
Batch Based Cancellation: A Rollback Optimal Cancellation Scheme
in Time Warp Simulations

Yi Zeng Wentong Cai Stephen J Turner
School of Computer Engineering
Nanyang Technological University

Singapore 639798
{pg00847560, aswtcai, assjturner}@ntu.edu.sg

Abstract

An efficient cancellation scheme is essential to the
performance of Time Warp simulations. The pitfalls
of rollback echoes, chasing hazards and cascading roll-
backs can be identified as being attributable to the ineffi-
ciency of the conventional per-event based cancellation
scheme. Instead of capturing the happen-before relation
between events, which is used by the range based can-
cellation scheme, the batch based cancellation scheme
proposed in this paper utilizes a modified paradigm of
vector time, namely, state vector, to capture the depen-
dence of events. We prove that with conformance to
specific rules regulating the advancement of LPs, the
events to be cancelled by a straggler message can be
determined using a range of the state vector. Thus,
knowledge of the range enables any LP to recover from
the receipt of a straggler message at the cost of at most
one rollback (i.e., rollback optimal). The results of pre-
liminary experiments conducted using a manufacturing
model show that the proposed scheme is successful in re-
ducing the number of anti-messages and increasing the
ratio of the number of committed events to the number
of processed events.

1 Introduction

In Time Warp simulations, the dependence of events
can be expressed using state dependence or scheduling
dependence or a transitive closure of both [4]. For any
two processed but not yet rolled back events at the
same LP, the later event is defined to be state depen-
dent on the earlier event due to the order of their ac-
cesses to the LP ’s state variables; for an event schedul-
ing another event, the latter is defined to be scheduling
dependent on the former. To remove the wrong com-
putations based on an event when it is rolled back, all

events that depend on it have to be cancelled 1.
The conventional way of cancelling events is solely

carried out on a per-event basis. When an LP decides
to cancel an external event which was previously sched-
uled by an outgoing positive message, it proceeds by
constructing its counterpart, namely, an anti-message,
and sending it to the same destinations. Upon receipt
of the positive message and its anti-message, the re-
ceiving LP cancels the scheduled event and performs
necessary rollbacks if that event has been processed.

The above cancellation scheme empirically proves
to be simple and feasible in Time Warp simulations.
But it still leaves performance concerns behind and has
drawn researchers’ attention. Given that LPs proceed
aggressively in a Time Warp simulation, during the
period between processing an incoming positive mes-
sage and receiving its anti-message, a certain amount
of events may have been scheduled by an LP. Without
loss of generality, these events are dependent on the
cancelled event, hence need to be rolled back by means
of sending further anti-messages. For the cancellations
triggered by a straggler message, it is apparent that
the cost is mainly dominated by the way LPs process
and cancel events. In the presence of dynamic CPU
workload and varying channel speed in a parallel or a
distributed simulation, the cost is hardly predictable.

Several pitfalls in Time Warp simulations which can
be attributable to the cost of cancellations have been
figured out by researchers. Rollback echoes and chasing
hazards have been identified [4] in particular circum-
stances which could severely impact or even destroy
the simulation. Multiple rollbacks, an inherent perfor-
mance pitfall of the conventional cancellation scheme,
has been investigated in [2], which argues that anti-
messages may result in unwanted multiple rollbacks at
a single LP and trigger a cascading rollback situation,

1In this paper, “cancel” means not only a rollback of a pro-
cessed event but also a cancellation of an unprocessed event.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

where the rollback cycles back to the original LP where
the straggler message was received.

There are many approaches that have been proposed
to reduce the cost of cancellations. As opposed to ag-
gressive cancellation, lazy cancellation [5] reduces the
number of anti-messages by delaying the sending of
anti-messages till reprocessing of the event produces
a different positive message. Unfortunately, the per-
formance comparison shows that lazy cancellation can
arbitrarily outperform aggressive cancellation and vice
versa [11]. Lazy re-evaluation [14] lets an LP directly
jump back to the state prior to when the rollback oc-
curred if the straggler message does not affect its state.
To avoid chasing hazards, wolf calls [9] expedite the
propagation of the knowledge of cancellations by send-
ing protocol messages with higher-priority over posi-
tive messages in their transmission. However, all these
approaches do not address the inefficiency of the con-
ventional per-event based cancellation scheme itself.

Chetlur and Wilsey addressed this issue and pro-
posed the range based cancellation scheme [2] by tak-
ing advantage of vector time [12, 10], a well-understood
mechanism to capture the happen-before relation (de-
noted as →) [7] between events in distributed systems.
A new type of message, namely, CANCEL MESSAGE,
was introduced as a replacement of anti-messages in
Time Warp simulations. By exploiting the happen-
before relation among messages, the range information
carried by a single CANCEL MESSAGE is capable of
cancelling multiple events at an LP, thus the number
of messages sent among LPs can be reduced and many
unwanted rollbacks can be avoided.

