
Parallel and Distributed Spatial Simulation of Chemical Reactions

Matthias Jeschke1, Alfred Park2, Roland Ewald1,

Richard Fujimoto2, Adelinde M. Uhrmacher1

1University of Rostock, 18059 Rostock, Germany,

{mj118, re027, au007}@uni.rostock.de
2Georgia Institute of Technology, Atlanta GA 30332-0765,

{park, fujimoto}@cc.gatech.edu

Abstract

The application of parallel and distributed simulation

techniques is often limited by the amount of parallelism

available in the model. This holds true for large-scale cell-

biological simulations, a field that has emerged as data and

knowledge concerning these systems increases and biolo-

gists call for tools to guide wet-lab experimentation. A

promising approach to exploit parallelism in this domain is

the integration of spatial aspects, which are often crucial to

a model’s validity. We describe an optimistic, parallel and

distributed variant of the Next-Subvolume Method (NSM), a

method that augments the well-known Gillespie Stochastic

Simulation Algorithm (SSA) with spatial features. We dis-

cuss requirements imposed by this application on a parallel

discrete event simulation engine to achieve efficient execu-

tion. First results of combining NSM and the grid-inspired

simulation system AURORA are shown.

1. Introduction

An important application domain for advanced simula-

tion techniques is the field of systems biology [14], which

aims at integrating biology with system theory, mathemat-

ics, and computer science among others. While modeling

and simulation has been applied to gain a better understand-

ing of biological systems for well over four decades, broad

interest in applying modeling and simulation in cell biology

has been renewed by recent developments in experimental

methods, e.g. high content screening and microscopy. Fur-

ther, the importance of modeling and simulation in this do-

main is highlighted by the insight from the Human Genome

Project that simply knowing an organism’s DNA sequence

is not going to answer many questions.

The development of valid, predictive models is now one

of the major challenges for cell biologists. A variety of sim-

ulation methods are exploited in cell biology. Since the mil-

lennium, the significance of noise in cellular information

processing has become widely accepted, so that stochas-

tic discrete-event simulation has emerged as an established

method to complement conventional ordinary differential

equations as the norm in biochemical simulations. This, in

turn, has lead to an increasing demand of efficient discrete-

event simulation methods, which enable an in-depth anal-

ysis of such models [6]. In addition to noise, spatial as-

pects are receiving increased interest. In vivo experiments

revealed that many intra-cellular effects depend on space,

e.g. protein localization, cellular compartments and molec-

ular crowding [13]. Approaches that support both stochas-

ticity and space are therefore particularly promising [22, 5].

One of those is the Next-Subvolume Method (NSM) [7].

Simulations in system biology are often very time con-

suming, and it is almost always the case that many runs

are required. Parallel and distributed simulation provides

a means to help address this problem, however, a major

impediment lies in gaining access to sufficient computa-

tional resources. Public-resource computing is a form of

distributed computation where shared resources and idle

machines are pooled together to form a larger, singular re-

source for computationally intensive programs. These in-

frastructures are usually managed by middleware. Such

middleware is a natural fit for large-scale embarrassingly

parallel codes with little or no data dependencies between

portions of work. However, parallel discrete event simula-

tions (PDES) exhibit data dependencies between partitions

where data is exchanged via messages. Additional con-

straints are placed on these parallel programs such as strict

ordering of events which must be processed in increasing

time stamp order for correct execution and repeatability of

results.

The AURORA [19] parallel and distributed simulation

system allows PDES codes to run across loosely coupled

machines, forming computational resources known as desk-

22nd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/08 $25.00 © 2008 IEEE
DOI 10.1109/PADS.2008.20

51

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

top grids within organizations. Desktop grids are comprised

of potentially idle desktops, laptops, and possibly even clus-

ter machines. These resources can be a mixture of het-

erogeneous hardware architectures and operating systems

with unpredictable uptimes and possibly intermittent net-

work connectivity. AURORA provides resource matching of

simulations to available workers while ensuring correct ex-

ecution for discrete event simulation.

