | |
T 8000 | / |
2) P — B .
2 6000 | [g |
4000 | / |
2000 |
R
0 ' a— . . . ,

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Mcmory (# buffers)

Fig. 10. Performance-memory curve for the hypercube network with
and without hot-spots.

mobile phone unit that resides within the cell for a period
of time and then moves to one of the four neighboring cells.
The behavior of a portable is modeled by different types of
events, such as portable move, call arrival, and call comple-
tion. A detailed description of this application is presented
in [3].

This PCS model views the portable as only a receiver of
calls and is not concerned with the originator of a call.
When a new call arrives at a cell, the cell first determines
the status of the destination portable. If the destination
portable is busy with another call, this call counts as a busy
line. If the portable is not busy, the cell determines channel
availability. If all channels are busy, this call is counted as a
block. If a channel is available, it is allocated for the destina-
tion portable’s use and the call is allowed to connect. When
a portable moves to another cell while a call is in progress, a
handoff takes place, i.e., the channel currently in use is re-
leased, and a new channel must be allocated in the cell it is
entering. If no channels are available, the call is
“dropped” (cut off). Simulation is used extensively to en-
gineer PCS systems so that call blocking and dropping
probabilities are small.

Each cell is modeled by an LP. Each LP also models the
behavior of all the portables presently in the grid cell. One
interesting aspect of the PCS simulation model is the self-
initiating behavior of the LPs, i.e., that each LP often sends
messages to itself to advance simulation time. In the PCS
model, the portables generate their own incoming calls and
this imparts the self-initiating behavior of the LPs [3]. An-
other interesting aspect of the PCS model is the high degree
of locality. Normally, there are a large number of grid cells in
the simulation modeled by as many LPs. Since the neigh-
boring LPs are mapped onto a single processor, there is much
local communication and few remote messages. The self-
initiating behavior coupled with few remote communications
makes the simulation extremely asynchronous and, thus,
there is a possibility of over-optimistic behavior. This gives
rise to a very large memory usage without any form of throt-
tling. There are, however, very few rollbacks. Thus, a great
majority of the future events are correct.

Fig. 11 shows the performance-memory curves for the
PCS network model on eight, 16, and 32 processors of KSR-1.
The salvage parameter is set at 100. The problem size is pro-
portional to the number of processors. In this set of experi-
ments, 16 LPs (modeling grid cells) per processor are used.
Note that the increase in problem size proportionately in-
creases the sequential amount of memory (lower bound of
the Time Warp memory). Increasing the number of proces-
sors with scaled problem size increases the size of the future
message set in proportion. This proportionately increases the
number of additional memory buffers at the knee.

100000 - o
90000 -
80000 | 32 ——
16 -+
~ 70000 F 8 =
3
2 60000 |
£
5 50000)
T 40000 -
2 /
230000 e
20000 | 4/
0000 b &
0 S o
0 5000 10000 20000 30000 40000 50000
Mcmory (# buffers)

Fig. 11. Performance-memory curve for PCS network on different
numbers of processors.

7 DISCUSSIONS

Too little memory is detrimental to performance primarily
for two reasons:

1) high memory management overheads and
2) loss of physical parallelism.

Lack of adequate memory can force the committed execu-
tion of many simulation events in timestamp order rather
than in parallel or out of timestamp order." Loss of paral-
lelism is represented in the performance curves as
1) larger event execution time because of cancellations of
correct events and rollbacks followed by reexecutions
of the corresponding sender events, and
2) busy wait time for memory to allow the GVT regula-
tor to progress.

Both of these force the final, committed event executions to

happen in timestamp order (as in a sequential execution).
The experimental results give us certain insights into the

limited memory behavior of Time Warp as described below.

