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Abstract

We present a parallel simulator — BigSim — for pre-
dicting performance of machines with a very large num-
ber of processors. The simulator provides the ability to
make performance predictions for machines such as Blue-
Gene/L, based on actual execution of real applications. We
present this capability using case-studies of some applica-
tion benchmarks. Such a simulator is useful to evaluate
the performance of specific applications on such machines
even before they are built. A sequential simulator may be
too slow or infeasible. However, a parallel simulator faces
problems of causality violations. We describe our scheme
based on ideas from parallel discrete event simulation and
utilize inherent determinacy of many parallel applications.
We also explore techniques for optimizing such parallel sim-
ulations of machines with large number of processors on
existing machines with fewer number of processors. !

1 Introduction

Parallel machines with an extremely large number of
processors are now being designed. For example, the Blue-
Gene (BG/L) machine [3] being designed by IBM will have
64,000 dual-processor nodes. More near term large ma-
chines include ASCI Purple [2] with about 12k proces-
sors and ASCI Red Storm with 10k processors. A design
from IBM, code-named Cyclops (BlueGene/C), had over
one million floating point units, fed by 8 million instructions
streams supported by individual thread units. In response to
an initiative by the U.S. Department of Defense, three ven-
dors are designing even more adventurous architectures for
machines to be built within the next 5-7 years.

In this context, it is essential to be able to evaluate the
performance of planned machines before they are built.
However, parallel performance is notoriously difficult to
model. It is clearly not adequate to multiply the peak float-
ing point performance of individual processors by the num-
ber of processors. Performance of communication subsys-
tems, complex characteristics of target applications during
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their multiple phases and the behavior of runtime support
systems, interact in nonlinear fashion to determine overall
performance. For example, for a particular problem size,
communication latencies may be completely masked by ef-
fective overlap of communication and computation by the
application. However for the same application, if the CPU
speed is increased above a threshold, the performance may
be totally dominated by the communication performance.

Even for existing large machines, our performance pre-
diction approach is useful. For example, consider the pro-
cess of performance optimization of a complex application.
Time on large machines is hard to get and must be reserved
well ahead of time. A performance measurement run typi-
cally takes only a few minutes. However, every time such a
run is carried out, application developers must spend some
time visualizing and analyzing the performance data before
the next set of optimizations are decided upon, at which
point one must wait in queue for the next running slot (typ-
ically at least for a day). With a simulator, this performance
debugging cycle can be shortened considerably. 2

We suggest that new machines be evaluated by running
planned applications on full-fledged simulators of such ma-
chines. The approach we present in this paper is a step in the
direction of accurate simulations of extremely large parallel
machines using currently available parallel machines.

To this end, we have built a system that can emulate large
parallel machines [16]. Based on the CHARM++ [10] par-
allel programming system, our emulator has successfully
emulated several million threads (one for each target ma-
chine processor) on clusters with only hundreds of proces-
sors. However, the emulator is useful only for studying pro-
gramming models and application development issues that
arise in the context of such large machines. Specifically, the
emulator does not provide useful performance information.

To make performance predictions, one must either (a)
record traces during emulation, and then run a sequential
trace-driven simulation or (b) modify the emulator to carry
out a Parallel Discrete Event Simulation (PDES). The se-
quential trace-based approach is infeasible if the trace data
will not fit in the memory of a single processor, or will take
too long to run. The latter approach appears to be quite chal-

2Even if predictions are approximate, they are still useful to evaluate
the algorithms to the first degree of approximation.
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lenging, in view of the failure of typical PDES systems to
provide effective parallel performance. However, we have
developed a scheme, based on the inherent determinacy of
parallel programs, that makes this approach feasible and ef-
ficient.

Essentially, our approach involves letting the emulated
execution of the program proceed as usual, while concur-
rently running a parallel algorithm that corrects time-stamps
of individual messages. We present an overview of our sim-
ulation system called BigSim in the next section. In Sec-
tion 3, we introduce our approach by comparing BigSim
with some related works. In Section 4, we briefly discuss
the issues and techniques involved in converting the emula-
tor to the simulator. In Section 5, we present our simulator
in detail, specifically our synchronization algorithm used to
reduce the simulation overhead. Finally, we present a few
application benchmarks that illustrate the use of the simu-
lator, predicting performance on a BG/L like machine with
64,000 processors.