Despite the need for efficient execution mechanisms, the

area of parallel and distributed discrete event simulation of

cell biological systems is still in its infancy. Only a few ap-

proaches have been developed to date, most of which are

spatio-temporal simulations. For example, [17, 4, 21] uti-

lize the idea of local interactions. They focus on a time-

stepped rather than on a discrete event approach. Therefore,

experiences in exploiting a grid, e.g. [17], cannot easily be

transferred to discrete event approaches.

l

Figure 1. Discretization of a volume into smaller sub-volumes

with side length l. The diffusion of molecules between neighbor-

ing sub-volumes is modeled as a Markov process with di∆t =
(Di/l2)·∆t as the probability that a particular molecule of species

i performs a diffusion during the infinitesimal small time step ∆t
(with Di as the diffusion constant for species i).

2. Description of NSM

2.1. Spatial modeling and simulation algorithms

An overview of current approaches to modeling spatial

features is given in [22]. Depending on the abstraction level

a system is modeled, different formalisms and simulation

algorithms can be used.

At the microscopic level, the fields of molecular dynam-

ics [23] and Brownian dynamics permit the accurate simu-

lation of individual interacting particles in continuous space

but require high computational effort. Therefore, these ap-

proaches cannot be used for large scale models containing

many particles. Examples for frameworks operating on this

level are SmolDyn [1] and GFRD. Rather than considering

individual particles and instead focusing on concentrations

of species, the partial differential equations approach oper-

ates on a macroscopic level with continuous space and time.

Algorithm 1 Short version of the Next-Subvolume Method

pseudo code description (for details, see [7])

Initialization

1. Distribute the initial particles over N sub-volumes

2. Calculate the sum of diffusion rates di and reaction

rates ri for all sub-volumes

si = ri + di, 0 ≤ i ≤ N

3. Sample time of next event for all sub-volumes

τi =
−ln(u)

si

,

with u being a sample from the uniform distribution

U(0, 1) and enqueue sub-volumes according to their

event times

Main loop

1. Take top sub-volume from event queue

2. Determine type of event w.r.t. to diffusion and reaction

rates

• Reaction: determine specific reaction, update the

propensities of the current sub-volume and sam-

ple new event time (see [10] for details)

• Diffusion: determine species type and diffusion

target, update propensities and sample new event

times for both sub-volumes

Here the system is modeled as a set of partial differential

equations that can either be solved analytically or simulated

by numerical integration algorithms. However, as the ap-

proach is deterministic, stochastic effects cannot easily be

taken into account.

The basic algorithm for simulating reactions between

chemical species on a mesoscopic level is the stochastic

simulation algorithm (SSA) by Gillespie [10]. At this level,

discrete numbers of particles are modeled. SSA is an exact

algorithm, as it generates single trajectories of the underly-

ing master equation. One key assumption is that the dis-

tribution of the species inside the volume is homogeneous.

To simulate systems that do not adhere to this assumption,

other approaches that introduce compartments and include

the diffusion of species are necessary, e.g. [13].

A common way of introducing diffusion on mesoscopic

level is the partition of space into sub-volumes and the ex-

tension of the master equation with a diffusion term, result-

ing in the reaction-diffusion master equation (RDME) [9].

The solution of the RDME is intractable for all but very

simple systems, leading to the development of the Next-

52

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

Subvolume Method, an algorithm that, similar to SSA, gen-

erates trajectories of an underlying RDME.

2.2. NSM method

The Next-Subvolume Method is a discrete-event algo-

rithm for simulating both reactions and the diffusion of

species within a volume with an inhomogeneous distribu-

tion of particles. The volume is partitioned into cubical sub-

volumes each representing a well-stirred system. Events

generated by the algorithm are either reactions inside or dif-

fusions between these sub-volumes.

NSM uses a variant of Gillespie’s Direct Method to cal-

culate the first event times for all sub-volumes during ini-

tialization. Within the main loop, the sub-volume assigned

to the smallest next event time is selected and the current

event type according to the diffusion and reaction rates is

determined. Finally, the event is executed and an update

of the model state occurs. Note that the state update is per-

formed only in a small region of the model volume, because

either one sub-volume (in the case of a reaction) or two sub-

volumes (in the case of a diffusion) are affected, so that their

propensities and next event times have to be updated.