7.1 The Knee of the Performance-Memory Curve

The performance data collected in this study indicate that
there is a well-defined “knee” in the performance-memory
curve, regardless of symmetry in the model or in the system

16. Note that often executing two events out-of-timestamp order can be
more efficient than executing them in timestamp order (even though in
either case, they are processed sequentially). This is because events may
just be generated out-of-timestamp order, and when they are generated,
there may be CPU cycles immediately available to process them.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP 221

architecture, physical or model parallelism, and problem
size. The intuitive reason for this is as follows. Suppose, the
amount of memory is being increased from Mg, With just k
extra buffers, k future events can be generated. If the event
fan-out is k, this allows one event (other than the GVT
event) to complete processing optimistically and become a
candidate for commitment. (With memory close t0 Mg,
there is not much optimism in the system and, thus, roll-
backs are unlikely.) With an additional k events, one more
event can potentially complete its execution (on a different
processor) that will commit. Thus, as memory is increased
in steps of k buffers, in each step

1) one additional processor can become busy with useful
work (this means more parallelism), and

2) one more event can be potentially fossil collected in
each fossil collection invocation (this means less can-
celbacks and less overheads).

Thus, performance increases rapidly with additional buff-
ers. However, soon a point is reached, when all the proces-
sors become busy and fossil collection invocations are able
to collect a sufficient number of fossils so that the system
runs out of memory only infrequently. This is the knee
point. Beyond this point, the performance is almost inde-
pendent of the amount of memory.

The knee of the performance-memory curve is a good
operating point for Time Warp. The rise in performance
beyond the knee value is marginal and there is a possibility
of performance decrease at larger values of memory be-
cause of the loss of spatial locality as was observed in the
Arbitrary Flow workload. The experiments indicate that
two major factors determine the location of the knee:

1) The size of the future event pool.
The size of the future event pool is affected by the
following rates:

a) the rate of generation of new messages,
b) the rate of message cancellations, and
c) the rate of event commitment.

a is responsible for the growth of the future event
pool, and b and c are responsible for its shrinkage.

For a given amount of memory, this size deter-
mines the frequency of the fossil collection/cancelback
calls and, thus, controls the memory management
overheads. If the event grain is small, the memory
management overheads may dominate the execution
time under limited memory. This pushes the knee to-
wards larger memory values.”’

Note that in the experimental data, the change in
the location of the knee is consistent with the change
in event granularity. The communication network
simulators have grain size about an order of magni-
tude smaller than the synthetic workloads. In the
former, the knees are located within 150 buffers per
processor compared to within 15 for the latter.

17. For an explanation, see the profile in Fig 3a. If the event grain be-
comes smaller, the lower portion of the profile (event computation time)
will be smaller without affecting any other part of the profile. This will
increase the fractional change in the “total” execution time per unit change
in memory.

2) The number of correct future events with source events on
the critical path of the simulation computation.

Salvaging the storage occupied by future events
will rollback one or more source uncommitted
event(s). If these future events are correct events, then
their source events will be recomputed to regenerate
the same events. If these source events are on the criti-
cal path of the parallel computation, recomputation
on the critical path will slow down the progress of the
simulation. On the other hand, rolling back other (i.e.,
incorrect, or correct but off critical path) uncommitted
events by cancelback will have little effect on the per-
formance. Thus, if some logical processes are system-
atically ahead (in virtual time) of the others, such
asymmetry will only marginally affect the location of
the knee. We have seen this in the PHOLD
(asymmetry in processor speed) and the hypercube
(asymmetry in the simulation model) examples.

The exact location of the knee cannot, however, be pre-
dicted statically without some knowledge of the applica-
tion’s behavior. Also, the location can shift dynamically if
there is a change in the simulation model at runtime. How-
ever, it is possible to predict the approximate location of the
knee by observing the behavior of Time Warp at runtime.
The rate of generation of new events, the rate of rollbacks,
and rate of progress of the GVT can be monitored to predict
the size of the future event pool. Initial ideas regarding how
this can be accomplished can be found in [6].