2 BigSim Overview

In order to simulate a future massive parallel machine
on an existing parallel machine with only hundreds of pro-
cessors, one physical processor has to simulate hundreds or
even thousands of processors of the target machine. The to-
tal memory requirement for the simulation may raise a red
flag. However, simulation is still possible because:

e Some planned machines have low memory-to-
processor ratio such as BlueGene/C. It was originally
designed to have about half a terabyte of total memory.
However, each chip with 25 processors shares only
12MB of memory. Thus to emulate BlueGene/C run-
ning an application which uses the full machine will
require “just” 500 processors of a traditional parallel
machine with 1GB memory per processor.

e For planned machines with high memory-to-processor
ratio, no existing parallel machine can have enough
memory to simulate the full machine. However, many
real world applications such as molecular dynamics
simulation do not require a large amount of memory.

e For applications that do require a large amount of
memory, it is still possible to use automatic out-of-core
execution [15] to temporarily move the data in mem-
ory to disk when it is not needed immediately. This
swapping increases the simulation time. However if
the only thing we are interested in is the predicted run-
ning time, for a few timesteps, this is still affordable.

To simulate a class of petaflops computers, we designed
a low level abstraction of such machines. In the program-
mer’s view, each node consists of a number of hardware-
supported threads with common shared memory. A runtime
library call allows a thread to send a short message to a des-
tination node. The header of each message encodes a handle
function to be invoked at the destination. A designated num-
ber of threads continuously monitor the incoming buffer for

arriving messages, extract them and invoke the designated
handler function. We believe this low level abstraction of
the petaFLOPS architectures is general enough to encompass
a wide variety of parallel machines with different numbers
of processors and co-processors on each node.

We have developed a software emulator based on this
low level model. The details of the emulator and its API are
presented in [16].

In this base level model, the programmer must decide
which computations to run on which node. The CHARM++
runtime system built upon the emulator relieves the ap-
plication programmer of the burden of deciding where
the subcomputations run. Several programming languages
are supported by this runtime system including MPI and
CHARM++.

In order to predict the parallel performance of applica-
tions, we use the parallel discrete event simulation (PDES)
methodology in BigSim. We tightly couple the BigSim
PDES engines with the CHARM++ runtime system in or-
der to improve the efficiency of the simulation. The overall
architecture of BigSim is illustrated in Figure 1.
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Figure 1. The architecture of BigSim

We developed two modes of PDES engines in BigSim:
online (direct execution) mode and postmortem mode event
simulation. Online mode simulation runs the parallel sim-
ulation along with the actual execution of the applications.
The advantage of this online direct execution approach is
that it makes possible to simulate programs that perform
runtime analysis. In this paper, we only focus on the on-
line event simulation. As part of an ongoing project, we are
also developing a postmortem network simulator that mod-
els contention-based network [20].

BigSim also provides a performance visualizer “Projec-
tions” which helps to analyze the performance characteris-
tics of applications.

2.1 Parallel Programming Languages on BigSim

Based on the low level programming API provided by
the emulator, several parallel programming languages are
implemented on BigSim. They are MPI, CHARM++ [10]
and Adaptive MPI [6].
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MPI is a popular way to program parallel machines.
However, it remains a question whether it is easy and ef-
ficient to program the next generation of supercomputers
using it.

CHARM++ is an object-based portable parallel program-
ming language that embodies message-driven execution.
CHARM++ consists of parallel objects and object arrays
which communicate via asynchronous method invocations.
CHARM++ supports “processor virtualization™ [8] which
leads to several benefits by enabling automatic runtime
optimizations. CHARM++ may be better suited for such
extreme-scale machines because its adaptive runtime sys-
tems maps objects to processors thus automating resource
management [19]. NAMD, a CHARM++ application, has
achieved unprecedented speedup on 3000 processors on
PSC Lemieux [11, 14]. Other applications such as ab Initio
MD, Cosmology and Rocket Simulation have demonstrated
that CHARM++ is a viable and successful parallel program-
ming model.

Adaptive MPI [6], or AMPI, is an MPI implementation
and extension based on CHARM++ that supports proces-
sor virtualization. AMPI implements virtual MPI processes
(VPs), several of which may be mapped to a single physi-
cal processor. Taking advantage of CHARM++’s migratable
threads, AMPI also supports adaptive load balancing by mi-
grating AMPI threads.

In our programming environment, MPI is thus a special
case for AMPI when exactly one VP is mapped to a physical
processor.

In this paper, we focus on the simulations of both mes-
sage passing and message driven parallel applications.

