
Practical Parallel Simulation Applied to Aviation Modeling

Dr. Frederick Wieland
Center for Advanced Aviation Systems Development

The MITRE Corporation
1820 Dolley Madison Dr., McLean, VA 221 02

fwieland@mitre. org

Abstract.

This paper analyzes the Detailed Policy Assessment Tool
(DPAT) as an exaniple of a practical real-world aviation
siniiilutiori thut uses optimistic sinzulation technology. We
present a review of analyses thut have used DPAT results
to support their conclusions, and discuss the design and
performance of the systeni in the context of parallel
simulntion. The thrust of this paper is to explain how
DPAT avoids some of the problems associated with
optimistic simulation, while exploiting its strengths. A key
conclusion is that parallel simulation technology,
particularl~~ optimistic synchronization, needs to he built
into the product from its conceptual design through
iniplementation, as opposed to adding it afterwards.

1. Introduction and Background

Designing parallel simulations that are optimistically
synchronized is more of an art than a science. While there
are some heuristics for good performance, such as
maximizing granularity and lookahead while minimizing
the coupling between logical processes (LPs), combining
these heuristics together with a useful model to produce
simulations that are both practical and well-performing has
rarely been done. Compounding the problem is the
myriad of difficulties that surround optimistic simulation
that are absent in sequential systems, such as managing
concurrent threads of execution, verifying correct
execution, and handling risky events that may cause severe
difficulties. Despite these apparent difficulties, the MITRE
Corporation has developed a useful and high performing
optimistically synchronized parallel simulation for the
analysis of air traffic control. The simulation, called the
Detailed Policy Assessment Tool (DPAT), is fully
optimistic. There is no throttling of optimism, and yet i t is
devoid of rollback explosions, cascading rollbacks, and
other problems that have been widely publicized in the
parallel simulation literature.

That DPAT has had a significant and positive contribution
on the aviation community is unassailable. Over twenty

analysis projects used DPAT during the last four years,
some of them reported in the popular press. An analysis
of the proliferation of regional jets and their impact on
airspace and airport congestion using DPAT can be found
in the magazine “Air Traffic Management”; the
remarkable accuracy of the predictions from this study
have been lauded by industry leaders [l] . Prediction of
future airport bottlenecks in the Asia-Pacific region using
DPAT is outlined in a publicly available report [2] . The
United States Federal Aviation Administration (FAA) has
itself performed a detailed validation study of DPAT [3].
The results show that the model produces credible answers
that are consistent with actual data collected from FAA’s
own systems. At the time of this writing, they are
continuing to use the model for infrastructure investment
analysis. Additionally, DPAT results have been used for
testimony before the United States Congress [4].

While these reports are all publicly available, there have
been many more proprietary studies using DPAT. The
model has been used to study the impact of reducing
required airplane separation, and its impact on system
wide throughputs and delays [5] . It has also been used to
study the tradeoffs between enroute and terminal-area
efficiency improvements [6]. One of the most impressive
non-public studies simulated each of the 365 days in 1997,
with actual traffic and weather conditions, twice, one time
with a proposed avionics system and once without. The
analysts used the results from the 730 model runs to
determine the annual codbenefit of the proposed avionics
improvement [7].

DPAT has been the subject of papers in recent years on its
internal representation of the air traffic control system as a
queueing network [8], and on its use for system wide
analysis [9]. Although these papers mention DPAT’s use
as a parallel simulation, there are a number of important
questions that remain unanswered. How can an
optimistically synchronized simulation produce such a
great impact on the real world? Are there not major
problems with such simulations, including runaway
rollback explosions, cascading antimessage chains, risky
processing leading to erroneous states that crash the

109
0-7695-1104-X/01$10.00 Q 2001 IEEE

Sector
Area Sector Sector Metering Sector Handoff Ground Taxi Queue

Delay Out Wait ~ ~ ~ f f i ~ Transit Transit Transit Delay Transit Delay
+---+- b - - - - u -

Enroute Hold for
Departure ~ ~ ~ ~ i ~ ~ l Terminal

Pushback

Turnaround Ground
Time for Delay for

Hold for
Terminal Arrival

Area Area Queue Gate Next F/ight Next
in Schedule Flight Traffic Transit Wait Taxiln Hold --- 4

Simulation Time

t t
Wheels

On
At

Gate

Figure 1. The modeled world. Time starts in upper left and flows to the right.

system? How are these problems avoided, and how do
aviation analysts react to a system that processes both
forwards and backwards? The remainder of this paper
focuses on how the technical problems with parallel
simulation are avoided, and the conceptual model
exploited, to produce a good simulation.