However, further study reveals that Chetlur and
Wilsey’s approach cannot guarantee the removal of all
unwanted rollbacks. In other words, some LPs still
suffer from multiple rollbacks to cancel events incurred
by a straggler message (so the scheme is not rollback
optimal). In this paper, the batch based cancellation
scheme is proposed to address this problem.

The remainder of this paper is organized as fol-
lows. Section 2 presents several concerns in Chetlur
and Wilsey’s approach which motivate our further in-
vestigation. Section 3 presents the basic mechanism,
state vector, which is employed to capture the depen-
dence of events in Time Warp simulations. Based on
this machanism, Section 4 gives supporting theories
which prove the possibility of a rollback optimal cancel-
lation scheme. This results in our implementation, the
batch based cancellation scheme, which is elaborated
in Section 5. Section 6 presents the experimental re-
sults obtained from the comparison of the conventional
cancellation scheme and our batch based cancellation
scheme running on a manufacturing model [8]. Sec-

tion 7 concludes the paper.

2 Motivation

In discrete event simulations (DES), the delivery
order of scheduled events at an LP is mandatorily
determined by their simulation time, a virtual repre-
sentation of the real time in the physical system be-
ing modelled. This rule is also referred to as the lo-
cal causality constraint (LCC). LCC is prone to be-
ing violated in Time Warp simulations because the
optimistic advancement of LPs gives rise to the pos-
sibility of receiving a straggler message, a positive
message scheduling a “past” event, at an LP. Once
this happens, LPs have to cancel wrong computations
accordingly. Figure 1 shows a common cancellation
scenario found in Time Warp simulations, where the
events are denoted as black dots and scheduling of the
events through positive messages and cancellation of
the events through anti-messages are represented as
solid arrows and dashed arrows respectively. In ad-
dition, the straggler message is labelled with S.

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

22

LP0

LP1

LP2

LP3

2

S
15125 28

10

1618

14 22 24

28

1012

16

1820

14

Figure 1. Per-event based cancellations trig-
gered by a straggler message

The performance concern of the conventional
scheme can be explained using Figure 1. (1) When
LP0 receives the anti-message for event e0,28

2, LP0 may
have already advanced to a certain time in the future
and scheduled considerable events. Further efforts are
therefore needed to cancel these wrong computations.
(2) Because the anti-messages for events e3,14 and e3,22

are sent from different LPs, LP3 may suffer from more
rollbacks if the anti-message for e3,14 arrives later.

The mechanism of Chetlur and Wilsey’s approach
is shown in Figure 2, where the dashed arrows rep-
resent the CANCEL MESSAGEs. The combination
of simulation time (the first component) and vector
time (the remaining N components) forms the Total
Clock, where N is the number of LPs in the simula-
tion (N = 4 here). Total Clock is always sent along

2To simplify the representation, ei,t denotes the event sched-
uled at LPi with time-stamp t.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

with messages (not shown in the figure). The updat-
ing rules of simulation time and vector time are inde-
pendent from each other and correspond to those de-
fined in [2, 6, 7]. Each CANCEL MESSAGE carries a
range, denoted by [a, b]i, which indicates that the set of
events that have been cancelled at LPi are those whose
ith component of vector time lies in between a and b.
Based on a received range, the receiving LP cancels
events by checking their vector time. A new range for
the cancelled events is then deduced and sent out via
new CANCEL MESSAGEs (if the range is not empty).

��

��

����

���� ��

����

���� ��

����

��

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[10 1 1 0 0]

[14 1 2 0 1]

[18 3 0 2 0]

[20 3 0 3 0]

[15 3 0 0 0]

[0 3 2 4 4] [0 3 3 4 5][24 3 2 3 3]

[0 3 0 4 0][16 2 0 1 0]

[0 4 2 4 4][5 1 0 0 0]

[12 2 0 0 0]

[0 3 0 0 0]

[22 3 2 3 2]

discard

[12 1 2 0 0] [0 3 3 0 0]

��

[1, 3]2

LP0

LP1

LP2

LP3

2

[2, 3]3

S

[1, 3]0

[1, 2]1

Figure 2. The range based cancellations trig-
gered by a straggler message

Comparing Figure 2 with Figure 1, it can be seen
that Chetlur and Wilsey’s approach has several advan-
tages. (1) A CANCEL MESSAGE is capable of can-
celling multiple events. Upon receipt of range [1, 3]0,
LP2 is able to cancel events e2,16, e2,18 and e2,20. This
results in a new range [1, 3]2 being sent to LP3. (2)
Because the received ranges are recorded at LPs, an
LP has intelligence to discard some incoming messages
which are to be eventually cancelled so as to prevent
wrong computations from being further propagated.
For example, LP3 schedules an event at LP0 at sim-
ulation time 24. Because event e0,15 → e3,24 and e0,15

has already been cancelled, the event scheduled by e3,24

is simply discarded based on the range [1, 3]0 recorded
at LP0.