3 Related Work and Our Approach

In general, simulation for performance predictions can
be carried out as Parallel Discrete Event Simulation(PDES),
which has been extensively studied in literature [7, 5, 17].

In BigSim simulator, the simulation entities include sim-
ulated processors, network components and all software
components in the user application such as processes in MPI
or parallel objects in CHARM++. We map the physical tar-
get processors to logical processors(LPs), each of which has
a local virtual clock that keeps track of its progress. In the
simulation, user messages together with their subsequent
computations play the role of events.

In the parallel simulation, each LP works on its own by
selecting the earliest event available to it and processing it
without knowing what happens on other LPs. Thus, meth-
ods for synchronizing the execution of events across LPs
are necessary for assuring the correctness of the simulation.

Two broad categories of the strategies are conservative
approach and optimistic approach.

In conservative approach, one has to ensure the safety of
processing the earliest event on an LP in a global fashion.
The drawback of this method is that the process of deter-
mining safety is complicated and expensive. It also reduces
the potential parallelism in the program.

Optimistic synchronization protocols allows LPs to pro-
cess the earliest available event with no regard to safety.

When causality errors occur, a rollback mechanism is
needed to undo earlier out of order execution and recreate
the history of events executed on the LP as if all events were
processed in the correct order of arrival. Despite the cost of
synchronization, the optimistic approach exploits the par-
allelism of simulation better by allowing more concurrent
executions of events. In BigSim, we adopt an extension of
the optimistic synchronization approach.

The most well studied optimistic mechanism is Time
Warp, as used in the Time Warp Operating System [7].
Time Warp was notable as it was designed to use process
rollback as the primary means of synchronization.

The Georgia Tech Time Warp (GTW) [5] system was
developed for small granularity simulations such as wireless
networks and ATM networks. One of the GTW features
that carries over into BigSim is the simulated time barrier,
a limit on the time into the future that LPs are allowed to
executed.

The Synchronous Parallel Environment for Emulation
and Discrete Event Simulation (SPEEDES) [17, 18] was
developed with a different optimistic approach to synchro-
nization called breathing time buckets.

A 1la carte [1] is a Los Alamos computer architecture
toolkit for extreme-scale architecture simulation. It chose
conservative synchronization engine, the Dartmouth Scal-
able Simulation Framework (DaSSF) [13] for the handling
of discrete events. They have targeted on simulating thou-
sands of processors. In the Quadrics network simulation
of SWEEP3D [4], they reported no speedup when adding
more computational nodes in the simulation. The perfor-
mance data they reported in the paper is only for simulating
a 36-process run of SWEEP3D using 2 to 36 real proces-
Sors.

Conservative simulators require a lookahead, which im-
poses a high global synchronization overhead, and typically
limits the amount of parallelism one can exploit in simu-
lation. On the other hand, the optimistic general purpose
simulators, when directly applied to performance prediction
of parallel applications on extreme scale of processors (tens
of thousands or even millions of processors), may lead to
very high synchronization overhead, caused by the need to
rollback a simulation when a causality violation is detected.

The synchronization overhead of optimistic concurrency
control consists of:

e Checkpointing overhead - time spent in storing pro-
gram state before an event is executed which might
change that state.

e Rollback overhead - time spent in undoing events and
sending cancellation messages.

e Forward execution overhead - time spent in re-
executing events that were previously rolled back.

In BigSim, we found that by taking advantage of the par-
allel programs’ inherent determinacy, the above overhead
can be dramatically reduced, leading to great improvement
in the simulation.
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Parallel applications tend to be deterministic, with a few
exceptions (such as branch-and-bound and certain classes
of truly asynchronous algorithms). Parallel programs are
written to be deterministic. They produce the same results,
and even though the execution orders of some components
may be allowed to differ in smaller time intervals, they carry
out the same computations.

In order to detect and exploit the parallel programs’ in-
herent determinacy, BigSim is designed to be integrated
with language and runtime support to reduce the overhead
of synchronization. In Section 5, we describe this method-
ology in detail for a broad class of parallel programs.

4 From BigSim Emulator to Simulator

Converting the emulator to a simulator requires correct
estimation of the time taken by sequential code blocks and
messaging. BigSim is capable of using various plug-in
strategies for estimation of the performance of these com-
ponent models.