2. Design Heuristics

Building a successful parallel simulation-whether
conservative or optimistic-requires a creative blend of
technical knowledge of parallel simulation and domain
acumen about the physical system under study. Technical
knowledge without any domain acumen produces “toy”
simulations; domain acumen without any technical
knowledge produces poorly performing, frequently
crashing systems that are neither scalable nor useful for
basic analysis.

On the technical side, it is well known that a number of
factors contribute to good performance. Proper event
granularity and good lookahead are both necessary
ingredients. “Proper” event granularity is difficult to
quantify, as it depends upon hardware characteristics,
network performance, and whether an SMP or distributed
system is employed. Studies of lookahead have shown
that i t influences greatly the probability of rollbacks and
therefore the efficiency of the simulation engine.

1
Pushback

Generally, the greater the lookahead the greater the
efficiency.

But there are other, more subtle, performance parameters
that must also be considered. Most notably, computations
in the model need to be “smoothed out” in three
dimensions: simulation time, real time, and space
(memory). In simulation time, it is well known that zero
lookahead is to be avoided. Additionally, major
computations should be staggered in simulation time.
Instead of one event computing everything, the
computation should be staggered among several events at
different times. This can often be accomplished without
compromising the integrity of the model, by merely
changing its implementation. In real time, event
explosions should be eliminated. An event explosion
occurs when the minimum number of events that are
needed to advance GVT by one time unit is very large.
Finally, in space (i.e. memory), computations need to be as
independent as possible, so that LPs do not need much
knowledge of other LPs’ states in order to compute an
event.

3. The National Airspace System (NAS)

At its peak, the United States air traffic control (ATC)
system currently handles 100,000 passengers per hour on
4,000 aircraft, or about 650 million passengers per year
[IO]. The volume is increasing at least as fast as the

i i a

general economy, and yet the number of airports and
runways are increasing more slowly, and the volume of
airspace is (obviously) static. The result can be unusually
large delays when the system is stressed. About 70% of
delays are due to bad weather; the remainder occurs for a
variety of other factors.

DPAT is designed to predict system-wide delays resulting
from congestion, weather-related problems, system
outages, growth in air traffic volume, or any combination
of these. It is built to handle worldwide air traffic, taking
as input the airports, airspace, flights, routes, and system
capacities that constitute the ATC system under study.
The data can represent past historical days, the current
situation, or future hypothesized scenarios. The current
situation can be input from live data feeds provided by
ATC authorities; for historical and future information,
DPAT reads data files in a well-documented format. The
DPAT User’s Manual [1 11 explains the capabilities of the
model as well as the input and output data provided.

4. The Modeled World

DPAT represents the ATC system as a network of queues.
Flights acquire and release a predictable set of resources as
they travel gate-to-gate from their origin to their
destination. The resources can be gates, taxiways,
runways, blocks of airspace, waypoints in space called
“fixes,” and so forth, and the set of resources modeled by
DPAT is shown in the time diagram of Figure 1. In that
figure, simulation time is advancing from left to right.
Below the gray bar, discrete events are shown, while
above the gray bar, intervals representing activities
occurring during a flight are shown. The intervals listed in
italic fonr represent quantities that DPAT reads directly
from a data file. Examples are the taxi in and out times, as
well as . minimum transit times in terminal areas and
sectors. These times are always nonzero. Intervals listed in
normal font are computed by DPAT as a result of
congestion; examples include the various delays and
holding patterns that occur during a flight. These times
may be zero, depending upon congestion. The particular
timeline shown in Figure 1 is for illustrative purposes.
Some flights in an actual DPAT scenario may have as
many as twenty (or more) enroute sectors, others might
have no computed delay anywhere along their timeline,
and still others may have excessive delays in some areas
and none in others.

While the set of resources required by a flight is
predictable, the interaction of these flights with other
flights is unpredictable, and may result in delays. The
resources themselves are the servers in the queueing
system. Some of the resource capacities are specified as
service rates, while others are specified as maximum

queue lengths or a combination of queue length limits and
the number of input queues. These rates can be a time
varying function of random variables such as the weather,
system outages, and closures. Flow control mechanisms
can be applied on the ground or en-route, further reducing
service rates and increasing delays. Many of the service
rate changes are input to the model, while some are
derived by DPAT itself and applied as the simulation
evolves.

