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Abstract. 

This paper analyzes the Detailed Policy Assessment Tool 
(DPAT) as an exaniple of a practical real-world aviation 
siniiilutiori thut uses optimistic sinzulation technology. We 
present a review of analyses thut have used DPAT results 
to support their conclusions, and discuss the design and 
performance of the systeni in the context of parallel 
simulntion. The thrust of this paper is to explain how 
DPAT avoids some of the problems associated with 
optimistic simulation, while exploiting its strengths. A key 
conclusion is that parallel simulation technology, 
particularl~~ optimistic synchronization, needs to he built 
into the product from its conceptual design through 
iniplementation, as opposed to adding it afterwards. 

1. Introduction and Background 

Designing parallel simulations that are optimistically 
synchronized is more of an art than a science. While there 
are some heuristics for good performance, such as 
maximizing granularity and lookahead while minimizing 
the coupling between logical processes (LPs), combining 
these heuristics together with a useful model to produce 
simulations that are both practical and well-performing has 
rarely been done. Compounding the problem is the 
myriad of difficulties that surround optimistic simulation 
that are absent in sequential systems, such as managing 
concurrent threads of execution, verifying correct 
execution, and handling risky events that may cause severe 
difficulties. Despite these apparent difficulties, the MITRE 
Corporation has developed a useful and high performing 
optimistically synchronized parallel simulation for the 
analysis of air traffic control. The simulation, called the 
Detailed Policy Assessment Tool (DPAT), is fully 
optimistic. There is no throttling of optimism, and yet i t  is 
devoid of rollback explosions, cascading rollbacks, and 
other problems that have been widely publicized in the 
parallel simulation literature. 

That DPAT has had a significant and positive contribution 
on the aviation community is unassailable. Over twenty 

analysis projects used DPAT during the last four years, 
some of them reported in the popular press. An analysis 
of the proliferation of regional jets and their impact on 
airspace and airport congestion using DPAT can be found 
in the magazine “Air Traffic Management”; the 
remarkable accuracy of the predictions from this study 
have been lauded by industry leaders [ l ] .  Prediction of 
future airport bottlenecks in the Asia-Pacific region using 
DPAT is outlined in a publicly available report [ 2 ] .  The 
United States Federal Aviation Administration (FAA) has 
itself performed a detailed validation study of DPAT [3]. 
The results show that the model produces credible answers 
that are consistent with actual data collected from FAA’s 
own systems. At the time of this writing, they are 
continuing to use the model for infrastructure investment 
analysis. Additionally, DPAT results have been used for 
testimony before the United States Congress [4]. 

While these reports are all publicly available, there have 
been many more proprietary studies using DPAT. The 
model has been used to study the impact of reducing 
required airplane separation, and its impact on system 
wide throughputs and delays [ 5 ] .  It has also been used to 
study the tradeoffs between enroute and terminal-area 
efficiency improvements [6]. One of the most impressive 
non-public studies simulated each of the 365 days in 1997, 
with actual traffic and weather conditions, twice, one time 
with a proposed avionics system and once without. The 
analysts used the results from the 730 model runs to 
determine the annual codbenefit of the proposed avionics 
improvement [7]. 

DPAT has been the subject of papers in recent years on its 
internal representation of the air traffic control system as a 
queueing network [8], and on its use for system wide 
analysis [9]. Although these papers mention DPAT’s use 
as a parallel simulation, there are a number of important 
questions that remain unanswered. How can an 
optimistically synchronized simulation produce such a 
great impact on the real world? Are there not major 
problems with such simulations, including runaway 
rollback explosions, cascading antimessage chains, risky 
processing leading to erroneous states that crash the 
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Figure 1. The modeled world. Time starts in upper left and flows to the right. 

system? How are these problems avoided, and how do 
aviation analysts react to a system that processes both 
forwards and backwards? The remainder of this paper 
focuses on how the technical problems with parallel 
simulation are avoided, and the conceptual model 
exploited, to produce a good simulation. 

2. Design Heuristics 

Building a successful parallel simulation-whether 
conservative or optimistic-requires a creative blend of 
technical knowledge of parallel simulation and domain 
acumen about the physical system under study. Technical 
knowledge without any domain acumen produces “toy” 
simulations; domain acumen without any technical 
knowledge produces poorly performing, frequently 
crashing systems that are neither scalable nor useful for 
basic analysis. 