4.1 Predicting the Time of Sequential Code

The walltime taken to run a section of code on traditional
machines can not be used directly to estimate the compute
time on the target machine. As we do not know the time
taken for a given sequence of instructions on the target ma-
chines, we use a heuristic approach to estimate the predicted
computation time on the simulator. Many possible methods
are described below. They are listed in the increasing order
of accuracy (and the complexity involved).

1. User supplied expression for every block of code esti-
mating the time that it takes to run on the target ma-
chine. This is a simple but highly flexible approach.

2. Wallclock measurement of the time taken on the sim-
ulating machine can be used via a suitable multiplier
(scale factor), to obtain the predicted running time on
the target machine.

3. A better approximation is to use hardware performance
counters on the simulating machine to count floating-
point, integer and branch instructions (for example),
and then to use a simple heuristic using the time for
each of these operations on the target machine to give
the predicted total computation time. Cache perfor-
mance and the memory footprint effects can be approx-
imated by percentage of memory accesses and cache
hit/miss ratio.

4. A much more accurate way to estimate the time for
every instruction is to use a hardware simulator that is
cycle accurate model for the target machine.

The first three of the above described methods are cur-
rently supported in the simulator. The hardware simulator
described in the last approach is being explored.

4.2 Predicting Network Performance

It is also necessary to simulate the network environment
of the target machine to get the accurate performance pre-

diction. The possible approaches are described below in the
increasing order of accuracy (and complexity).

1. No contention modeling: the simplest approach ig-
nores the network contention. The predicted receive
time of any message will be just based on topology,
designed network parameters and a per message over-
head.

2. Back-patching: this approach stretches communica-
tion times based on the communication activity during
each time period, using a network contention model.

3. Network simulation: this approach uses detailed mod-
eling of the network, implemented as a parallel (or se-
quential) simulator.

The first approach is used in this paper. Although it may
sound too simple, we found it models most computation
bounded applications reasonably well. The network sim-
ulator is also being explored in [20].

5 Performance Simulation

In Section 3, we identified three kinds of synchronization
overhead often found in simulators based on optimistic con-
currency control. In performance simulation of an extreme-
scale parallel machine, these overheads are prohibitive, in
terms of both the CPU and memory costs. Our methodol-
ogy in BigSim is to utilize the inherent determinacy in the
application to reduce the synchronization overhead in sim-
ulation.

To introduce our parallel simulator concepts in a sim-
ple context, we first describe our simulator for a restricted
class of programs. We then describe the generalization of
this methodology for a broader class of the non-linear order
parallel applications.

5.1 Simulating Linear Order Applications

A simple class of deterministic programs are those which
permit messages to be processed in exactly one order. In
the paper, we call them linear order parallel programs. For
example, consider an MPI program that uses no wildcard
receive and ensures only one message with a given tag and
sender-processor is available at a time.

In linear order parallel applications, application mes-
sages are guaranteed to be delivered to the application in
the expected order. The communication runtime handles
any out-of-order message by buffering it until the applica-
tion asks for it. The simulation is trivial in this case since
no simulation event needs to be rolled back. Therefore, all
overhead of checkpointing, rollback and re-execution can
be avoided.

The synchronization algorithm for the simulation of such
parallel applications is simple. As illustrated in Figure 2, a
virtual processor timer(cur1) is maintained for each logi-
cal processor (LP) (implemented as a user-level thread in
BigSim). When a message(m2) of the program is sent out,
we calculate its predicted receive time on the destination
LP using a network model (Section 4). For example, in
the simple model it is just the sum of the current thread
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Figure 2. Timestamping events

time and the expected communication latency to the desti-
nation. The predicted receive time is then stored along with
the message. When the receive statement for this message
is executed(m1) on the destination LP, its virtual processor
timer is updated to the maximum of the current thread time
and the predicted receive time of the message. Since there
is only one order of execution possible, no rollback is nec-
essary, hence no checkpoint is needed either.

5.2 Simulating a Broader Class of Applications

Linear order applications are limited in their expres-
siveness. For example, many parallel programs written in
message-driven language such as CHARM++ do not belong
to this category. In CHARM++, messages directed to an ob-
ject can arrive in any order.

In the next subsection, we first describe a simple class of
message-driven applications and their simulation, followed
by a more complex and broader class of applications.

5.3 Simulation of Message Driven Programs

In message driven programs, the execution of a message
is ready to be scheduled when the corresponding message
invoking it arrives. In atomic message-driven programs, the
execution is deterministic even when messages (method in-
vocations) execute in different sequences on an object: ei-
ther the object is providing information to other objects in
request-response mode, or is processing multiple method
invocations that complete as a set before the object (and the
application) continues on to the next phase, possibly via a
reduction.