Regarding the number of rollbacks from which an
LP may suffer to thoroughly remove the wrong com-
putations incurred by a certain straggler message, we
define a cancellation scheme to be rollback optimal if
any affected LP is guaranteed to be recovered at the
cost of at most one rollback. Chetlur and Wilsey’s ap-
proach has reduced rollbacks to some extent, however,
it is not rollback optimal (in Figure 2, LP3 rolls back
twice). A rollback optimal cancellation scheme requires
some kind of mechanism to identify all the events which
are destined to be cancelled upon receipt of a straggler
message.

3 State Vector

The happen-before relation proves to be the most
basic but universal partial order relation in distributed
systems and vector time proves to be the simplest
means to characterize it [1, 12]. However, vector
time (as shown in [2]) is not an ideal candidate to cap-
ture dependence of events. This is illustrated in Fig-
ure 3. LPi schedules ej,t2 and later on cancels it due to
the rollback caused by a straggler message. For events
e′ and e′′ scheduled by LPj , where e′ is scheduled af-
ter ej,t2 but before the cancellation and e′′ is scheduled
after the cancellation, both ei,t1 → e′ and ei,t1 → e′′

hold. But, in fact, e′′ does not depend on ei,t1 .

���� ��

��

S

LPi

LPj

t1

t2 t2

e′′e′

Figure 3. Happen-before relation between
events

Suppose that every LP changes its state whenever it
processes an event. A monotonically increasing scalar,
namely, state counter, is introduced into each LP to
uniquely identify its state. A vector of state coun-
ters, namely, state vector, is constructed at each LP
as well. For LPi’s state vector, denoted as SV (LPi),
SV (LPi)[j], j �= i reflects LPi’s current knowledge of
LPj ’s latest state counter, while SV (LPi)[i] is just the
placeholder of its own state counter.

The propagating and updating rules of LPi’s state
vector are shown in Figure 4. It can be seen that the
last rule makes state vector different from vector time.

With the rules in Figure 4, SV (LPi)[i] uniquely
identifies an event processed at LPi. Given an event e
processed by an LP with state vector SV (e), the lat-
est event in LPi on which e depends can, therefore,
be determined by SV (e)[i] (formally stated in Theo-
rem 4.4). Looking back to Figure 3 again, the link is
broken because SV (e′′)[i] is restored from an earlier
state. SV (e′′)[i] < SV (ei,t1)[i] indicates that e′′ does
not depend on e1,t1 . Other properties of state vector
and dependence are exploited in Section 4.

4 Characterization of Cancelled Events

A widely accepted model [12] is adopted and mod-
ified in the proof of the following theorems. A Time
Warp simulation is viewed as consisting of N sequen-
tial LPs, communicating solely by exchanging two

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

1. Let N be the number of LPs in the simulation.
Initially, SV (LPi)[k] = 0, 0 ≤ i, k < N .

2. Let SVm(e) be the state vector of e which is
piggybacked on its scheduling message m and let
SV (e) be the state vector of e at the time e is
processed. When LPi processes e, these updates
are performed: SV (LPi)[i] first increases by one;
then SV (LPi) = sup(SV (LPi), SVm(e)), where
sup performs component-wise maximum opera-
tion; then SV (e) = SV (LPi).

3. At the time LPi schedules event e, either for itself
or for another LP, SV (LPi) is piggybacked on the
scheduling message, i.e., SVm(e) = SV (LPi).

4. Except for SV (LPi)[i], other components of SV
are state saved. At the time a rollback occurs
at LPi, SV (LPi)[i] increases by one and other
components are restored from the state to which
LPi rolls back.

Figure 4. The propagating and updating rules
of state vector at LPi

kinds of messages, namely, positive messages and CAN-
CEL MESSAGEs. Each LP changes its state whenever
it processes the event scheduled by a positive message
or performs a rollback. The transmission channels are
assumed reliable and FIFO.

Let Ei denote the set of events processed at LPi,
and let E =

⋃N−1
i=0 Ei denote the set of all events pro-

cessed in the simulation. As we assume that each LPi

is strictly sequential, we can index the events of LPi

in their processing order: Ei = {ei1, ei2, . . . , ein, . . .}.
This processing order is referred to as the standard enu-
meration of Ei. Given Ei, the local successor set of
event ein, denoted as Sl(ein), represents all the events
locally processed after ein, Sl(ein) = {eik|k > n}.

Theorem 4.1 through Theorem 4.5 state the proper-
ties of state vector and the dependence of events. They
are obvious by applying the rules shown in Figure 4 and
are listed below without proving.

Theorem 4.1. Let e ⇒ e′ denote that event e′ depends
on e. Dependence is transitive, i.e., for three events e,
e′ and e′′, if e ⇒ e′ and e′ ⇒ e′′, it also holds that
e ⇒ e′′.

Theorem 4.2. SV (LPi)[i] increases monotonically
throughout a simulation.

Theorem 4.3. For any event eik ∈ Ei, SV (eik)[i] =
k.