On the technical side, it is well known that a number of 
factors contribute to good performance. Proper event 
granularity and good lookahead are both necessary 
ingredients. “Proper” event granularity is difficult to 
quantify, as it depends upon hardware characteristics, 
network performance, and whether an SMP or distributed 
system is employed. Studies of lookahead have shown 
that i t  influences greatly the probability of rollbacks and 
therefore the efficiency of the simulation engine. 

1 
Pushback 

Generally, the greater the lookahead the greater the 
efficiency. 

But there are other, more subtle, performance parameters 
that must also be considered. Most notably, computations 
in the model need to be “smoothed out” in three 
dimensions: simulation time, real time, and space 
(memory). In simulation time, it is well known that zero 
lookahead is to be avoided. Additionally, major 
computations should be staggered in simulation time. 
Instead of one event computing everything, the 
computation should be staggered among several events at 
different times. This can often be accomplished without 
compromising the integrity of the model, by merely 
changing its implementation. In real time, event 
explosions should be eliminated. An event explosion 
occurs when the minimum number of events that are 
needed to advance GVT by one time unit is very large. 
Finally, in space (i.e. memory), computations need to be as 
independent as possible, so that LPs do not need much 
knowledge of other LPs’ states in order to compute an 
event. 

3. The National Airspace System (NAS) 

At its peak, the United States air traffic control (ATC) 
system currently handles 100,000 passengers per hour on 
4,000 aircraft, or about 650 million passengers per year 
[IO].  The volume is increasing at least as fast as the 
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general economy, and yet the number of airports and 
runways are increasing more slowly, and the volume of 
airspace is (obviously) static. The result can be unusually 
large delays when the system is stressed. About 70% of 
delays are due to bad weather; the remainder occurs for a 
variety of other factors. 

DPAT is designed to predict system-wide delays resulting 
from congestion, weather-related problems, system 
outages, growth in air traffic volume, or any combination 
of these. It is built to handle worldwide air traffic, taking 
as input the airports, airspace, flights, routes, and system 
capacities that constitute the ATC system under study. 
The data can represent past historical days, the current 
situation, or future hypothesized scenarios. The current 
situation can be input from live data feeds provided by 
ATC authorities; for historical and future information, 
DPAT reads data files in a well-documented format. The 
DPAT User’s Manual [ 1 11 explains the capabilities of the 
model as well as the input and output data provided. 

4. The Modeled World 

DPAT represents the ATC system as a network of queues. 
Flights acquire and release a predictable set of resources as 
they travel gate-to-gate from their origin to their 
destination. The resources can be gates, taxiways, 
runways, blocks of airspace, waypoints in space called 
“fixes,” and so forth, and the set of resources modeled by 
DPAT is shown in the time diagram of Figure 1.  In that 
figure, simulation time is advancing from left to right. 
Below the gray bar, discrete events are shown, while 
above the gray bar, intervals representing activities 
occurring during a flight are shown. The intervals listed in 
italic fonr represent quantities that DPAT reads directly 
from a data file. Examples are the taxi in and out times, as 
well as .  minimum transit times in terminal areas and 
sectors. These times are always nonzero. Intervals listed in 
normal font are computed by DPAT as a result of 
congestion; examples include the various delays and 
holding patterns that occur during a flight. These times 
may be zero, depending upon congestion. The particular 
timeline shown in Figure 1 is for illustrative purposes. 
Some flights in an actual DPAT scenario may have as 
many as twenty (or more) enroute sectors, others might 
have no computed delay anywhere along their timeline, 
and still others may have excessive delays in some areas 
and none in others. 

While the set of resources required by a flight is 
predictable, the interaction of these flights with other 
flights is unpredictable, and may result in delays. The 
resources themselves are the servers in the queueing 
system. Some of the resource capacities are specified as 
service rates, while others are specified as maximum 

queue lengths or a combination of queue length limits and 
the number of input queues. These rates can be a time 
varying function of random variables such as the weather, 
system outages, and closures. Flow control mechanisms 
can be applied on the ground or en-route, further reducing 
service rates and increasing delays. Many of the service 
rate changes are input to the model, while some are 
derived by DPAT itself and applied as the simulation 
evolves. 

The net effect of these factors causes the queueing 
network to be analytically intractable. The most expedient 
way to analyze the system is to simulate actual flights 
traversing the network of resources, and to compute the 
resulting throughputs and delay at each point. It is this 
computation that is realized by the DPAT model. 