Due to the deterministic property in method invocation,
the simulation for such class of applications does not require
checkpointing and re-executing an event, since re-execution
of an event in the time of rollback will only produce the
same states. In this case, rollback process is then simplified
as timestamp correction of events in the simulation.

Figure 3 shows an initial timeline as an example. Each
block represents an event in simulation, recording an execu-
tion of an application message. The header of each message
stores its predicted arrival time (shown as RecvTime in Fig-
ure 3). A message can be executed on an LP if it is idle at
the receive time. If the message arrives in the middle of an
execution, it has to wait until the current execution finishes
(see M5 in Figure 3). Assume that M4 has its predicted
receive time now updated to an earlier time as shown in

Figure 4(a). After timestamp correction, the modified time-
line is shown in Figure 4(b). M4 is inserted back into the
execution timeline with updated RecvTime and M5 is now
executed right at its RecvTime. Note that all the events af-
fected in the execution timeline (M4, M3, M5 and M6) also
send out timestamp correction messages to inform all the
spawned events about the changes in the timestamp.
Atomic message-drive programs are relatively rare, but
they give us an opportunity to present the above timestamp
correction approach in a simpler setting. A more complex
class of applications, one that we call non-linear order pro-
grams, is a generalization of both atomic message-driven
programs and linear order programs. Non-linear order pro-
grams have even more complex dependences, yet are essen-
tially deterministic, as illustrated in the next subsection.

5.4 Non-linear Order Parallel Applications

Message-driven systems such as CHARM++ allow a pro-
cess (or object, in case of CHARM++) to handle messages in
multiple possible orders. This allows for a better overlap of
communication and computation, since the system can han-
dle the messages in the order they are received. However,
from the point of view of simulation, this creates a complex
causal dependence.

For example, take a 5-point stencil (Jacobi-like) program
with 1-D decomposition, written in a message driven lan-
guage: every chunk of data (implemented as parallel object)
waits for a message from its left neighbor and the other from
its right neighbor. As illustrated in the first timeline of Fig-
ure 5, the message from the right object invokes the function
getStripFromRight on this object and the message from the
left object invokes getStripFromLeft. These two messages
generate events el and e2 in the simulator. When both mes-
sages arrive, the program calls the function doWork to do
the calculation. Since the messages from left and right may
arrive out of order, both functions need to be written in such
a way that the later-invoked should call doWork.

T(el) T(e2)

Original timeline
T(e2) T"(el)

Incorrect updated timeline

LEGEND: getStripFromRight (el)
getStripFromLeft (e2)
Bl doWork

Figure 5. Incorrect correction scheme

When timestamp corrections are performed, the updated
receive time of el may become T"(el) > T'(el). A naive
application of the timestamp correction scheme described in
the last section will move event el to a later point in time,
as shown in the second timeline in Figure 5. Now the func-
tion doWork is called by the first arrived message, which is
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Correction Messages

(b) Updated timeline

Figure 4. Timelines after updating event receive time and after complete correction

incorrect. This simple example shows that naive timestamp
scheme can easily violate the dependencies among events.

Full checkpointing, rollback and re-execution of the
event is one (very expensive) solution to ensure the cor-
rectness of the simulation. However, at a higher level, the
program is deterministic — event corresponding to doWork
depends on the completion of both events getStripFromLeft
and gerStripFromRight regardless of the order of their ar-
rival. This determinacy of a program can be exploited to
carry out the timestamp correction without re-executing the
events (i.e. without having to re-execute the application
code).

In fact, even from a programming perspective, such de-
pendencies are problematic. Programmers have to write ex-
plicit code for maintaining counters, and flags (to see if both
messages have arrived) and to buffer messages. Also, the
flow of control is obscured by the split phases specifica-
tion style. For these reasons, CHARM++ provides a no-
tation called “Structured Dagger” that allows explicit rep-
resentation of event dependencies. We propose to extract
the dependency information from this language, along with
runtime tracking of dependencies, to carry out deterministic
simulation without re-execution.

5.4.1 Structured Dagger - a Language for Expressing
Event Dependencies

Structured Dagger [9] is developed as a coordination lan-
guage built on top of CHARM++. It allows a programmer
to express the control flow within an object naturally using
certain C language-like constructs.