Using an appropriate event queue structure such as a

heap or binary tree, NSM has proven to be an efficient simu-

lation algorithm even for larger systems consisting of many

sub-volumes [7]. Given that a single run of the NSM algo-

rithm generates only one possible realization of the under-

lying RDME, it is obvious that a number of replicated runs

are necessary to gain insights into the modeled system in

terms of mean values and standard deviations.

3. From Sequential to Parallel Execution

3.1. Computation and Communication Granular-
ity in NSM

The Next-Subvolume Method can be applied to PDES

by discretizing space into sub-volumes and assigning sets

of sub-volumes to logical processes (LP). Interactions be-

tween sub-volumes are represented by messages exchanged

between LPs involving diffusion events sent between neigh-

boring sub-volumes.

To evaluate the parallel distributed execution of the NSM

algorithm, tests with a sequential version of NSM from

JAMES II [12] have been performed, which supports virtual

work unit assignment. As a test model a 20 x 20 grid with an

initial distribution of 1000 molecules of type A and B per

sub-volume is chosen. The experiments focus on retriev-

ing statistics about diffusion events between work units, so

no reactions are defined. Both the number of sub-volumes

assigned to each work unit and the stochastic diffusion con-

stants are varied to evaluate the dependence between these

parameters and communication overhead.

0 5 10 15 20 25

number of work units

0

10

20

30

40

ρ

Figure 2. Dependence between ρ and the number of work units.

0 0.5 1 1.5 2 2.5 3

diffusion coefficient multiplier

0

5

10

15

20

ρ

0

10 k

20 k

30 k

40 k

50 k

#
 o

f m
essag

es

ρ

of messages

Figure 3. Dependence between ρ and the diffusion constant.

In figure 2, the change of the overall ratio

ρ =
#evint

#evext

between diffusion events exchanged between sub-volumes

within the same work unit and diffusion messages sent

between different work units is plotted as the number of

work units was increased. The value of ρ is a measure

for the computation granularity of the system, defined as

the amount of computation that occurs between commu-

nications with another work unit. As the number of work

units increases, the number of sub-volumes per work unit

decreases, thus decreasing the computational load per work

unit. Consequently, the overall concurrency of the system

is reduced as the ratio of computation to communication

is decreased. Figure 3 shows that granularity is unaffected

by the diffusion activity of the species, although more mes-

sages are exchanged between work units as the diffusion

constant is increased.

Parallel execution offers the potential to simulate larger

models, to reduce the execution time of individual simula-

tion runs, and to reduce the time required to complete multi-

ple replicated runs. It is clear that large computation granu-

larity is advantageous for maximizing concurrency in a par-

allel execution and potentially reducing the amount of time

53

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

required to complete a single run. These initial experiments

indicate that the ratio of intra-work unit to inter-work unit

communication decreases approximately in proportion with

the number of work units.

Other observations concerning the NSM algorithm pro-

vide insight into the parallelization method that should be

used. First, it is well known that the appropriate synchro-

nization mechanism for parallel discrete event simulations

depends on the amount of lookahead available for inter-

work unit communications. In NSM, the inter-event times

are sampled from an exponential distribution. This leads

to a simulation with no lookahead, suggesting the use of

optimistic synchronization. Alternate approaches such as

pre-sampling the random number generator [18], artificially

inserting lookahead into the computation, relaxing ordering

constraint [20, 8, 2] or using alternate ordering rules [15]

were also considered, but were rejected on the grounds that

they would lead to unacceptable compromises concerning

the accuracy of the simulation. Further examination of the

algorithm revealed that the state saving requirements of the

computation suggested the possibility of incremental state

saving techniques due to successive states of the volume

differing only in the number of particles in at most two

sub-volumes. By only saving the state changes within each

event, a rollback to a specific state can be accomplished by

successively applying the inverse state change vector to the

current state.

4. Towards optimistic execution in AURORA

4.1. Architecture Overview

AURORA is a scalable solution for delivering computa-

tional cycles for parallel discrete event simulation across

desktop grid architectures. AURORA operates on the de-

sign of a strict master/worker paradigm where communica-

tion is allowed between the master services and the clients

only. No peer-to-peer communication is assumed due to

the potentially volatile uptimes of client machines. AU-

RORA provides fault-tolerant and run replication support for

both message-passing data-intensive PDES codes and task-

parallel jobs.