7.2 Effect of the Salvage Parameter

The experimental data suggests that there is an optimal value
of the salvage parameter. Too small a value causes cancel-
back to be called too often causing poor performance due to
the associated overheads. Too large a value may cause some
correct computation on the critical path to be rolled back,
thus affecting performance. This suggests an optimal value
somewhere in between one and the amount of “surplus”
memory (amount available minus the amount needed to run
the sequential simulation). The latter term is an upper bound
on the salvage parameter in that larger values do not affect
performance. It is also observed that the performance is rela-
tively insensitive to the actual value of the parameter, once it
is away from the two extremes. This indicates that it may not
be crucial to determine the exact optimal value in practice.

There is currently no general method of choosing an
appropriate value of the salvage parameter for a given
simulation application. It depends on the runtime charac-
teristics of the application which cannot be predicted stati-
cally. However, an adaptive mechanism for selecting the
salvage value automatically can be devised by studying
how many events canceled by cancelback are actually re-
generated [6]. Fewer such events indicate that an increase in
the salvage value is possibly harmless. A detailed descrip-
tion of the adaptive mechanism is beyond the scope of this
paper. However, for the sake of completeness, we mention
some “ground rules” that should help in selecting a reason-
able value of the parameter statically, if certain information
about the application behavior is known. The optimal value
of the salvage parameter generally increases

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

1) with smaller event grain, as then the overheads be-
come proportionately larger,

2) with larger available memory, as then there is more
optimism in the system, which may not be critical for
performance,

3) with over-optimism in the workload, as there may
be some LPs operating at a much higher virtual time
than others and can be rolled back to free memory
without affecting performance.

These ground rules should help the experimenter to choose
a good static value for this parameter.

7.3 Memory Control as an Effective Throttling
Mechanism

Limited memory execution with cancelback can be viewed
as a throttling scheme that artificially limits optimism in
Time Warp programs. The amount of such throttling de-
pends on the number of future objects generated which, in
turn, depends on the amount of available memory. There
are other throttling schemes that have been suggested in
the literature with different controls, e.g., width of the time
window in window based schemes [21], [28], [29], [30], re-
synchronization intervals with probabilistic synchroniza-
tion [22], bound value in the bounded Time Warp algo-
rithm [31], among others. They were developed primarily
to limit the amount of rolled back computation in Time
Warp.

However, the controls used in the above mechanisms to
limit optimism have only an indirect relationship to the
amount of optimism provided by the system, and hence it
may be difficult to choose appropriate values for them. For
example, the optimal size of time window or optimal
bound value depends on the density of events in virtual
time. This depends on the timestamps of the events in the
simulation application. It is not readily clear how users,
particularly those that are not intimately familiar with the
details of the underlying simulation protocol, should set
this control for their particular application. Similarly,
without elaborate experimentation or knowledge of the
application, it is impossible to set an appropriate resyn-
chronization interval. On the other hand, the amount of
memory provided to the Time Warp system can be a more
straightforward throttling mechanism for the over-
optimistic execution. A study of an adaptive memory
control mechanism based on this principle has been pre-
sented elsewhere [6].

8 CONCLUDING REMARKS

The cancelback protocol was used for empirical evaluation
of the performance of Time Warp programs if the amount
of memory allocated to the program is limited to a prede-
termined value. Efficient implementation of the cancelback
protocol is nontrivial on a real architecture because of its

1) instantaneous message send assumption, and

2) high cost of the necessary memory management re-
lated computations (GVT computation, fossil collec-
tion and selection of messages to be canceled back).

We developed reasonably efficient solutions to each of
these problems. They are summarized below.

1) Nonatomic message delivery may cause starvation
and an additional synchronization is required to
eliminate this possibility. An efficient synchronizing
scheme that always gives priority to the process fur-
thest behind in virtual time in allocating memory was
proposed and implemented.