In Structured Dagger, four categories of control struc-
tures are provided for expressing dependencies. They are
When-Block, Ordering Construct, Conditional and Looping
Constructs and Atomic Construct.

Figure 6 shows an example of the parallel 5-point sten-
cil program with 1-D decomposition written in Structured
Dagger. In the program, the for loop starts the itera-
tions, which begin with calling sendStripToLeftAndRight
in an atomic construct to send out messages to its neigh-
bors 3. The overlap immediately following asserts that
the two events corresponding to gerStripFromLeft and get-

3The atomic construct encapsulates any C language code

entry void jacobiLifeCycle ()

for (i=0; i<MAX_ITER; i++)

{
atomic {sendStripToLeftAndRight () ;}
overlap

when getStripFromLeft (Msg *leftMsg)
{ atomic { copyStripFromLeft (leftMsg); } }
when getStripFromRight (Msg *rightMsg)
{ atomic { copyStripFromRight (rightMsg); } }
}

atomic{ doWork(); /* Jacobi Relaxation */ }

Figure 6. Sample code in Structured Dagger

StripFromRight can arrive and be processed in any order.
The when construct simply says that when, for exam-
ple, getStripFromLeft happens, it invokes the action in the
atomic construct which calls a plain C++ function copy-
StripFromLeft to process the application message. When
both events happen, function doWork in the last atomic con-
struct will be invoked and the program enters the next it-
eration. Specifically, this sample code describes the event
dependencies among events of application message get-
StripFromLeft, getStripFromRight and doWork.

The Structured Dagger program is compiled and trans-
lated into a normal C++ program with parallel runtime func-
tion calls. Interacting with the simulator using function
API, the simulator gathers dependencies among events to
ensure the correctness of the simulation. The new simu-
lation scheme with Structured Dagger for non-linear order
parallel applications is described next.

5.4.2 Simulating Non-linear Order Applications

With the help of language and runtime support, the simula-
tor is able to capture the event dependencies which other-
wise would be hidden in user programs. During the simu-
lation, the simulator and the CHARM++ or AMPI runtime
system work together to maintain the order of the execu-
tions according to the dependencies among events.

This approach also applies to a large class of MPI pro-
grams that use MPI Irecv and MPI_Waitall as well: the
waitall operation is simply recorded as having backward
dependencies on all the pending irecvs. To make this hap-
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pen, the runtime implementation of the MPI calls needs to
interface to the simulator with the event dependency infor-
mation. Such an interface is implemented in our AMPIL.

In the simulations of both MPI and CHARM++ program,
with the new scheme, the rollback process becomes greatly
simplified. No event needs to be re-executed because re-
execution of an event will only produce the same states.
Thus, checkpointing of the states is also avoided since they
are not needed any more. Rollback process in the new
scheme is now simply an extension of the timestamp cor-
rection described in Section 5.1 under the constraints of
the event dependencies. To illustrate the new simulation
scheme better, we use the same jacobi example in Figure 6.

As the simulator runs, a chain of logs preserving the
event dependencies is created on the fly. Every event E has
a list of forward and backward dependents. The backward
dependents of E will be those events which must complete
before E can start. The forward dependents of E will be
the list of those events that have E as one of their backward
dependents. In the jacobi example, the event doWork has
both getStripFromLeft and getStripFromRight as its back-
ward dependents.

To preserve the order between the dependents, an event
can only be allowed to execute after all the events that it
depends on have been executed. To capture this we define
a new term effStartTime (called effective start time) recur-
sively as: max(mEST, currentTime) where mEST is
the maximum effStartTime of all the backward dependents
(zero if no backward dependents are present). The effStart-
Time is the time earlier than which the event can not start
to ensure that we maintain the dependency relation between
the events. The timeline will now be maintained in the non-
decreasing order of the effStartTime.

6 Case Studies

We first present results of validation of BigSim on
Lemieux [12] at Pittsburgh Supercomputing Center. We
then present results of performance prediction and perfor-
mance analysis of some real world applications for Blue-
Gene/L. Finally, we will present the scaling performance of
the BigSim itself.

6.1 Validation

In order to validate our BigSim, we compared the actual
running time of a 7-point stencil program with 3-D decom-
position (Jacobi3D) written in MPI with our simulation of
it using BigSim. In the program, every chunk of data com-
municates with its six neighbors in three dimensions. After
Jacobi relaxation computation, the maximum error is calcu-
lated via MPI_Allreduce of all local errors.