Theorem 4.4. For event e′ ∈ Ej, suppose that
SV (e′)[i] = k, then eik ⇒ e′.

Theorem 4.5. For events eik ∈ Ei and e′ ∈ Ej, if
eik ⇒ e′, then SV (e′)[i] >= k.

Observing that receiving straggler messages is the
root cause of rollbacks in LPs, let ms denote a straggler
message received at LPo. LPo is thus named as rollback
originator. During the cancellations triggered by ms

(for the ease of discussion, assume there is no other
intervening cancellations triggered by other straggler
messages), let Ci(ms) denote the set of events cancelled
at LPi and C(ms) denote all the events cancelled in
the simulation. Thus, C(ms) =

⋃N−1
i=0 Ci(ms). Note

that for i �= o, Ci(ms) is essentially the set of events
that have dependence on the events in Co(ms), i.e.,
{e′|e′ ∈ Ei ∧ ∃e ∈ Co(ms), e ⇒ e′}.

Although C(ms) can be expressed in terms of
Co(ms), Co(ms) or C(ms) is still unpredictable with-
out any regulation of the advancement of LPs. To
be able to identify Co(ms), which is expressed as a
range (shown in Theorem 4.7), and furthermore, iden-
tify C(ms) using this range (shown in Theorem 4.8),
the rules of event processing at LPi are given in Fig-
ure 5. In the first rule, if event e is processed, it would
be rolled back unnecessarily because e′ will be eventu-
ally cancelled. In the second and the third rules, event
e can be discarded immediately as it is known to be
dependent on a cancelled event.

At the time LPi processes event e, where SVm(e) =
{x0, x1, . . . , xN−1},

1. If a processed (but not yet committed) event e′

at LPi depends on a cancelled event ejk, j �= i,
k ≤ xj on which e does not depend, processing
of e is blocked until e′ has been cancelled;

2. If eixi has been cancelled locally, e is discarded
without processing.

3. If e depends on a cancelled event ejk, j �= i, k ≤
SV (LPi)[j], e is discarded without processing.

Figure 5. The rules of event processing at LPi

Theorem 4.6. Suppose that the rollback originator
LPo receives straggler message ms and events eoa and
eob are the earliest and latest events among those being
cancelled by LPo. It holds that,

Co(ms) = {eoa} + Sl(eoa) − Sl(eob).

Proof. The event set {eoa}+Sl(eoa)−Sl(eob) represents
all the events cancelled by LPo upon receipt of straggler
message ms. The second rule in Figure 5 prohibits
their effects from further spreading at LPo, hence this
set essentially equals Co(ms).

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

Theorem 4.7. The oth component of the state vector
of events in Co(ms) forms a continuous range [a, b]o,
that is,

1. ∀k ∈ [a, b]o, eok ∈ Co(ms);

2. ∀eok ∈ Eo and eok �∈ Co(ms), k �∈ [a, b]o.

Proof. From Theorem 4.3, SV (eoa)[o] = a and
SV (eob)[o] = b. According to Theorem 4.2 and Theo-
rem 4.6, the correctness is obvious.

Theorem 4.7 offers an efficient way to convey the
set of events being cancelled at a rollback originator
to other LPs (recall the similar way in which CAN-
CEL MESSAGEs work in the range based cancellation
scheme). As shown in the next section, our proposed
scheme also employs CANCEL MESSAGEs to carry
these ranges.

Theorem 4.8. Given range [a, b]o representing
Co(ms), ∀e ∈ Ei, i �= o,

e ∈ Ci(ms) iff SV (e)[o] ∈ [a, b]o.

Proof. (1) Necessity. On one hand, for any event
e ∈ Ci(ms), it holds that ∃k ∈ [a, b]o, eok ⇒ e. Ap-
plying Theorem 4.5, SV (e)[o] ≥ k ≥ a. On the other
hand, it must hold that SV (e)[o] ≤ b. Otherwise, as-
sume SV (e)[o] = k′ > b, then eok′ ⇒ e according
to Theorem 4.4. eok′ does not depend on any event
in Co(ms), or it should have been discarded accord-
ing to the second rule in Figure 5. Therefore, e must
have dependence on other events as shown in Figure 6,
where dependence of events is denoted as curved ar-
rows. There must be two events e′′ and e′ which were
processed in this order at LPi, i �= o: e depends on
e′′ and e′′ depends on an event eok′′ in Co(ms) as
e ∈ Ci(ms); e is identical to or depends on e′ and e′

depends on eok′ as the knowledge of k′ was propagated
to e; e′′ was processed before e′ (otherwise, e′′ was dis-
carded by LPi according to the third rule in Figure 5).
This violates the first rule in Figure 5 at the time LPi

processed e′ because processing of e′ should have been
blocked until e′′ was cancelled. (2) Sufficiency. Let
SV (e)[o] = k, k ∈ [a, b]o. Applying Theorem 4.4,
eok ⇒ e. Because eok ∈ Co(ms), e ∈ Ci(ms).