5. Parallel Decomposition 

Central to any parallel simulation system is the 
decomposition of the model into logical processes (LPs) 
that interact in  parallel. Criteria for making this decision 
involve considerations of LP independence and scheduling 
overhead. It is desirable for the parallel LPs to be as 
independent as possible; this maximizes the amount of 
parallel computation and minimizes communication and 
synchronization costs. There is also a tradeoff between 
parallelism and scheduling overhead. The more parallel 
LPs that exist per processor, the greater the scheduling 
overhead but also the greater potential that the processor 
will have useful work to do. 

In DPAT, stationary objects are implemented as LPs, 
while moving objects are implemented as messages passed 
among the stationary LPs. Practically, this means that 
airports, terminal airspace, enroute airspace, and enroute 
waypoints called “fixes” are modeled as LPs, while the 
flights are messages that move among these LPs. 

Several criteria were used in making this decision. First, i t  
maps to the physical system nicely: airplanes move among 
stationary resources, much as messages are moving among 
stationary LPs. Secondly, it allows easy proximity 
detection. The moving objects that are near each other 
will be located in one LP. Because LP boundaries are 
precise, it is easy for LPs to share information with their 
neighbors to resolve inter-LP proximity. 

There is a potential drawback with this approach. Because 
the number of airports and airspace sectors is potentially 
large, the number of LPs will correspondingly be large. 
On a small number of processors, this might increase the 
scheduling overhead and therefore negatively impact 
performance. 
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For scenarios that concentrate on North American 
airspace, DPAT is typically configured with 500 airports, 
20 additional “super source/sink” airports, and about 730 
enroute airspace sectors, for a total of 1250 LPs. Some 
scenarios require speed restrictions to be placed enroute; 
these scenarios would add about a dozen “fix” logical 
processes. The largest DPAT scenario ever built consisted 
of over 1800 LPs representing global air traffic; the 
smallest consisted of only 30 LPs modeling East Asian 
traffic. DPAT performs well at both extremes. 

6. Performance Measurements 

The performance measurements presented below are from 
a standard DPAT scenario. The standard scenario uses 
traffic from May 6, 1993, with 520 modeled airports and 
730 modeled airspace sectors, for a total of 1,250 LPs. 
There are 487,238 committed events. This scenario is 
typical of those used for actual analysis with DPAT; most 
scenarios contain between 400,000 and 600,000 events. 
Each LP contains state ranging from one to two kilobytes, 
and the state is incrementally saved. The message sizes 
are only a few hundred bytes, as the messages (which 
represent flights) contain pointers to static read-only data 
(such as flight itineraries, aircraft performance, and so 
forth). Because DPAT runs on a shared memory SMP, the 
use of pointers is nonproblemmatic. 

The system is measured on a six processor Sun SPARC 
SMP with 450 MHz processors and four gigabytes of 
memory. The parallel simulation system used is the 
Georgia Tech Time Warp (GTW) system, which is 
composed of about 20,000 lines of “C” code and uses 
multiple threads on an SMP as the basis for parallelism 
[ 121. Each performance measurement was computed five 
times, to get an idea of the standard deviation around the 
mean results. 

6.1. Granularity Measurement 

It has been shown that larger granularity can produce 
better performance, particularly if the LPs are somewhat 
independent. DPAT is a queueing-based model, so its 
granularity is relatively small. Because we are using 
GTW on an SMP system, the small granularity impacts 
performance only slightly. 

The granularity distribution is shown in Figure 2, and has 
a high variance as well as being highly skewed. There 
appears to be no regularity in the length of events in 
DPAT. Although the model is fundamentally a queueing 
network, the servers have different traffic patterns, with 
different routing characteristics, queue lengths, service 
times, and internal decision algorithms. Thus a particular 
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Figure 2. Event Granularity, 10 microsecond bins. 

type of event at one L P  takes a different amount of real 
time than the exact same type of event at a different LP. 
In terms of performance modeling, the high variance 
combined with the skewness of the distribution means that 
it is difficult to characterize using a standard probability 
distribution. In fact, different DPAT scenarios manifest 
different granularity distributions. 

6.2. Lookahead Exploitation 

Among the most sensitive indicators of parallel 
performance is the amount of lookahead in the model. 
Figure 3 is a histogram of the lookahead in the sample 
scenario for DPAT. The histogram is given in logarithmic 
units. Each bin spans a factor of ten, and there are 65,523 
events that are sampled for this distribution from a total 
count of 487,238 committed events for this run of DPAT. 
The sample was taken from a sequential run of DPAT, and 
thus is not influenced by out-of-order risky event 
processing introduced by parallelism. Because DPAT 
yields the same number of committed events for both 
parallel and sequential runs, the data here are a valid look 
at a DPAT scenario. 