The result is shown in Table 1 for a problem with a fixed
size in all the runs. The first row in the table shows the run-
ning time on 64 to 512 processors; the second row shows
the predicted running time when simulating these proces-
sors using only 32 real processors. It shows that our sim-
ulated execution time generally agrees with the actual ex-
ecution time to within about 6% although a simple latency
based network model is used.

Processors 64 128 256 512
Actual run time (s) | 1.072 | 0.481 | 0.259 | 0.145
predicted time (s) | 1.046 | 0.512 | 0.270 | 0.155

Table 1. Actual vs. predicted time

6.2 Jacobi on BG/L

With BigSim, we are now able to study the performance
issues of some real world applications on a machine be-
fore it is built, specifically BlueGene/L in the following case
studies.

To facilitate performance analysis for applications on
this machine, Projections, a postmortem performance anal-
ysis tool associated with CHARM++ has been ported to
BigSim. It provides the capabilities of detailed event tracing
and interactive graphical analysis.

The Jacobi program written in CHARM++ and Struc-
tured Dagger (Sec 5.4.1) was used as a case-study to fur-
ther analyze and verify the simulator. In this simulation, the
network model uses a per-hop and per-corner latency of 5ns
and 75ns respectively. For experiments with different net-
work configurations, the network latency can be increased
by scaling both the per-hop and per-corner latency by the
same factor.

The timelines generated by Projections are shown in Fig-
ures 7 and 8 for a selected subset of 64,000 simulated pro-
cessors. Figure 7 was generated without simulation (the
program was only emulated), while Figure 8 was generated
with simulation. The separation between the events in Fig-
ure 7 is caused by the direct or cascaded effect of the out-
of-order delivery of messages. As we can see in Figure 8,
the timestamps of out of order messages were corrected and
the gaps disappeared.
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Figure 9. Predicted time vs real processors

We also validated the simulator by comparing the result
with expected behaviors. The results that we obtained are
summarized as follows:

e For a valid timestamp correction scheme we expect
same predicted time for the same problem independent
of the number of real processors used for simulation.
This can be used to verify the simulator. Predicted per-
formance was indeed found to be same across different
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runs and the result for Jacobi is shown in Figure 9 with
different network latency configurations.

e As we increase the network latency we expect the pre-
dicted time to remain constant up to a limit and in-
crease thereafter, due to overlap of computation and
communication. Note that the predicted time was mea-
sured as a function of multiplicative factor by which
the per-hop and per-corner latencies are increased. The
result was as expected and is shown in Figure 10.

e The speedup was also measured based on the predicted
time for different latency factors as shown in Figure
11. For a very low network latency, the speedup was
found to be close to linear, and dropped as the latency
factor was raised. This is because when the number of
simulated processors increases, the work per-processor
reduces as the computation can not makeup for com-
munication delay, reducing the speedup.

6.3 Molecular Dynamics Simulation

The molecular dynamics simulation of biomolecules is
one of the planned applications for BlueGene/L. It is a chal-
lenging application to parallelize. A microsecond simula-
tion includes about a billion timesteps. Thus, each timestep
involves a relatively small amount of computation that must
be effectively parallelized. We have developed NAMD, a
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Figure 8. Timelines after correction
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Figure 11. Speedup for Jacobi1D

Gordon Bell award winning parallel molecular dynamics
application that is also written in CHARM++. Although it
has been shown to scale to 3000 processors [11], it is not
ready for extreme-scale parallel machines due to the rela-
tively limited parallelism exploited in the application.

In NAMD, the atoms in the simulation are divided spa-
tially into cells roughly the size of the cutoff distance. Local
interactions are calculated for each timestep between only
the nearest neighbor cells (“one-away” interactions), as il-
lustrated in Figure 12. This ensures that all atoms within
the cutoff radius are calculated. However, this strategy pro-
duces a division that is coarsely grained for planned ma-
chines such as BlueGene/L. For example, with a cutoff ra-
dius of 15 A, a 150 x 150 x 150 A simulation space would
give only 1,000 cells and 13,000 cell-to-cell interactions ‘to
calculate. Considering that the BlueGene/L. machine is ap-
proximately 64,000 nodes, the division would leave nodes
idle even if interactions were delegated to a single node.