������ ����

������

��

e′′

eoa eok′′ eob eok′
LPo

LPi
e

e′

Figure 6. The dependence of event e

The rules in Figure 5 and Theorem 4.6 through The-
orem 4.8 form the basis for a rollback optimal can-
cellation scheme. The essential difference from the

range based scheme is that instead of continuously con-
structing ranges along the propagation path of CAN-
CEL MESSAGE s, which could gradually limit their
abilities to determine events in Ci(ms), i �= o (see
ranges [1, 3]0 and [1, 3]2 in Figure 2), a rollback optimal
cancellation scheme comes to the conclusion that LPi

is able to directly deduce what Ci(ms) is like based on
the received [a, b]o from the rollback originator LPo.
For any processed events in Ci(ms), LPi performs a
single rollback to cancel all of them; For any received
but not yet processed events or any events arriving in
future, LPi simply discards them if they are identified
to be in Ci(ms). This ensures that any LP will discard
all those events to be cancelled by a straggler message
in a batch manner and at the cost of at most one roll-
back (rollback optimal).

5 Batch based Cancellation Scheme

5.1 Rollback History

From Section 4, it can be seen that the rules in Fig-
ure 5 are essential for the correctness of the scheme.
Empirically, these rules can be fulfilled by employing
the concept of rollback history. We have shown in The-
orem 4.7 and Theorem 4.8 that range [a, b]o identifies
all the events in C(ms). The rollback history of an
LP, denoted as RH(LP), is actually defined as a list of
those ranges that were locally generated or learnt from
other LPs through message passing.

Piggybacking its current rollback history on any
event scheduled by an LP makes it possible for other
LPs to process the event in the way that satisfies the
first rule in Figure 5. Particularly, at the time an LP
processes event e, it first looks into those events that
have been processed but not yet committed. If an event
that is to be cancelled by a certain range in the rollback
history carried by e is found, processing of e is blocked
until that event is cancelled.

The greatest challenge to the above approach is the
increasing size of rollback histories carried by events,
which could incur significant communication cost and
storage cost, and render the approach itself empirically
useless. Thanks to the FIFO property of communi-
cation channels, communication cost can be reduced
by sending rollback histories incrementally and recon-
structing them at the receiving LPs. To do this, a
similar technique to that of compressing vector time
described in [13] is employed together with more so-
phisticated data structures.

LPi locally maintains a rollback history table, de-
noted as RHT (LPi). For 0 ≤ j < N , j �=
i, RHT (LPi)[j] records LPi’s latest knowledge of

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

RH(LPj). RHT (LPi)[i] is the placeholder of LPi, but
in addition, each range inside is tagged with a scalar,
and denoted as [a, b]so, where s was the current value of
LPi’s state counter when the range was recorded. LPi

keeps a “last scheduling” vector, denoted as LS(LPi),
as well. LS(LPi)[j], 0 ≤ j < N , j �= i, tracks the
latest value of LPi’s state counter when an event was
scheduled at LPj .

Let ∆RH(e) denote the increment of the sender
LP ’s rollback history piggybacked on e, and let RH(e)
denote its reconstructed rollback history at the receiv-
ing LP. The updating rules of RHT (LPi) are shown in
Figure 7.

1. Initially, RHT (LPi)[j], 0 ≤ j < N , is set empty,
and LS(LPi)[j] = 0, 0 ≤ j < N .

2. At the time LPi receives event e from LPj ,
∆RH(e) is appended to the end of RHT (LPi)[j]
and then emptied. The reconstructed RH(e) is
the current value of RHT (LPi)[j], represented by
a pointer to the current end of the latter.

3. At the time LPi processes an event e from LPj ,

∀[a, b]o ∈ RH(e), [a, b]
SV (LPi)[i]
o is merged (with-

out any duplication) into RHT (LPi)[i], and then
[a, b]o is removed from RHT (LPi)[j].

4. At the time LPi schedules an event e to LPj ,
∆RH(e) is first set to the list of ranges in
{[a, b]o|[a, b]so ∈ RHT (LPi)[i] ∧ s > LS(LPi)[j]}.
LS(LPi)[j] is then updated with the current
SV (LPi)[i].

Figure 7. Updating rollback history table in
FIFO environments

Note that in the third rule, removal of ranges from
RHT (LPi)[j] means that it is not an exact recon-
structed RH(e) in the strict sense. However, its cor-
rectness is obvious.

The rollback history table is also subject to fos-
sil collection. After a GVT calculation cycle, let xj ,
0 ≤ j < N , be the maximum state counter fossil
collected at LPj . Because it holds that there are no
events (including transient events) dependent on any
cancelled event ejk, k < xj , ∀[a, b]j ∈ RHT (LPi),
[a, b]j is discarded if b ≤ xj .