The AURORA system is conceptually divided into three

major parts: the back-end services, clients, and simulation

packages as shown in figure 4. The back-end services con-

sist of a broker along with any number of proxy, state and

message servers for fault tolerance and scalability. Alto-

gether, the back-end system provides the necessary support

for correct PDES execution such as time management, per-

sistent state vector storage, and collection of time-stamp or-

dered messages passed between logical processes. Compu-

tational cycles, whether idle or shared computing time, are

provided by the clients. Clients register themselves with the

back-end services which are then automatically managed

Proxy Service

WU State
Service

WU Message
Service

Simulation
Package
Definition

Clients

Broker
Service

Back-end Services

Figure 4. Aurora architecture overview

for work leases by the proxy service. The simulation pack-

age is a definition unique to the PDES execution specifying

parameters such as the number of work units, connectiv-

ity between work units, simulation times, and other depen-

dencies. Simulation packages are uploaded to the back-end

services to allocate space and begin distribution of work to

waiting clients.

4.2. New challenges for AURORA

The original AURORA system was designed to be con-

ducive towards PDES codes that exhibited fairly large

lookaheads with computationally intense work unit leases.

Much like traditional PDES systems, a higher computa-

tion to communication ratio allows for potentially larger

speedups. This property is amplified in the AURORA system

due to messages being channeled through an intermediary.

Therefore, AURORA was originally targeted towards simu-

lations that performed reasonably well through conservative

synchronization mechanisms.

The NSM model presents new challenges for the AU-

RORA system due to the stochastic nature of diffusion mes-

sages; as mentioned earlier, lookaheads cannot be deter-

mined a priori. Thus, the parallel model can only be run

using an optimistic time management approach, allowing

clients to execute arbitrarily into the future, but providing

mechanisms to rollback the simulation if messages are re-

ceived in the past.

5. Distributed NSM with AURORA

5.1. AURORA and Optimism

To support simulations such as NSM, optimistic syn-

chronization mechanisms were added to the AURORA sys-

tem. Like traditional time warp systems, AURORA must

provide means to rollback an execution if a message is de-

livered to the simulated past of a logical process. Here, in-

54

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

stead of using techniques such as anti-messages or direct

cancellation, AURORA employs rollback detection and mes-

sage cancellation entirely on the back-end system. Clients

are notified of rollbacks through the proxy service. This de-

sign decision was deliberate, to reduce the potential large

amount of network traffic that may be generated from anti-

messages. When a client completes execution of a work

unit and returns finalized data to the back-end system such

as outgoing messages, the message server performs a vir-

tual delivery of messages to the destination work unit input

queues. Message delivery can cause a rollback if the mes-

sage timestamp is less than the currently leased time win-

dow simulation end time. Messages sent after this time are

canceled automatically by the message server and earliest

rollback times are transmitted to the proxy. The proxy will

then forward rollback notifications to any affected clients.

Certain issues must be addressed in conjunction with

models such as NSM which exhibit fairly large state and

fine event granularity. AURORA supports automatic tuning

to the simulation as it performs computation, e.g. adap-

tively changing key parameters such as time window length

and frequency of state saving. Both features are currently

under development.

5.2. Self-Induced Rollbacks

There is a special case for rollbacks which must be con-

sidered in a master/worker PDES system. When a client

finalizes a work unit, there is a possibility of rolling back

its own execution. During the binning of messages from a

work unit, a message may cause a rollback on another work

unit which may cancel a message that was sent to the fi-

nalizing work unit which has been processed. This causes

the returning work unit to perform a rollback on itself. If

the client rolls back and returns messages that it already re-

turned during the first finalization, there is a possibility of

duplicate messages. The solution to this problem is to mask

messages which have been already updated to the message

server.

5.3. Zero Lookahead and Dynamic Time Window
Adaptation

AURORA operates on the premise of leasing portions of

work to clients. However, AURORA does not allow clients

to execute arbitrarily into the future, thus an upper bound

for execution must be determined at work unit lease. This

problem is simple to solve when simulations exhibit some

form of consistent lookahead such as network simulations

which often translate link latencies for message transmis-

sion as lookahead when partitioning some subset of the en-

tire network model onto different processors. By utilizing

lookahead values, AURORA can determine a suitable end

time for each work unit lease.