2) To reduce the frequency of cancelback calls (which is
expensive) the cancelback protocol was parameter-
ized by a salvage parameter, that indicates the num-
ber of future events to be canceled by each invocation
of cancelback.

Different simulation models, with different degrees of
asymmetry, were used to evaluate the performance vs.
memory tradeoff. Across all workloads used in this study,
the experimental data indicate that the performance-
memory curve always had a well-defined knee, below
which performance drops very rapidly with a reduction in
the amount of memory and beyond which there is no sig-
nificant improvement in the performance with increases in
the amount of memory. The performance decrease with
small amounts of memory is attributed to

1) large memory management overheads and
2) loss of physical parallelism due to excessive throttling.

It is observed that large memory may also lead to poor per-
formance due to poor locality of reference in the virtual mem-
ory system. Thus, the amount of memory just beyond the knee
is a good operating point of the Time Warp programs.

The value of salvage parameter also affects performance.
It was observed that an intermediate value of the salvage
parameter is usually the best. Too small a value increases
memory management overheads and too large a value may
cause correct events on the critical path of the computation
to be rolled back by cancelback. Performance is relatively
insensitive to the salvage value, so long as it is set away
from two extreme values. Both the location of the knee and
an appropriate value of the salvage parameter are proper-
ties of the application program and are dependent on the
event granularity, physical parallelism, and over-optimism
in the Time Warp system. The latter depends on many fac-
tors including the load balance and behavior of the simula-
tion model.

For large grain simulations (at least a few milliseconds
per events), cancelback with an appropriately chosen value
of the salvage parameter demonstrates good performance
even with a modest amount of memory. In all the synthetic
simulation workloads considered, performance was found
to be within 10% of the maximum possible performance
(with any amount of memory), with only 15 or fewer addi-
tional message buffers per processor. However, many real
simulations have much less computation within each event.
Thus, memory management overheads may dominate, and
the number of additional buffers required for similarly
good performance also increases proportionately. In con-
clusion, if memory management overheads (amortized on a
per event basis) are small compared to the average event
granularity, it is possible to derive good performance in a
Time Warp execution with only a modest amount of addi-
tional memory beyond the amount required for sequential
execution.

DAS AND FUJIMOTO: AN EMPIRICAL EVALUATION OF PERFORMANCE-MEMORY TRADE-OFFS IN TIME WARP

ACKNOWLEDGMENTS

We acknowledge the encouragement by Professor lan Aky-
ildiz during the initial phase of this work. Discussions with
him were very helpful. Christopher Carothers developed
the PCS simulation program for GTW.

The work of Samir R. Das is supported by the
DoD/AFOSR grant number F49620-96-1-0472 and U.S. Na-
tional Science Foundation grant number CDA-9529541. The
work of Richard M. Fujimoto is supported by U.S. National
Science Foundation grant number MIP-94085550.

REFERENCES

[1] LF. Akyildiz, L. Chen, S.R. Das, R.M. Fujimoto, and R.F. Serfozo,
“The Effect of Memory Capacity on Time Warp Performance,” J.
Parallel and Distributed Computing, vol. 18, no. 4, pp. 411-422, Aug.
1993.

[2] J. Briner, Jr., “Fast Parallel Simulation of Digital Systems,” Proc.
Multiconf. Advances in Parallel and Distributed Simulation, vol. 23,
no. 1, pp. 71-77, Jan. 1991.

[3] C.D. Carothers, R.M. Fujimoto, Y.-B. Lin, and P. England,
“Distributed Simulation of Large Scale PCS Networks,” Proc. Sec-
ond Int’l Conf. Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’94), pp. 2-11, Jan 1994.

[4] J. Cleary, F. Gomes, B. Unger, X. Zhonge, and R. Thudt, “Cost of
State Saving and Rollback,” Proc. Eighth Workshop Parallel and Dis-
tributed Simulation, pp. 94-101, 1994.