5.2 Routines

An LP is assumed to have a similar architecture to
that depicted in [3], which routinely maintains three
queues, namely, the input queue (IQ), the output
queue (OQ) and the state queue (SQ). Because CAN-
CEL MESSAGEs are processed at the time they are

received and will not be rolled back for reprocessing, an
IQ only queues positive messages. Let EIQi

denote the
currently buffered processed events, i.e., neither having
been rolled back nor fossil collected, at IQi. It is ob-
vious that EIQi

⊆ Ei and empirically only events in
EIQi

∩ Ci(ms) are considered to be rolled back by the
straggler message ms.

Let ST (e) and ST (LPi) denote the simulation time
of event e and LPi respectively, and let m.e denote the
event scheduled by message m. The major routines of
the batch based cancellation scheme are presented in
Figure 8 through Figure 11.

PROCESS(m) {

/* Rule 1 in Figure 5 */

IF (∀[a,b]o ∈RH(m.e),� ∃e′ ∈ EIQi,SV(e
′)[o]∈[a,b]) {

ST(LPi)=ST(m.e);

SV(LPi)[i]++;

SV(LPi)=sup(SV(LPi),SVm(m.e));

/* Rule 3 in Figure 7 */

merge RH(m.e) into RHT(LPi)[i];

execute m.e;

}

}

Figure 8. Processing a scheduled event at LPi

SCHEDULE(e) {

construct message m scheduling e;

set ST(m.e);

SVm(m.e)=SV(LPi);

/* Rule 4 in Figure 7 */

set ∆RH(m.e);

queue m into OQi and send m to its destinations;

}

Figure 9. Scheduling an event at LPi

Figure 8 shows the steps for LPi to process a posi-
tive message from IQi. LPi first checks if it is safe to
proceed. If yes, LPi continues with updating its sim-
ulation time, state vector and rollback history table,
and then executing the scheduled event, which involves
saving LPi’s current state in SQi, updating the current
state and probable scheduling of new events (Figure 9).
Note that since possible receipt of straggler messages
has been detected and handled at an earlier stage (see
Figure 10), the messages to be delivered here can be
processed without further checking for causality viola-
tions.

Figure 10 demonstrates the handling of a message
when it is received from the communication channel.
Basically there are four different ways according to the
criteria the message meets. (1) Message m is a CAN-
CEL MESSAGE carrying a range. LPi first checks if
any processed event falls within the range. If there is,

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

RECEIVE(m) { /* m from LPj */

IF (m is a CANCEL_MESSAGE) {

IF (∃ min k, eik ∈ EIQi ∧ eik in m’s range) {

ROLLBACK(eik, m);

}

merge m’s range into RHT(LPi)[i];

∀m′ ∈ IQi, discard m′ if m′ in m’s range;

} ELSE {

/* Rule 2 in Figure 7 */

reconstruct RH(m.e);

IF (∃[a,b]so ∈RHT(LPi)[i], SV(m.e)[o]∈[a,b]) {

/* Rule 2 and Rule 3 in Figure 5 */

discard m;

} ELSE IF (m is a straggler message) {

find earliest eik to be rolled back by m;

construct a new range [k,SV(LPi)[i]]i;

construct CANCEL_MESSAGE m′′ carrying the range;

ROLLBACK(eik, m′′);
merge the range into RHT(LPi)[i];

LS(LPi)[i]=SV(LPi)[i];

∀m′ ∈ IQi, discard m′ if m′ in the range;

insert m into IQi;

} ELSE {

insert m into IQi;

}

}

}

Figure 10. Receiving a message from commu-
nication channels at LPi

LPi performs a rollback action (see Figure 11). Then
LPi merges this range into its rollback history to iden-
tify any events for cancellation arriving in the future.
Finally, LPi looks into its IQi to discard those events
that have been received but are now identified to be
cancelled. (2) Message m is a positive message but
identified as to be cancelled by a received range. It
means that LPi is already free from the rolled back
state on which m depends. Thus, m is simply dis-
carded. (3) Message m is a straggler message, so LPi

becomes a rollback originator. Except for the need to
create a new CANCEL MESSAGE, similar actions to

ROLLBACK(e, m) {

SV(LPi)[i]++;
restore the proper state from SQi;

unprocess messages being rolled back in IQi;

IF (cancelled messages in OQi) {

send m to their destinations;

}

}

Figure 11. Rollback to the state prior to exe-
cuting e at LPi

those in (1) are carried out. Finally, message m is in-
serted into IQi and expected to be the next message
to be processed. (4) Message m is a positive message
identified as neither to be discarded nor a straggler. It
is simply inserted into IQi for future processing.

discard����

����

������

������

������

��

��

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[5 1 0 0 0]

[10 1 1 0 0]

[14 1 2 0 1]

[18 3 0 2 0]

[20 3 0 3 0]

[0 0 0 4 0][16 2 0 1 0]

[22 3 2 3 2] [0 0 0 0 4][24 3 2 3 3]

[15 3 0 0 0]

[12 2 0 0 0]

[0 4 0 0 0] discard

[12 1 2 0 0] [0 0 3 0 0]