The net effect of these factors causes the queueing
network to be analytically intractable. The most expedient
way to analyze the system is to simulate actual flights
traversing the network of resources, and to compute the
resulting throughputs and delay at each point. It is this
computation that is realized by the DPAT model.

5. Parallel Decomposition

Central to any parallel simulation system is the
decomposition of the model into logical processes (LPs)
that interact in parallel. Criteria for making this decision
involve considerations of LP independence and scheduling
overhead. It is desirable for the parallel LPs to be as
independent as possible; this maximizes the amount of
parallel computation and minimizes communication and
synchronization costs. There is also a tradeoff between
parallelism and scheduling overhead. The more parallel
LPs that exist per processor, the greater the scheduling
overhead but also the greater potential that the processor
will have useful work to do.

In DPAT, stationary objects are implemented as LPs,
while moving objects are implemented as messages passed
among the stationary LPs. Practically, this means that
airports, terminal airspace, enroute airspace, and enroute
waypoints called “fixes” are modeled as LPs, while the
flights are messages that move among these LPs.

Several criteria were used in making this decision. First, i t
maps to the physical system nicely: airplanes move among
stationary resources, much as messages are moving among
stationary LPs. Secondly, it allows easy proximity
detection. The moving objects that are near each other
will be located in one LP. Because LP boundaries are
precise, it is easy for LPs to share information with their
neighbors to resolve inter-LP proximity.

There is a potential drawback with this approach. Because
the number of airports and airspace sectors is potentially
large, the number of LPs will correspondingly be large.
On a small number of processors, this might increase the
scheduling overhead and therefore negatively impact
performance.

111

For scenarios that concentrate on North American
airspace, DPAT is typically configured with 500 airports,
20 additional “super source/sink” airports, and about 730
enroute airspace sectors, for a total of 1250 LPs. Some
scenarios require speed restrictions to be placed enroute;
these scenarios would add about a dozen “fix” logical
processes. The largest DPAT scenario ever built consisted
of over 1800 LPs representing global air traffic; the
smallest consisted of only 30 LPs modeling East Asian
traffic. DPAT performs well at both extremes.

6. Performance Measurements

The performance measurements presented below are from
a standard DPAT scenario. The standard scenario uses
traffic from May 6, 1993, with 520 modeled airports and
730 modeled airspace sectors, for a total of 1,250 LPs.
There are 487,238 committed events. This scenario is
typical of those used for actual analysis with DPAT; most
scenarios contain between 400,000 and 600,000 events.
Each LP contains state ranging from one to two kilobytes,
and the state is incrementally saved. The message sizes
are only a few hundred bytes, as the messages (which
represent flights) contain pointers to static read-only data
(such as flight itineraries, aircraft performance, and so
forth). Because DPAT runs on a shared memory SMP, the
use of pointers is nonproblemmatic.

The system is measured on a six processor Sun SPARC
SMP with 450 MHz processors and four gigabytes of
memory. The parallel simulation system used is the
Georgia Tech Time Warp (GTW) system, which is
composed of about 20,000 lines of “C” code and uses
multiple threads on an SMP as the basis for parallelism
[121. Each performance measurement was computed five
times, to get an idea of the standard deviation around the
mean results.

6.1. Granularity Measurement

It has been shown that larger granularity can produce
better performance, particularly if the LPs are somewhat
independent. DPAT is a queueing-based model, so its
granularity is relatively small. Because we are using
GTW on an SMP system, the small granularity impacts
performance only slightly.

The granularity distribution is shown in Figure 2, and has
a high variance as well as being highly skewed. There
appears to be no regularity in the length of events in
DPAT. Although the model is fundamentally a queueing
network, the servers have different traffic patterns, with
different routing characteristics, queue lengths, service
times, and internal decision algorithms. Thus a particular

8000

Granularitv Statistics ~

Skew 1.6, Kurt 3.6

.

.

.

.

10 110 210 310 410 510 610
Event Granularity (10 ps bins)

Figure 2. Event Granularity, 10 microsecond bins.

type of event at one L P takes a different amount of real
time than the exact same type of event at a different LP.
In terms of performance modeling, the high variance
combined with the skewness of the distribution means that
it is difficult to characterize using a standard probability
distribution. In fact, different DPAT scenarios manifest
different granularity distributions.