[5] S.R. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette,
“GTW: A Time Warp System for Shared Memory Multiproces-
sors,” 1994 Winter Simulation Conf. Proc., pp. 1,332-1,339, Dec.
1994.

[6] S.R.Dasand R.M. Fujimoto, “An Adaptive Memory Management
Protocol for Time Warp Parallel Simulation,” Proc. 1994 ACM
SIGMETRICS Conf. Measurement and Modeling of Computer Systems,
pp. 201-210, May 1994.

[7]1 J. Fleischmann and P. A. Wilsey, “Comparative Analysis of Peri-
odic State Saving Techniques in Time Warp Simulators,” Proc.
Ninth Workshop Parallel and Distributed Simulation, pp. 50-58, 1995.

[8] R.M. Fujimoto, “Time Warp on a Shared Memory Multiproces-
sor,” Trans. Soc. for Computer Simulation, vol. 6, no. 3, pp. 211-239,
July 1989.

[91 R.M. Fujimoto, “The Virtual Time Machine,” Proc. Int’l Symp.

Parallel Algorithms and Architectures, pp. 199-208, June 1989.

R.M. Fujimoto, “Performance of Time Warp Under Synthetic

Workloads,” Proc. SCS Multiconf. Distributed Simulation, vol. 22,

no. 1, pp. 23-28, Jan. 1990.

A. Gafni, “Rollback Mechanisms for Optimistic Distributed

Simulation Systems,” Proc. SCS Multiconf. Distributed Simulation,

vol. 19, no. 3, pp. 61-67, July 1988.

A. Gafni and K.V. Bapa Rao, “A Time-Based Distributed Opti-

mistic Recovery and Concurrency Control Mechanism,” Proc.

Eighth Int’l Conf. Data Eng., pp. 498-505, 1992.

K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,

Programmability. McGraw-Hill, Inc., 1993.

D.R. Jefferson, “Virtual Time,” ACM Trans. Programming Lan-

guages and Systems, vol. 7, no. 3, pp. 404-425, July 1985.

D.R. Jefferson, “Virtual Time Il: The Cancelback Protocol for Storage

Management in Distributed Simulation,” Proc. Ninth Ann. ACM

Symp. Principles of Distributed Computing, pp. 75-90, Aug. 1990.

D.R. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DilLorento,

P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren, J.

Wedel, H. Younger, and S. Bellenot, “Distributed Simulation and

the Time Warp Operating System,” Proc. 10th Symp. Operating

Systems Principles, pp. 77-93, Nov. 1987.

D.R. Jefferson and A. Motro, “The Time Warp Mechanism for

Database Concurrency Control,” Proc. Second Int’l Conf. Data Eng.,

pp. 141-150, Feb. 1986.

Y.-B. Lin, “Memory Management Algorithms for Optimistic Par-

allel Simulation,” Proc. SCS Multiconf. Parallel and Distributed

Simulation, vol. 24, no. 3, pp. 43-52, Jan. 1992.

Y.-B. Lin and B.R. Preiss, “Optimal Memory Management for

Time Warp Parallel Simulation,” ACM Trans. Modeling and Com-

puter Simulation, vol. 1, no. 4, pp. 283-307, Oct. 1991.

[10]

[11]

[12]

[13]
[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

223

Y.-B. Lin, B.R. Preiss, W.M. Loucks, and E.D. Lazowska,
“Selecting the Checkpoint Interval in Time Warp Simulation,”
Proc. Seventh Workshop Parallel and Distributed Simulation, pp. 3-10,
May 1993.

B.D. Lubachevsky, A. Shwartz, and A. Weiss, “Rollback Some-
times Works... If Filtered,” 1989 Winter Simulation Conf. Proc.,
pp. 630-639, Dec. 1989.

V.K. Madisetti, D.A. Hardaker, and R.M. Fujimoto, “The MIMDIX
Operating System for Parallel Simulation and Supercomputing,”
J. Parallel and Distributed Computing, vol. 18, no. 4, pp. 473-483,
Aug. 1993.