����

LP0

LP1

LP2

LP3

2

S

[1, 3]0

[1, 3]0

[1, 3]0

Figure 12. The batch based cancellations trig-
gered by a straggler message

Figure 12 shows a possible scenario applying the
batch based cancellation scheme to the scenario in Fig-
ure 1. Upon receipt of the straggler message at LP0,
the set of events to be cancelled at LP0 is determined
as C0(ms) = {e01, e02, e03} (or {e0,5, e0,12, e0,15}).
Range [1, 3]0 is sent along with a multicast CAN-
CEL MESSAGE to LP1 and LP2. Upon receipt of
the range, C1(ms) = {e11, e12} (or {e1,10, e1,12}) and
C2(ms) = {e21, e22, e23} (or {e2,16, e2,18, e2,20}) are
determined respectively and the range is further for-
warded to LP3 independently by LP1 and LP2. The
earlier range received by LP3 triggers the cancellation
of C3(ms) = {e31, e32, e33} (or {e3,14, e3,22, e3,24}). The
later received one is found to be a duplicate and is dis-
carded.

6 Experiments

Our experiments were carried out on a Dell 2650
Server, a cluster of 11 nodes (dual 2.6GHz Xeon CPUs,
1GB RAM) interconnected through myrinet and run-
ning MPI-GM.

A generic manufacturing model [8] was used to
evaluate the proposed scheme. According to the
model, a manufacturing process is viewed as a se-
quence of production, assembling and testing stages.
The production stage consists of a number of parallel
production lines, each producing a different quality-
guaranteed component through a sequence of process-
ing stations (PS) and control stations (CS) (See Fig-
ure 13). Note that PS and CS are always paired. Once
a flaw is found by a CS, having been introduced by
its previous PS, the component is sent for reprocessing
immediately. Each component is also tested at the end

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

of its production line. In case of malfunction, the de-
fective component is wholly reworked. Figure 14 shows
the procedure of the assembling and testing stages, in
which constituent components collected from the pro-
duction lines are assembled to a product at any as-
sembling station (AS) and tested at one of the testing
stations (TS). For the sake of clarity, three different
kinds of connectors are used for the interconnection. A
forker (F) routes an input to several output links with
configurable probability. A merger (M) generates an
output when it receives inputs from all its input links.
A collector (C), however, generates an output on any
input. Note that connectors do not increase simulation
time.

PS CS PS CSF F F

Figure 13. Production line

finish
AS

AS

F

F

M

M

C F

TS

TS

C

production

production

line

line

Figure 14. The assembling and testing stages

Without loss of generality, our running model is con-
figured with a moderate number of LPs. The produc-
tion stage is configured with two production lines and
each line has one pair of PS and CS installed. There
are two ASs and two TSs at the assembling and testing
stages. All the units (eight stations plus 11 connec-
tors), i.e., 19 LPs, are one-to-one mapped on 19 CPUs.

Two sets of experiments were carried out with dif-
ferent settings of event granularity and each set re-
ports the comparison between the conventional per-
event based cancellation scheme and the batch based
cancellation scheme. In each run, 10000 components
are fed to each production line. Table 1 and Table 2
show the measurements obtained using fine and coarse
event granularity respectively. Note in each case the
number of events and messages are the sums of those
collected from all the LPs.

Studying the measurements reported from the ex-
periments, the properties of the batch based cancel-
lation scheme can be better understood. (1) Due to
the ability to cancel multiple messages, the reduction
of the number of anti-messages was significant. (2)
In the batch based scheme, a smaller total number of
processed events and straggler messages were always
achieved. This can be explained by the rules in Fig-
ure 5 and Theorem 4.8. Once a potential wrong com-
putation is identified by a range at an LP, it is always

prevented from happening or being further propagated.
(3) In order to evaluate the effectiveness of the batch
based cancellation scheme, the concept of efficiency,
which is defined as the ratio of the number of commit-
ted events and the total number of processed events,
is introduced. Although both schemes committed sim-
ilar amount of events, which meant similar behavior
in the simulations, counting the total number of pro-
cessed events, the batch based scheme had better re-
sults. (4) Based on the execution time obtained from
both schemes, the speedups of the batch based scheme
compared to the per-event based scheme were calcu-
lated. It can be seen that the batch based scheme has
only slight performance gain over the per-event based
scheme. This is understandable when we look into the
running model more closely. The manufacturing model
lacks the necessary long range forward links to expe-
dite propagation of ranges. Due to reworking of com-
ponents in the production stage, PSs have higher prob-
abilities of receiving straggler messages. Once such a
straggler message is received by a PS and the range
identifying cancelled events is generated, the range has
to follow a unique propagation path defined by the
model and subsequent units have no means of early
detection of potential wrong computations. Therefore
in this case, units in the assembling and testing stages
still suffer from excessive rollbacks. However, the batch
based cancellation scheme may be modified to enable
the detection of potential wrong computations at an
earlier time, this is addressed in Section 7.