Like the granularity, the lookahead of the model is highly 
skewed. The model runs for a total of 3,000 simulation 
time units, however the model completes 95% of its total 
events by time 2,000. Thus the average lookahead value 
of 62.6 represents a lookahead of about 2% of the total 
simulation time, or about 3% of the bulk of the simulation 
activity. The variance of the distribution is quite high, 
with a coefficient of variation of about 2.9. 

112 



0-0.1 0.1-1.0 1.0-10.0 10.0- 100.0- 
100.0 1000.0 

Figure 3. Lookahead histogram (logarithmic x-axis). 

The distribution is highly skewed and is leptokurtotic. 
The maximum lookahead is 8 13 units of simulation time. 

Figure 4 shows the lookahead probability from the same 
run. It is essentially a magnification of the histogram for 
the first 20 minutes of lookahead. The probability is 
binned into 0.125 simulation minute intervals, and the 
distribution is cut off at a lookahead of 20 simulation 
minutes. This cutoff results in  a smaller set of 30,282 
events from the total sample of 65,523 events. Within this 
smaller set, the mode is bin 0-0.125, which occurred 
20.7% of the time (this value is truncated in Figure 4 
because of the vertical scale); the next most frequently 
occurring lookahead value is bin 4.5-4.625, which 
occurred 1.44% of the time. A detailed analysis of the data 
shows that the true mode is a lookahead of 0.01 simulation 
minutes, which occurs 4,787 times, which is 15.8% of this 
smaller data set or 4.3% of the larger sample of 65,523 
events. Ignoring the spike at the first bin, this distribution 
resembles a Poisson distribution. 

DPAT is essentially a queueing network applied to 
aviation. Lookahead characteristics of queueing networks 
have been extensively studied. In [13], a generalized 
queueing network is studied wherein each server schedules 
the arrival of the customer at the next queue immediately 
upon entering service in the previous queue; the next 
queue then computes a service time for the new arrival. 
As with this general model, DPAT also knows the queue 
to which each aircraft will be routed upon completing 
service. However, two additional considerations cause it 
to behave differently than in Nicol’s general case. First, i t  
is possible for the receiving queue to block the arrival of a 

new customer; the conditions governing whether the 
customer is blocked depend upon the number of customers 
in the receiver’s own queue just prior to the attempted 
handoff. Secondly, the service rates for any queue in 
DPAT, rather than being sampled from a constant 
distribution, are sampled from a distribution that varies 
nonlinearly as a function of queue length, and by 
simulation time. The variation by queue length models 
airport configurations when an arrival or departure “push” 
results from hub-and-spoke scheduling by the airlines. The 
variation by simulation time allows analysts to model 
weather events that change service times. These 
nonconstant distributions allow realism in modeling 
airport and airspace operations, both of which are sensitive 
to congestion and local weather conditions. 

To  exploit lookahead under these conditions, DPAT 
schedules the next queue arrival when an airplane enters a 
server, similar to Nicol’s model cited above. Unlike this 
general model, if the next queue blocks the arrival, then a 
near zero lookahead (NZL) message is sent back to the 
previous server, at the time of the attempted handoff. An 
NZL message is one whose lookahead time is nonzero but 
less than 0.01 simulation time units. The receipt of this 
event causes the airplane to wait at the previous server for 
an additional amount of time, constituting a queueing 
delay. At some later time, when the next server has 
cleared a spot in its queue, a second NZL message is sent 
to the previous server that moves the airplane between the 
two queues. These NZL events occur infrequently, from 
about 3% of the total events for a typical scenario, up to 
20% for a pathologically congested scenario. Such NZL 
events are an anathema to conservatively synchronized 
simulations, while the optimistic Time Warp engines 
handle them with little problem. 

I 
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I Figure 4. Lookahead probability below 20 minutes. 
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6.3. Risk Management 

Risk management refers to how the optimistic simulation 
programmer deals with optimistically generated errors. 
Such errors are the result of out-of-order optimistic 
processing of events and do not exist in sequential 
simulations, optimistic but risk-free simulations, or 
conservatively synchronized parallel simulations. As 
such, they represent potentially catastrophic behavior 
unique to the fully optimistic technique that is difficult to 
predict but very easy to manage. 