J.M. Mellor-Crummey and M.L. Scott, “Synchronization without
Contention,” Proc. Fourth Int’l Conf. Architectural Support for Pro-
gramming Languages and Systems, pp. 269-278, Apr. 1991.

D.M. Nicol, “Parallel Discrete-Event Simulation of FCFS Stochas-
tic Queueing Networks,” SIGPLAN Notices, vol. 23, no. 9, pp. 124-
137, Sept. 1988.

K. Panesar and R.M. Fujimoto, “Buffer Management in Shared
Memory Time Warp Systems,” Proc. Ninth Workshop Parallel and
Distributed Simulation, pp. 149-156, 1995.

B.R. Preiss and W.M. Loucks, “Memory Management Techniques
for Time Warp on a Distributed Memory Machine,” Proc. Ninth
Workshop Parallel and Distributed Simulation, pp. 30-39, 1995.

M. Presley, M. Ebling, F. Wieland, and D.R. Jefferson,
“Benchmarking the Time Warp Operating System with a Com-
puter Network Simulation,” Proc. SCS Multiconf. Distributed
Simulation, vol. 21, no. 2, pp. 8-13, Mar. 1989.

P.L. Reiher, F. Wieland, and D.R. Jefferson, “Limitation of Opti-
mism in the Time Warp Operating System,” Proc. 1989 Winter
Simulation Conf., pp. 765-770, Dec. 1989.

L.M. Sokol, D.P. Briscoe, and A.P. Wieland, “MTW: A Strategy for
Scheduling Discrete Simulation Events for Concurrent Execution,”
Proc. SCS Multiconf. Distributed Simulation, vol. 19, no. 3, pp. 34-42,
July 1988.

L.M. Sokol and B.K. Stucky, “MTW: Experimental Results for a
Constrained Optimistic Scheduling Paradigm,” Proc. SCS Multi-
conf. Distributed Simulation, vol. 22, no. 1, pp. 169-173, Jan. 1990.
SJ. Turner and M.Q. Xu, “Performance Evaluation of the
Bounded Time Warp Algorithm,” Proc. SCS Multiconf. Parallel and
Distributed Simulation, vol. 24, no. 3, pp. 117-126, Jan. 1992.

F. Wieland, L. Hawley, A. Feinberg, M. DiLorento, L. Blume, P.
Reiher, B. Beckman, P. Hontalas, S. Bellenot, and D.R. Jefferson,
“Distributed Combat Simulation and Time Warp: The Model
and Its Performance,” Proc. SCS Multiconf. Distributed Simula-
tion, vol. 21, no. 2, pp. 14-20, Mar. 1989.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 2, FEBRUARY 1997

Samir R. Das received his BE degree in elec-
tronics and telecommunication engineering from
the Jadavpur University, Calcutta, in 1986; ME
degree in computer science and engineering
from the Indian Institute of Science, Bangalore,
in 1988; and MS and PhD degrees in computer
science from the Georgia Institute of Technol-
ogy, Atlanta, in 1993 and 1994, respectively. He
is an assistant professor in the Division of Com-
puter Science at the University of Texas at San
Antonio. His current research interests include

Richard M. Fujimoto received his BS degrees
in computer science and computer engineering
from the University of Illinois at Urbana in 1977
and 1978, and MS and PhD degrees from the
University of California, Berkeley, in 1980 and
1983, respectively. He is a professor in the Col-
lege of Computing at the Georgia Institute of
Technology. His current research interests are
in parallel and distributed simulation. He is chair
of the time management working group in the
DoD high level architecture for modeling and

VN

parallel and distributed simulation, and high-speed networking support simulation, chair of the steering committee for the annual Workshop on
for parallel/distributed computing. Parallel and Distributed Simulation, and an area editor for ACM Trans-
actions on Modeling and Computer Simulation.