Client

i
Client

i
NSM simulation

package

Aurora Client

i

parse model

generate model

information

generate init ial

state

upload init ial state

upload model information

register

send init ial state

send model

information

generate internal

model representat ion

begin execution

load NSM simulation

l ibrary

Figure 5. A simple sketch of the NSM integration in AURORA.

The simulation package parses a model definition file and gen-

erates the initial state of the work units. Additionally, a file

with general model information (species, reactions, connec-

tivity graph) is created and sent, along with the initial state,

to AURORA. Note that with this approach the model descrip-

tion file is only parsed once during the upload of the simula-

tion package. The clients managed by AURORA can access the

model information file and create an internal model represen-

tation. After the distribution of the work units, the clients load

the library containing the NSM algorithm and begin execution.

Calculating a time window with zero lookahead poses a

difficult problem. Although specifying a time window arbi-

trarily is easy based on the end time of the simulation, pro-

viding clients with a good time window to reduce the num-

ber of messages which may potentially cause rollbacks is

non-trivial. A better approach is to heuristically determine

time windows through collection of statistics over time. The

AURORA proxy service keeps track of rollback histories for

each work unit. These histories can be used to adaptively

create time windows for work unit leases as the simula-

tion progresses. AURORA approaches dynamic time win-

dow adaptation through two mechanisms.

The first implemented mechanism is to dynamically

adapt time windows during the lease phase of the work unit.

For zero lookahead simulations, the initial lease windows

are based on the throttling parameter specified by the sim-

ulation package. After this initial lease window, the Au-

rora optimistic time management system performs dynamic

window adaptation to tune the lease windows as the simula-

tion progresses. Instead of using static time windows calcu-

lated from GVT and the simulation end time, the time man-

agement system takes into consideration the recent rollback

histories, average past time window lease lengths, and stan-

dard deviations of rollbacks. Depending upon the throttling

55

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

aggressiveness chosen, the time management system will

adaptively reduce the window if the standard deviation of

the recent rollbacks exceeds a threshold value. Conversely,

if there have been relatively no rollbacks from the histories,

the system will adaptively grow the windows according to

the throttling choice.

The second mechanism under development is to reac-

tively change the length of the time window when a work

unit completes and begins its finalization phase with the

proxy. Instead of authorizing the work unit to immediately

begin the update phase, the proxy will perform a rollback

history lookup and calculate a rollback average for the re-

turning work unit. If the work unit window exceeds recent

time window lengths calculated from rollback averages, the

proxy will send a prune message to both the client and mes-

sage server that is hosting the client’s messages. This prune

message contains an earlier end time than what was leased

to the client for that iteration. The client will prune any

messages sent exceeding the new time window end time and

restore the proper state for that time as well. The message

server will adjust the current lease times for the work unit

to prepare for message delivery. This active pruning mech-

anism can reduce the number of potential rollbacks if the

proxy determines that the current optimism of a work unit

exceeds that of the previous calculated time window.

5.4. Dynamic State Saving

In order to migrate state variables and messages across

potentially heterogeneous machines, simulations for AU-

RORA must provide application-dependent serialization and

de-serialization routines. This mechanism is exploited for

creating state histories as the work unit progresses forward

in time for optimistically synchronized simulations. At ev-

ery simulation time change, AURORA packs the simulation

state into a buffer that can be later restored if a rollback is

necessary.

The problem with this mechanism is that simulations

which are fine-grained such as the NSM model, may create

a large state history reducing the effective memory avail-

able for the simulation and introducing increased undesired

overhead spent in non-simulation related computation. An

alternative approach is to adaptively save state using for-

ward computation histories.

The client can use the frequency of rollbacks and number

of coast forwards as a means to calculate how much com-

putation is performed for each time window lease. Using

these statistics, the client can then compute offsets within

the leased time window to filter state saves that may poten-

tially be unnecessary. During forward computation, state

saves can be infrequent until the average rollback time is

reached. As the simulation time approaches the average

rollback time, state is saved more frequently as the prob-

ability of a rollback is higher. Once simulation time has

passed this point, the client can then begin filtering state

saves again until the leased window end time is reached.