Risk management has been known since the invention of 
optimistic simulation by Jefferson and Sowizral in the 
early 1980’s. Awareness of this issue has been recently 
elevated through a high-profile paper on its dangers [ 141. 
The problem is that the programmer must ensure that 
events executing in a risky manner avoid errors that bring 
down the entire simulation. Such catastrophic errors can 
be caused by floating point overlunderflow (such as 
dividing by zero or taking the logarithm of a negative 
number); by memory overwrites; by array bounds 
overflows; and so forth. It is possible to write a simulation 
that behaves correctly when executed sequentially, but 
exhibits one or more of these errors when executed 
optimistically. 

In practice these errors are very easy to manage. First, the 
parallel simulator can itself trap most of the problems 
(such as floating point exceptions, divide by zeros, 
overlunderflow, and so forth). When these exceptions 
occur, the state can be marked in error and, if the state is 
rolled back and executed properly, then the error is 
effectively “undone.” This strategy was employed and 
implemented successfully in the Time Warp Operating 
System. Beyond that, the simulation programmer can 
prevent the conditions that lead to erroneous behavior by 
putting guards in the code-e i ther  explicit conditional 
tests or constructs like the C++ tryhhrow block. 

A skeptic would argue that the latter is a heavy burden on 
the programmer. They would argue that the number of 
guards that need to be placed in the code, plus the 
possibility of missing one, is such a high cost that i t  
renders optimistic simulation useless. They would further 
argue that the burden of guarding all function calls, library 
routines, and so forth makes such implementations 
impractical. It is certainly true that building an 
optimistically synchronized parallel simulation is harder 
than building its sequential counterpart. On the other hand, 
many of the risk-driven errors are indistinguishable from 
errors that occur in ordinary sequential simulations, albeit 
through other mechanisms. For example, how do  
sequential simulation programmers guard against bad 
input data that causes a negative logarithm to be 

computed? A human pushing a key at exactly the wrong 
time? A combination of events in a scenario that might 
lead to division by zeros’? Buffer overflow from a large 
data set? The most common method is through validation 
checks on the input data, assertions throughout the code, 
and conditional tests that trap such errors, combined with 
very thorough and careful testing. These are the same 
techniques that an optimistic simulation programmer 
would use to resolve risk-generated errors. 

In this respect the risky aspect of optimistic simulation 
actually is a benefit to the simulation developer. Each 
execution on multiple processors generally follows a 
different code branch-because the set of risky events run 
in successive replications is usually different. Thus the 
code is “automatically tested,” although in a nontraditional 
sense. The sequential programmer would have to develop 
dozens of data sets to discover what an optimistic 
programmer would find out in only a few runs of the 
simulation. Such rigorous testing is not normally done in 
academic environments, and yet it  is necessary and forced 
when running optimistically. 

Our experience is that the only risk-generated errors 
encountered in a run of DPAT-running out of space in an 
array or dividing by zero when computing average 
values-are easily guarded in the code and thus easily 
avoided. 

6.4. Verification 

But how do we know if DPAT produces correct answers? 
How can the DPAT developers guarantee to the analyst 
that the result is not faulty due to some combination of 
risky events that were not rolled back properly? The chief 
verification tool is the observation that the set of 
committed states from a multiprocessor run of an 
optimistically synchronized simulation must exactly match 
the set of states produced by the same simulation when run 
sequentially. This is the essence of the term “logical 
correctness.” Thus, if a sequential run of DPAT repeatedly 
produces identical output to the parallel run, regardless of 
the number of processors used, then the system is free of 
errors that might be caused by optimistic processing. 

Verifying that a sequential run is identical to a parallel run 
is an enormous task, even for a small model such as 
DPAT. However, in ensuring such consistency, many 
model bugs (that are there anyway-even  in a sequential 
version) are eliminated. In DPAT, inconsistent results are 
usually due to one of two problems: ( I )  inconsistent 
treatment of simultaneous events or ( 2 )  roundoff errors 
when converting from one precision to another. These 
bugs tend to be nonrepeatable-when the state rolls back 
and re-executes, a different value is generated the second 
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time from the first (and therefore, a different value is 
generated vis-a-vis the sequential run). These problems 
are there even in a sequential model, except that there is 
no mechanism to- discover their source, and therefore 
many extant sequential models latently exhibit these 
problems. In DPAT, it is true that every run using the 
same initial random number seeds-regardless of the 
number of processors that it uses-generates the same 
number of committed events, and the same exact answer, 
byte-for-byte. , 

Beyond verification, there is the additional task of 
validation-ensuring that the model is producing results 
that are credible with respect to the physical world it is 
simulating. Validation is also an enormous task, and has 
been done several times. Most noteworthy is the 
validation conducted by the Federal Aviation 
Administration, which revealed that four of five metrics 
tested produced results close to the real world [3]. The 
fifth metric, passenger arrival delay, is influenced by 
factors that are not modeled in detail by DPAT. 