To address the issue of creating finer-grained parallelism
for cutoff interactions, LeanMD is being developed as an
experimental code. In LeanMD, the “one-away” strategy is
replaced with a “k-away” strategy. Instead of one cell rep-
resenting the cutoff distance, in LeanMD three cells would

41,000%27/2, since cell-to-cell forces are symmetric.
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span the cutoff distance as shown in Figure 12. Therefore,
in order to do the cutoff calculation, a cell must compute its
interactions with every cell that is “three-away” in this sce-
nario. Given the simulation example above, a three-away
strategy would produce 27,000 cells and more than 4 mil-
lion cell-to-cell interactions, a number of objects that can be
easily distributed across the 64,000 nodes of BlueGene/L.

We have been able to run LeanMD (a full-fledged
CHARM++ code) on our simulator on Lemieux as a real
benchmark. We have run 3 away ER-GRE benchmark
which consists of 36573 atoms, with a cutoff of 12 A, the
cell size thus is 4x4x4 and the simulation space is 23x23x23
cells. The number of cell-to-cell interactions is more than
1.6 million. We simulate the BlueGene/L nodes of size from
1K to 64K of full machine size. The predicted speedup is
shown in Figure 15 by the bottom curve.

The simulation data can be used to carry out more de-
tailed performance analysis. The average processor utiliza-
tion, as it varies with time, is shown in Figure 13 for 32k
simulated processors. The utilization stabilizes at about
50%, but rises and falls within each timestep. This corre-
sponds to the speedup saturation seen in Figure 15. This
could be due to either communication latencies, critical
paths or load imbalance. To understand the saturation of
the speedup we used the performance logs to calculate the
load on individual processors. Figure 14 shows a histogram
of this data in the case of 8k and 16k simulated proces-
sors. Although about 6000 out of 16000 processors have
a load of about 2ms, a few are seen to have a load as high
as 8ms. This suggests that load balance is a major perfor-
mance issue. To understand what portion of performance
loss is explained by load imbalance alone, we plot the es-
timated speedup(P * avgLoad/maxLoad) based on load
imbalance loss alone (top curve in Figure 15) and compare
it with simulated speedup. The closeness of both curves
confirms that load imbalance is the primary cause of perfor-
mance loss. Only at 64K processors do the curves deviate,
indicating influence of other factors such as communication

Figure 13. Average utilization per
interval for Molecular Dynamics
on 32,000 processors
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Figure 15. LeanMD predicted and expected
speedup for up to 64,000 processors

overhead or critical paths. Such detailed performance anal-
ysis is possible because of the rich performance trace data
produced by the simulator. 3

For these simulations we used a no-contention commu-
nication model, with possibly too optimistic communica-
tion parameters. We plan to implement a more detailed net-
work model [20] and get realistic network parameters from
IBM for the case of BlueGene/L. Preliminary case-studies
demonstrate that the simulator can be used to identify per-
formance issues for scaling individual applications.

6.4 Performance of the Simulation

We also measured the performance of the simulator itself
using LeanMD as a sample application. We demonstrate
the scalability of the parallel simulator in Figure 16. The
simulation was found to scale reasonably over hundreds of
processors. The efficiency of the simulation depends on the

5This also affects to the scalability of Projections. It is routinely used
for analysis of a few thousand processors on real runs, but we are able to
use it, unmodified, for 64K processors.
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number of correction messages sent. In one simulation, cor-
rection and real messages sent were compared for different
simulated processors as shown in Table 2. The low ratio
of correction messages to real messages was encouraging.
This typically leads to only about 50% overhead for simu-
lation compared with emulation alone.

Processors 8k 16K 32k 64k
Real Msgs | 20.04M | 20.18M | 20.42M | 20.93M
Corr. Msgs | 357351 | 305487 | 126629 | 59762

Table 2. Proportion of correction messages

7 Conclusion and Future Work

Although parallel simulation for extremely large paral-
lel machines (at least tens of thousands of processors) is
very challenging, we have shown that by utilizing the in-
herent determinacy of parallel applications and tightly cou-
pling the simulator with emulator at runtime, we are able
to improve the simulation efficiency by reducing the syn-
chronization overhead often found in PDES. The BigSim
parallel simulator we have developed is capable of making
performance predictions for a broad class of applications on
very large parallel machines. The online mode of the sim-
ulator is also useful in studying various performance issues
in parallel applications, such as load balance and fault toler-
ance issues. The explored simulation techniques show good
parallel scalability. Future work will focus on increasing ac-
curacy by incorporating an instruction level simulator and a
network simulator.
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