6.2. Lookahead Exploitation

Among the most sensitive indicators of parallel
performance is the amount of lookahead in the model.
Figure 3 is a histogram of the lookahead in the sample
scenario for DPAT. The histogram is given in logarithmic
units. Each bin spans a factor of ten, and there are 65,523
events that are sampled for this distribution from a total
count of 487,238 committed events for this run of DPAT.
The sample was taken from a sequential run of DPAT, and
thus is not influenced by out-of-order risky event
processing introduced by parallelism. Because DPAT
yields the same number of committed events for both
parallel and sequential runs, the data here are a valid look
at a DPAT scenario.

Like the granularity, the lookahead of the model is highly
skewed. The model runs for a total of 3,000 simulation
time units, however the model completes 95% of its total
events by time 2,000. Thus the average lookahead value
of 62.6 represents a lookahead of about 2% of the total
simulation time, or about 3% of the bulk of the simulation
activity. The variance of the distribution is quite high,
with a coefficient of variation of about 2.9.

112

0-0.1 0.1-1.0 1.0-10.0 10.0- 100.0-
100.0 1000.0

Figure 3. Lookahead histogram (logarithmic x-axis).

The distribution is highly skewed and is leptokurtotic.
The maximum lookahead is 8 13 units of simulation time.

Figure 4 shows the lookahead probability from the same
run. It is essentially a magnification of the histogram for
the first 20 minutes of lookahead. The probability is
binned into 0.125 simulation minute intervals, and the
distribution is cut off at a lookahead of 20 simulation
minutes. This cutoff results in a smaller set of 30,282
events from the total sample of 65,523 events. Within this
smaller set, the mode is bin 0-0.125, which occurred
20.7% of the time (this value is truncated in Figure 4
because of the vertical scale); the next most frequently
occurring lookahead value is bin 4.5-4.625, which
occurred 1.44% of the time. A detailed analysis of the data
shows that the true mode is a lookahead of 0.01 simulation
minutes, which occurs 4,787 times, which is 15.8% of this
smaller data set or 4.3% of the larger sample of 65,523
events. Ignoring the spike at the first bin, this distribution
resembles a Poisson distribution.

DPAT is essentially a queueing network applied to
aviation. Lookahead characteristics of queueing networks
have been extensively studied. In [13], a generalized
queueing network is studied wherein each server schedules
the arrival of the customer at the next queue immediately
upon entering service in the previous queue; the next
queue then computes a service time for the new arrival.
As with this general model, DPAT also knows the queue
to which each aircraft will be routed upon completing
service. However, two additional considerations cause it
to behave differently than in Nicol’s general case. First, i t
is possible for the receiving queue to block the arrival of a

new customer; the conditions governing whether the
customer is blocked depend upon the number of customers
in the receiver’s own queue just prior to the attempted
handoff. Secondly, the service rates for any queue in
DPAT, rather than being sampled from a constant
distribution, are sampled from a distribution that varies
nonlinearly as a function of queue length, and by
simulation time. The variation by queue length models
airport configurations when an arrival or departure “push”
results from hub-and-spoke scheduling by the airlines. The
variation by simulation time allows analysts to model
weather events that change service times. These
nonconstant distributions allow realism in modeling
airport and airspace operations, both of which are sensitive
to congestion and local weather conditions.

To exploit lookahead under these conditions, DPAT
schedules the next queue arrival when an airplane enters a
server, similar to Nicol’s model cited above. Unlike this
general model, if the next queue blocks the arrival, then a
near zero lookahead (NZL) message is sent back to the
previous server, at the time of the attempted handoff. An
NZL message is one whose lookahead time is nonzero but
less than 0.01 simulation time units. The receipt of this
event causes the airplane to wait at the previous server for
an additional amount of time, constituting a queueing
delay. At some later time, when the next server has
cleared a spot in its queue, a second NZL message is sent
to the previous server that moves the airplane between the
two queues. These NZL events occur infrequently, from
about 3% of the total events for a typical scenario, up to
20% for a pathologically congested scenario. Such NZL
events are an anathema to conservatively synchronized
simulations, while the optimistic Time Warp engines
handle them with little problem.