The combination of dynamic state saving and adaptive

time windows can potentially reduce the amount of over-

head and unnecessary rollbacks in the system, providing

more processor time and memory for the simulation com-

putation.

6. Results of First Experiments

6.1. Application Models

The model used for evaluating this approach is a simple

reversible enzyme inhibitor model on a 48 x 48 grid. An

inhibitor molecule I can bind to an enzyme E and block

the active site for a substrate S, decreasing the activity of

the enzyme-substrate reaction with intermediate product ES

and, after catalysis, with final product P. The reactions de-

fined for this model are:

E + S
100.0
−−−→ ES (1)

E + I
0.5
−−→ IE (2)

ES
1.0
−−→ E + P (3)

ES
50.0
−−→ E + S (4)

IE
0.01
−−→ E + I (5)

Due to high reaction constants, reactions (1) and (4) happen

frequently and produce a high work load on the clients. The

enzyme and substrate molecules are distributed among all

sub-volumes homogeneously with every volume containing

1000 E and 1000 S molecules. Within this simple model,

these types of molecules cannot move from one sub-volume

to a neighbor. Only the inhibitor I and the inhibitor-enzyme-

complex IE are allowed to diffuse between sub-volumes.

The diffusion constants for these species were chosen to be

small, to limit the number of messages that get sent between

work units. An amount of 300 I molecules were added to

specific sub-volumes each and the system was simulated in

the interval [0, 0.2] with different work unit setups.

6.2. Results

Our expectations in combining AURORA and NSM have

been to exploit the parallelism inherent in a spatial simula-

tion to the advantage of performance and the ability to sim-

ulate large models. However, as our experiments showed,

the interplay between a simulation approach like NSM and

the grid-inspired distributed simulation approach turned out

to be far more complex than expected. First experiments

were done without an adaptive time window. Large static

windows can lead to costly rollbacks. Due to the inde-

pendent nature of execution and message delivery, client

56

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

simulation of time windows can still complete in the pres-

ence of a straggler message to the back-end services. This

differs from other optimistic approaches where a straggler

event interrupts current computation. Thus, rollbacks may

incur overhead penalties in coast forward re-computation

of events from the last saved state to the rollback time. A

window size that is too small, however, may decrease per-

formance by reducing the potential concurrency of the sys-

tem and increasing the amount of time spent in state saving.

Alternate techniques such as incremental state saving can

potentially lead to reduced overhead times.

A compromise must be established between the fre-

quency of state saving and the length of the time win-

dows. As the simulation progresses, an adaptive algorithm

for choosing the window size appears desirable. Although

a dynamic time windowing system is in place, acceptable

speed-ups could not be achieved. Due to the Markovian pro-

cess inherent in these simulations, lookahead is impossible

to define a priori. Using metrics such as rollback averages

and deviations may help with models that exhibit some form

of predictability, but in parallel NSM simulations assump-

tions of previous message generation and rollbacks cannot

be carried between time window allocations. An alterna-

tive method is to percolate application-specific details into

the time management system. Allowing the use of met-

rics, such as likelihood of diffusion events in comparison to

the reaction events, could result in improved time window

leases leading to reduced rollbacks.

Figure 6 shows a sample run depicting time window size

and a dramatic overhead increase after the first 100 itera-

tions. The high correlation between time window sizes and

overhead shows a paramount issue with state management

and straggler events causing rollbacks which in turn reduce

the execution window sizes. Further optimization to time

window size selection, an incremental approach to state sav-

ing, and earlier straggler message notifications could help

restore balance between computation and overheads.