6.5. Execution Time Performance 

The performance of DPAT on the standard scenario is 
shown in Figure 5. Both the run time and the number of 
rollbacks are included in the figure. The results were 
computed on a six processor machine. Results are shown 
up to eight processing elements (PES) because the GTW 
system creates threads for each PE. Therefore it is 
possible to create more PES than there are physical 
processors on the system. As can be seen in the Figure, 
when that occurs (at 7 and 8 PES), the performance 
suffers. Not only does the run time begin to suffer, but the 
variance in the run time from successive executions begins 
to become large. The larger variance is due to the fact that 
the operating system is now scheduling more than one 
thread per processor, and the nonrepeatabilities in such 
scheduling between successive runs cause different 
execution times. In all cases, as noted above in the 
discussion on verification, the result produced to a DPAT 
analyst is identical. There is about a three fold reduction in 
run time up to three processors (linear speedup); beyond 
that, the run time levels off. 

6.6. DPAT and the High Level Architecture 

The United States Department of Defense has produced a 
specification for simulation interconnection commonly 
known as the High Level Architecture (HLA). As DPAT 
is capable of producing throughputs and delays quickly, 
federations containing a DPAT component have been 
proposed. One such federation is a combination of the 
Sector Design Analysis Tool (SDAT) with DPAT. SDAT 
allows aviation analysts to reconfigure both the shape and 
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Figure 5. Performance of DPAT. 

number of airspace sectors in a region. Airspace geometry 
affects the workload of controllers in a very profound way: 
the greater the number of crossing tracks, the more work 
controllers must do to separate planes. Accordingly, the 
fewer airplanes a controller will allow in their airspace. 

To assess the delays caused by reconfiguring sectors, 
DPAT has been federated with SDAT. The resulting tool 
allows analysts to effectively redesign airspace while 
assessing the affect different traffic loads might have on 
the results. Federating the models required an 
initialization sequence, during which the models register 
their objects and interactions with the HLA’s Run Time 
Infrastructure (RTI), followed by a processing sequence in 
which SDAT publishes its new routing structure and 
DPAT then publishes the predicted delays. The 
interaction diagram for the processing sequence is shown 
in Figure 6. It should be noted that there are no limit on 
the number of SDAT federates that can be incorporated in 
the system, due to the inherent flexibility of HLA. 

7. Conclusions 

We can make some general statements about why DPAT 
avoids many of the problems associated with optimistic 
computation. First, in the hundreds of scenarios run 
through DPAT, we have observed no “rollback 
explosion.” A typical configuration of DPAT, containing 
over 1,200 LPs on six PES, yields an average of 200 LPs 
per PE. The large number per PE means that each PE will 
generally see “average” behavior of the system, preventing 
any one from computing too far ahead or lagging too far 
behind. The result is a well-balanced, stable system. 
Secondly, the state size of about 2 kilobytes per LP, 
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Figure 6. HLA interaction diagram (not in time order). 1 
coupled with the use of incremental state saving, means 
that the overhead of saving state and rollback is 
minimized. Thirdly, the messages average a few hundred 
bytes each, and are passed through pointers in shared 
memory; this minimizes message communication costs. 
Fourthly, the software contains only a few places where 
risk-driven event processing might cause errors, and those 
places are easily identified and fixed with proper testing. 
Finally, optimistic computing is not as sensitive to zero- 
lookahead messages as conservative systems, so modeling 
blocking queues (as is done in DPAT) can be 
accomplished with no change to the conceptual design. 

Our main conclusion is that it is possible-even 
desireable-to build a model containing optimistic 
synchronization that avoids the problems associated with 
such systems and exploits its main advantages: fast run 
times and the ability to interconnect with other models 
easier. The key factor to achieving these goals is to design 
a system with hundreds to thousands of LP’s with small 
(1-3 kilobyte) states, incremental state saving, to run on 
only a few processors (so that there are hundreds of LPs 
per processor). Systems configured in this manner, like 
DPAT, can be effective vehicles for delivering usable 
simulations to the analysis community. 
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