I

0.125 3.875 7.625 11.375 15.125 18.875

Simulation time lookahead (0.125 min bins)

I Figure 4. Lookahead probability below 20 minutes.

113

6.3. Risk Management

Risk management refers to how the optimistic simulation
programmer deals with optimistically generated errors.
Such errors are the result of out-of-order optimistic
processing of events and do not exist in sequential
simulations, optimistic but risk-free simulations, or
conservatively synchronized parallel simulations. As
such, they represent potentially catastrophic behavior
unique to the fully optimistic technique that is difficult to
predict but very easy to manage.

Risk management has been known since the invention of
optimistic simulation by Jefferson and Sowizral in the
early 1980’s. Awareness of this issue has been recently
elevated through a high-profile paper on its dangers [141.
The problem is that the programmer must ensure that
events executing in a risky manner avoid errors that bring
down the entire simulation. Such catastrophic errors can
be caused by floating point overlunderflow (such as
dividing by zero or taking the logarithm of a negative
number); by memory overwrites; by array bounds
overflows; and so forth. It is possible to write a simulation
that behaves correctly when executed sequentially, but
exhibits one or more of these errors when executed
optimistically.

In practice these errors are very easy to manage. First, the
parallel simulator can itself trap most of the problems
(such as floating point exceptions, divide by zeros,
overlunderflow, and so forth). When these exceptions
occur, the state can be marked in error and, if the state is
rolled back and executed properly, then the error is
effectively “undone.” This strategy was employed and
implemented successfully in the Time Warp Operating
System. Beyond that, the simulation programmer can
prevent the conditions that lead to erroneous behavior by
putting guards in the code-e i ther explicit conditional
tests or constructs like the C++ tryhhrow block.

A skeptic would argue that the latter is a heavy burden on
the programmer. They would argue that the number of
guards that need to be placed in the code, plus the
possibility of missing one, is such a high cost that i t
renders optimistic simulation useless. They would further
argue that the burden of guarding all function calls, library
routines, and so forth makes such implementations
impractical. It is certainly true that building an
optimistically synchronized parallel simulation is harder
than building its sequential counterpart. On the other hand,
many of the risk-driven errors are indistinguishable from
errors that occur in ordinary sequential simulations, albeit
through other mechanisms. For example, how do
sequential simulation programmers guard against bad
input data that causes a negative logarithm to be

computed? A human pushing a key at exactly the wrong
time? A combination of events in a scenario that might
lead to division by zeros’? Buffer overflow from a large
data set? The most common method is through validation
checks on the input data, assertions throughout the code,
and conditional tests that trap such errors, combined with
very thorough and careful testing. These are the same
techniques that an optimistic simulation programmer
would use to resolve risk-generated errors.

In this respect the risky aspect of optimistic simulation
actually is a benefit to the simulation developer. Each
execution on multiple processors generally follows a
different code branch-because the set of risky events run
in successive replications is usually different. Thus the
code is “automatically tested,” although in a nontraditional
sense. The sequential programmer would have to develop
dozens of data sets to discover what an optimistic
programmer would find out in only a few runs of the
simulation. Such rigorous testing is not normally done in
academic environments, and yet it is necessary and forced
when running optimistically.

Our experience is that the only risk-generated errors
encountered in a run of DPAT-running out of space in an
array or dividing by zero when computing average
values-are easily guarded in the code and thus easily
avoided.

6.4. Verification

But how do we know if DPAT produces correct answers?
How can the DPAT developers guarantee to the analyst
that the result is not faulty due to some combination of
risky events that were not rolled back properly? The chief
verification tool is the observation that the set of
committed states from a multiprocessor run of an
optimistically synchronized simulation must exactly match
the set of states produced by the same simulation when run
sequentially. This is the essence of the term “logical
correctness.” Thus, if a sequential run of DPAT repeatedly
produces identical output to the parallel run, regardless of
the number of processors used, then the system is free of
errors that might be caused by optimistic processing.