7 Conclusions

In this paper, a rollback optimal cancellation
scheme, the batch based scheme, is presented. Roll-
back optimal means that any LP is able to recover
from the receipt of a straggler message at the cost of
at most one rollback. To do this, a state vector is used
to capture the dependence of events and a rollback his-
tory is utilized to regulate the advancement of LPs and
discover at an earlier stage any possible events to be
eventually cancelled. We prove that in the batch based
cancellation scheme, the set of events to be cancelled
by a straggler message is fully deterministic in terms
of the range generated by the rollback originator.

The proposed scheme is feasible in most Time Warp
simulations. Given specific knowledge about the com-
munication pattern of the running model, better per-
formance can be expected. With the knowledge of the
critical path in a simulation, an LP can send a range
to those LPs on the path even if there is no event ex-
change among them. For the manufacturing model dis-
cussed previously, PSs can directly send their generated

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

total committed efficiency straggler anti-messages/ execution speedup
events events messages cancel messages time

per-event based 406729 206521 50.78% 16987 96484 130883ms 1.00
batch based 300371 206315 68.69% 9962 38462 109961ms 1.19

Table 1. comparison of schemes with setting of fine event granularity

total committed efficiency straggler anti-messages/ execution speedup
events events messages cancel messages time

per-event based 524513 237952 45.37% 22218 136016 446927ms 1.00
batch based 429634 237581 55.30% 20448 68432 408732ms 1.09

Table 2. comparison of schemes with setting of coarse event granularity

ranges to ASs and TSs to intercept any wrong events
issued earlier. The extreme case is to broadcast CAN-
CEL MESSAGEs. Since each LP is guaranteed to be
informed about the range and capable of cancelling all
the events that need to be cancelled, the receiving LPs
need not forward the range.

The most noteworthy overheads introduced by the
batch based cancellation scheme include the commu-
nication cost of the additional state vector and incre-
ment of rollback histories carried by positive messages,
the storage cost of maintaining rollback history tables
and the computing cost of looking up and fossil col-
lecting rollback history tables. With the assumption
of FIFO channels, the compression approach for the
rollback history is also applicable to the state vector.
Observing that an LP in a simulation normally only
communicates with a small number of LPs, the roll-
back history table at the LP can be maintained within
a reasonable amount of space. Currently, the rollback
history is simply implemented as a linear list of ranges,
and each time an LP receives or processes an event,
the list has to be fully scanned. This is believed to be
one of the performance hindrances in our experiments.
The next challenge to the proposed scheme is to orga-
nize rollback histories more efficiently so as to provide
an optimized lookup time.

References

[1] B. Charron-Bost. Concerning the size of logical clocks
in distributed systems. Information Processing Letters,
39:11–16, July 1991.

[2] M. Chetlur and P. A. Wilsey. Causality representation
and cancellation mechanism in time warp simulations.
In Workshop on Parallel and Distributed Simulation,
pages 165–172, May 2001.

[3] A. Ferscha. Handbook of Parallel and Distributed Com-
puting, chapter Parallel and Distributed Simulation of
Discrete Event Systems, pages 1003–1041. McGraw-
Hill, 1996.

[4] R. M. Fujimoto. Parallel and Distributed Simulation
Systems. Wiley Book Series on Parallel and Dis-
tributed Computing. Wiley, New York, NY 10158,
USA, 1999.

[5] A. Gafni. Rollback mechanisms for optimistic dis-
tributed simulation systems. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages 61–
67, 1988.

[6] D. R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404–425,
July 1985.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[8] Chu-Cheow Lim, Yoke-Hean Low, Wentong Cai, Wen-
Jing Hsu, Shell-Ying Huang, and Stephen J. Turner.
An empirical comparison of runtime systems for con-
servative parallel simulation. In IPPS/SPDP Work-
shops, pages 123–134, 1998.

[9] V. Madisetti, J. Walrand, and D. Messerschmitt.
WOLF: A rollback algorithm for optimistic distributed
simulation systems. In Proceedings of the Winter Sim-
ulation Conference, pages 296–305, San Diego, Cali-
fornia, 1988.

[10] M. Raynal and M. Singhal. Logical time: A way to cap-
ture causality in distributed systems. Technical Report
RR-2472, INRIA - Rennes, March 1995.

[11] R. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. R.
Jefferson. Cancellation strategies in optimistic execu-
tion systems. In Proceedings of the SCS Multiconfer-
ence on Distributed Simulation, pages 112–121, 1990.

[12] R. Schwarz and F. Mattern. Detecting causal relation-
ships in distributed computations: In search of the
holy grail. Distributed Computing, 7(3):149–174, 1994.

[13] M. Singhal and A. Kshemkalyani. An efficient im-
plementation of vector clocks. Information Processing
Letters, 43:47–52, August 1992.

[14] D. West. Optimizing time warp: Lazy rollback and
lazy re-evaluation. Master’s thesis, University of Cal-
gary, Calgary, Alberta, 1988.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