7. Related work

The Gillespie Multi Particle Method (GMP) [24] is an-

other approach for simulating reaction systems with an in-

homogeneous distribution of particles using sub-volumes,

but, in contrast to NSM, diffusion events take place at pre-

determined times, lifting the diffusion to the macroscopic

level. During initialization, the first diffusion event time is

calculated for each species. In each iteration, the event with

the smallest time stamp is selected and Gillespie’s Direct

Method is used to simulate reactions between the last and

the next event time. The execution of the next diffusion

event is then performed locally in each sub-volume, dis-

tributing all entities of the species assigned to the event ran-

domly among its neighbors. Therefore, in contrast to NSM,

the GMP method abandons the idea of single entity diffu-

0 500 1000 1500

iteration

0

0.001

0.002

0.003

0.004

ti
m

e
w

in
d

o
w

 s
iz

e

0 500 1000 1500
0

20

40

60

80

100

o
v

erh
ead

 in
 %

time window size
overhead

Figure 6. The size of the time window (black, bottom) and over-

head (blue, top) is plotted for different iterations. The current

adaptive algorithm reduces time window lengths in the presence

of increasing messages and straggler events leading to more time

spent in overhead such as state serialization.

sion events between two sub-volumes and performs bulk

diffusions of species entities in all sub-volumes simultane-

ously.

Bernstein [3] applies the basic Gillespie algorithm to

simulate a non-homogeneous system by introducing new

reactions that correspond to diffusion events between sub-

volumes. With this approach, diffusion coefficients that are

inhomogeneous in space can be introduced. Although Bern-

stein uses Gillespie’s Direct Method, other simulation al-

gorithms to speed up computation (as, for example, Tau-

leaping) can be applied as well. Despite these advantages,

a parallel distributed execution of this method seems quite

difficult, at least a partition of space is not possible.

GROMACS is a simulation system for parallel molecu-

lar dynamics simulation [16]. Many problems of simulating

particle-based systems are also eminent in so-called n-body

simulations, i.e., in simulations where all bodies are depen-

dent of each other (e.g., because of gravity etc.). Although

these systems are often used to simulate astrophysical phe-

nomena, research results, like communication and partition-

ing schemes (e.g., [11]), could in principle be applied to

molecular simulation as well.

8. Summary and Outlook

Biologists assume that localization has a central impact

on cell biological dynamics. Therefore, spatial simulations

of cell biological systems will gain increasing attention in

the future. The combination of parallel, distributed ex-

ecution and spatial simulation of cell biological systems

promises one means for managing large scale realistic mod-

els. By realizing an optimistic version of NSM, a spatial

simulation algorithm, in AURORA, two approaches were

combined, namely optimistic execution and an approach for

57

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

assigning work units to processor in desktop grid computing

environments. With our first experimental results problems

have been identified. The NSM algorithm presents signif-

icant challenges because it contains zero lookahead events

and relatively fine grained computation. These properties

would slow down any parallel, distributed execution. This is

particularly the case in combination with a grid-inspired ap-

proach, where notifications are delayed and work-units have

to be packed, distributed and unpacked, overhead masked

any potential speed-up. Different avenues for further re-

search suggest themselves. In the current setting, one is to

explore the effect of incremental state saving and a model-

based dynamic time window adaptation heuristic. Another

possibility is to evaluate the optimistic NSM without AU-

RORA. As a third option, AURORA’s strengths in conser-

vative parallel execution could be exploited by realizing

approximative approaches to spatial cell biological simu-

lation, like GMP, in a grid-inspired setting.

9. Acknowledgments

This research is partly supported by the DFG (German

Research Foundation) and the DAAD.

References

[1] S. S. Andrews and D. Bray. Stochastic simulation of

chemical reactions with spatial resolution and single

molecule detail. Phys Biol, 1(3-4):137–151, 2004.

[2] R. Beraldi and L. Nigro. Exploiting temporal uncer-

tainty in time warp simulations. Distributed Simula-

tion and Real-Time Applications, 2000. (DS-RT 2000).

Proceedings. Fourth IEEE International Workshop on,

pages 39–46, 2000.

[3] D. Bernstein. Simulating mesoscopic reaction-

diffusion systems using the gillespie algorithm. Phys-

ical Review E (Statistical, Nonlinear, and Soft Matter

Physics), 71(4):041103, 2005.

[4] G. Broderick, M. Ru’aini, E. Chan, and M.J. Ellison.

A life-like virtual cell membrane using discrete au-

tomata. In Silico Biol., 16(5), 2004.

[5] G. Broderick and E. Rubin. The realistic modeling

of biological systems: A workshop synopsis. Com-

PlexUs Modelin in Systems Biology, Social Cognitive

and Information Science, 3(4):217–230, 2006.