Verifying that a sequential run is identical to a parallel run
is an enormous task, even for a small model such as
DPAT. However, in ensuring such consistency, many
model bugs (that are there anyway-even in a sequential
version) are eliminated. In DPAT, inconsistent results are
usually due to one of two problems: (I) inconsistent
treatment of simultaneous events or (2) roundoff errors
when converting from one precision to another. These
bugs tend to be nonrepeatable-when the state rolls back
and re-executes, a different value is generated the second

114

time from the first (and therefore, a different value is
generated vis-a-vis the sequential run). These problems
are there even in a sequential model, except that there is
no mechanism to- discover their source, and therefore
many extant sequential models latently exhibit these
problems. In DPAT, it is true that every run using the
same initial random number seeds-regardless of the
number of processors that it uses-generates the same
number of committed events, and the same exact answer,
byte-for-byte. ,

Beyond verification, there is the additional task of
validation-ensuring that the model is producing results
that are credible with respect to the physical world it is
simulating. Validation is also an enormous task, and has
been done several times. Most noteworthy is the
validation conducted by the Federal Aviation
Administration, which revealed that four of five metrics
tested produced results close to the real world [3]. The
fifth metric, passenger arrival delay, is influenced by
factors that are not modeled in detail by DPAT.

6.5. Execution Time Performance

The performance of DPAT on the standard scenario is
shown in Figure 5. Both the run time and the number of
rollbacks are included in the figure. The results were
computed on a six processor machine. Results are shown
up to eight processing elements (PES) because the GTW
system creates threads for each PE. Therefore it is
possible to create more PES than there are physical
processors on the system. As can be seen in the Figure,
when that occurs (at 7 and 8 PES), the performance
suffers. Not only does the run time begin to suffer, but the
variance in the run time from successive executions begins
to become large. The larger variance is due to the fact that
the operating system is now scheduling more than one
thread per processor, and the nonrepeatabilities in such
scheduling between successive runs cause different
execution times. In all cases, as noted above in the
discussion on verification, the result produced to a DPAT
analyst is identical. There is about a three fold reduction in
run time up to three processors (linear speedup); beyond
that, the run time levels off.

6.6. DPAT and the High Level Architecture

The United States Department of Defense has produced a
specification for simulation interconnection commonly
known as the High Level Architecture (HLA). As DPAT
is capable of producing throughputs and delays quickly,
federations containing a DPAT component have been
proposed. One such federation is a combination of the
Sector Design Analysis Tool (SDAT) with DPAT. SDAT
allows aviation analysts to reconfigure both the shape and

40

35

30

E 25
i=

Q
v

C 2 20

15

0 1 2 3 4 5 6 7 8
Number of Processing Elements (PES)

Figure 5. Performance of DPAT.

number of airspace sectors in a region. Airspace geometry
affects the workload of controllers in a very profound way:
the greater the number of crossing tracks, the more work
controllers must do to separate planes. Accordingly, the
fewer airplanes a controller will allow in their airspace.

To assess the delays caused by reconfiguring sectors,
DPAT has been federated with SDAT. The resulting tool
allows analysts to effectively redesign airspace while
assessing the affect different traffic loads might have on
the results. Federating the models required an
initialization sequence, during which the models register
their objects and interactions with the HLA’s Run Time
Infrastructure (RTI), followed by a processing sequence in
which SDAT publishes its new routing structure and
DPAT then publishes the predicted delays. The
interaction diagram for the processing sequence is shown
in Figure 6. It should be noted that there are no limit on
the number of SDAT federates that can be incorporated in
the system, due to the inherent flexibility of HLA.

7. Conclusions

We can make some general statements about why DPAT
avoids many of the problems associated with optimistic
computation. First, in the hundreds of scenarios run
through DPAT, we have observed no “rollback
explosion.” A typical configuration of DPAT, containing
over 1,200 LPs on six PES, yields an average of 200 LPs
per PE. The large number per PE means that each PE will
generally see “average” behavior of the system, preventing
any one from computing too far ahead or lagging too far
behind. The result is a well-balanced, stable system.
Secondly, the state size of about 2 kilobytes per LP,

115

9DAT HLA-RTI
I

DPfT

Sendlnteraction(SectorSummary)
Sendlnteraction(Tota1Stats)

%-,“,I,,l~
-
. RegisterObjectlnstance(SL-.~, ,-,,

R e g i s t e r O b j e c t l n s t a n c e ~ ’ ~
TurnUpdatesOn(Sector[c]) DiscoverObjectlnstance(FlightPlan[d

L TurnUpdatesOn(FlighlPlan[dl) I ReflectAttrValues(Sector[c])
7

U p dateAttrValueS 0 , SectorIc]
UpdateAttrValues(FlightPlan[d])

Figure 6. HLA interaction diagram (not in time order). 1
coupled with the use of incremental state saving, means
that the overhead of saving state and rollback is
minimized. Thirdly, the messages average a few hundred
bytes each, and are passed through pointers in shared
memory; this minimizes message communication costs.
Fourthly, the software contains only a few places where
risk-driven event processing might cause errors, and those
places are easily identified and fixed with proper testing.
Finally, optimistic computing is not as sensitive to zero-
lookahead messages as conservative systems, so modeling
blocking queues (as is done in DPAT) can be
accomplished with no change to the conceptual design.