[6] Y. Cao, H. Li, and L. Petzold. Efficient formulation

of the stochastic simulation algorithm for chemically

reacting systems. The Journal of Chemical Physics,

121(9):4059–4067, 2004.

[7] J. Elf and M. Ehrenberg. Spontaneous separation of

bi-stable biochemical systems into spatial domains of

opposite phases. Systems Biology (IEE), 1(2):230–

236, 2004.

[8] R. M. Fujimoto. Exploiting temporal uncertainty in

parallel and distributed simulations. In PADS ’99:

Proceedings of the thirteenth workshop on Parallel

and distributed simulation, pages 46–53, Washington,

DC, USA, 1999. IEEE Computer Society.

[9] C. W. Gardiner. Handbook of Stochastic Methods:

For Physics, Chemistry and the Natural Sciences

(Springer Series in Synergetics). Springer, November

1996.

[10] D.T. Gillespie. Exact Stochastic Simulation of Cou-

pled Chemical Reactions. Journal of Physical Chem-

istry, 81(25), 1977.

[11] A. Y. Grama, V. Kumar, and A. Sameh. Scalable

parallel formulations of the barnes-hut method for n-

body simulations. In Supercomputing ’94. Proceed-

ings, pages 439–448, 1994.

[12] J. Himmelspach and A.M. Uhrmacher. Plug’n sim-

ulate. In Proceedings of the 40th Annual Simulation

Symposium, pages 137–143. IEEE, 2007.

[13] B.N. Kholodenko. Cell-signalling dynamics in time

and space. Nature Reviews Molecular Cell Biology,

7(3):165–176, 2006.

[14] H. Kitano. Systems biology: a brief overview. Sci-

ence, 295(5560):1662–1664, March 2002.

[15] B-S Lee, W Cai, and J Zhou. A causality based

time management mechanism for federated simula-

tion. Parallel and Distributed Simulation, 2001. Pro-

ceedings. 15th Workship on, pages 83–90, 2001.

[16] E. Lindahl, B. Hess, and D. van der Spoel. Gromacs

3.0: a package for molecular simulation and trajectory

analysis. Journal of Molecular Modeling, 7(8):306–

317, 2001.

[17] P.J. Love, M. Nekovee, P.V. Coveney, J. Chin,

N. Gonzalez-Segredo, and J.M.R. Martin. Simula-

tions of amphiphilic fluids using mesoscale lattice-

boltzmann and lattice-gas methods. Comput. Phys.

Commun., 153(3):340–358, 2003.

[18] D. M. Nicol. Parallel discrete-event simulation of

fcfs stochastic queueing networks. SIGPLAN Not.,

23(9):124–137, 1988.

58

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

[19] A. Park and R. Fujimoto. A scalable framework for

parallel discrete event simulations on desktop grids. In

Grid Computing, 2007 8th IEEE/ACM International

Conference on, pages 185–192, 2007.

[20] D. Rao, N. Thondugulam, R. Radhakrishnan, and

P. Wilsey. Unsynchronized parallel discrete event sim-

ulation. In Proceedings of the 1998 Winter Simulation

Conference, 1998.

[21] D. Ridgway, G. Broderick, and MJ. Ellison. Accom-

modating space, time and randomness in network sim-

ulation. Curr Opin Biotechnol, 17:1–6, 2006.

[22] K. Takahashi, S. Nanda, V. Arjunan, and M. Tomita.

Space in systems biology of signaling pathways :

towards intracellular molecular crowding in silico.

FEBS letters, 579(8):1783–1788, 2005.

[23] W.F. van Gunsteren and H.J. Berendsen. Computer

simulation of molecular dynamics: Methodology, ap-

plications, and perspectives in chemistry. Angewandte

Chemie International Edition in English, 29(9):992–

1023, 1990.

[24] J. Vidal Rodriguez, J.A. Kaandorp, M. Dobrzyn-

ski, and J.G. Blom. Spatial stochastic modelling

of the phosphoenolpyruvate-dependent phosphotrans-

ferase (PTS) pathway in Escherichia coli. Bioinfor-

matics, page btl271, 2006.

59

Authorized licensed use limited to: McGill University. Downloaded on January 21, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