Our main conclusion is that it is possible-even
desireable-to build a model containing optimistic
synchronization that avoids the problems associated with
such systems and exploits its main advantages: fast run
times and the ability to interconnect with other models
easier. The key factor to achieving these goals is to design
a system with hundreds to thousands of LP’s with small
(1-3 kilobyte) states, incremental state saving, to run on
only a few processors (so that there are hundreds of LPs
per processor). Systems configured in this manner, like
DPAT, can be effective vehicles for delivering usable
simulations to the analysis community.

8. Acknowledgements and References

W e would like to thank Frank Carr for his work on the
DPAT-SDAT HLA connection, as well as Dr. Len Wojcik
for his support over the years. We would like to thank Dr.
Richard Fujimoto’s research group at the Georgia Institute
of Technology for providing the GTW system.

The contents of this paper reflect the views of the author.
Neither the Federal Aviation Administration nor the
Department of Transportation makes any warranty or
guarantee, or primise, expressed or implied, concerning
the content or accuracy of the views expressed herein.

[I] Carroll McCormick, “Jam Tomorrow,” Air Trafic
Managenzent, Euromoney Publications:London, 8(2), March-
April 1999, pp. 42-43.

[2] L. A. Wojcik, et. al. “World Regional Air Traffic Modeling
with DPAT,” MTR 97W00000070, September 1997.

[3] Daniel Citrenbaum, Nastaran Coleman, Robert Kennington,
Bryan Baszczewski, Anh Nguyen, “The Detailed Policy
Assessment Tool (DPAT) Validation Report: A Comparison of
DPAT Simulation Results to National Data,” Federal Aviation
Administration, October, 1999.

[4] Dr. George Donohue, “Testimony before US House of
Representatives Committee on Science, Subcommittee on Space
and Aeronautics: Hearing on the 2001 NASA Budget Request,”
1061h Congress, April 1 I , 1999.

[5] “Separation Reduction Impact Analysis: Initial Results,” MP
99W0000019, January, 1999 (not for public release).

[6] Suzanne Bradley, et. Al. “Improving NAS Efficiency:
Assessment Approach and Initial Analyses,” MP 99W0000020,
January, 1999 (not for public release).

[7] Jim Cieplak, John DiLeo, Jonathan Hammer, and Stephen
Yeh, “Annual DPAT Analysis Capability,” briefing, September
1998 (not for public release).

[8] Frederick Wieland, “Parallel Simulation for Aviation
Applications, ” Proceedings of the 1998 Winter Simulation
Conference, (IEEE) Washington, DC, December 1998.

[9] Frederick Wieland, “Limits to Growth: Results from the
Detailed Policy Assessment Tool,” in Proceedings of the Digital
Avionics Systems Conference, Irvine, CA, IEEE: 1997.

[lo] “FAA Disputes Airlines’ Claim of Outdated ATC System,”
Aviation Daily, McGraw-Hill Publishing Company, July 19,
2000.

[1 I] Frederick Wieland, “The Detailed Policy Assessment Tool
User’s Manual,” MITRE Technical Report MTR99W00000012
(not for public release).

[I21 R. M. Fujimoto, “Time Warp on a Shared Memory
Multiprocessor,” Transactions of the Society for Computer
Simulation, 6(3):211-239, July1989

[I31 David M. Nicol, “The Cost of Conservative
Synchronization in Parallel Discrete Event Simulation,” Journal
of the Association of Computing Machinery, 2(2), April, 1993,
pp. 304-333.

[I41 David M. Nicol, “The Dark Side of Risk (What your mother
never told you about Time Warp),” Proceedings of the l l t h
Workshop on Parallel and Distributed Simulation, June IO- 13,
1997 IEEE Computer Society Press: 1997.

116

