
Optimal Memory Management for Time Warp Parallel Simulation

Yi-Bing Lin
Bellcore

Morristown, NJ 07962-1910

Bruno R. Preiss
Department of Electrical

and Computer Engineering
University of Waterloo

Waterloo, Ontario
Canada, N2L 3G1

Abstract

Recently there has been a great deal of interest in performance evaluation of parallel simulation.

Most work is devoted to the time complexity and assumes that the amount of memory available

for parallel simulation is unlimited. This paper studies the space complexity of parallel simula-

tion. Our goal is to design an efficient memory management protocol which guarantees that the

memory consumption of parallel simulation is of the same order as sequential simulation. (Such

an algorithm is referred to as optimal.) We first derive the relationships among the space com-

plexities of sequential simulation, Chandy-Misra simulation, and Time Warp simulation. We show

that Chandy-Misra may consume more storage than sequential simulation, or vice versa. Then we

show that Time Warp never consumes less memory than sequential simulation. Then we describe

cancelback, an optimal Time Warp memory management protocol proposed by Jefferson. Although

cancelback is considered as a complete solution for the storage management problem in Time Warp,

some efficiency issues in implementing this algorithm must be considered. In this paper, we propose

an optimal algorithm called artificial rollback. We show that this algorithm is easy to implement

and analyze. An implementation of artificial rollback is given, which is integrated with processor

scheduling to adjust the memory consumption rate based on the amount of free storage available

in the system.

1 Introduction

A discrete event simulation consists of a series of events, with times when they occur. Execution of

an event can give rise to any number of events with later timestamps. The simulation is straight-

forward to implement if there is a centralized system with one event queue — just execute the

earliest not-yet-executed event next.

1

Since simulation is time-consuming, it is natural to attempt to use multiple processors to speed

up the simulation process. In parallel discrete event simulation (or parallel simulation), the simu-

lated system is partitioned into a set of sub-systems that are simulated by a set of processes that

communicate by sending and receiving timestamped messages. The scheduling of an event for a

sub-system at time t is simulated by sending a message with timestamp t to the corresponding

process. The global event list and global clock of a sequential simulation do not exist in the parallel

counterpart. Each process has its own input message queue and local clock. To correctly simulate

a sub-system, the corresponding process must execute arriving messages in their timestamp order,

as opposed to their real-time arrival order. To satisfy this causality constraint, a synchronization

mechanism is required. Two of the most common synchronization protocols for parallel simula-

tion are the Chandy-Misra protocol [2] and the Time Warp protocol [7]. (Different approaches

for parallel simulation are discussed elsewhere [5, 10, 13, 16, 22, 26, 27].) An introduction to the

Chandy-Misra protocol and the Time Warp protocol can be found in [5].

Recently there has been a great deal of interest in performance evaluation of parallel simulation.

Most work [3, 4, 13, 14, 15, 18, 19, 20, 21, 23, 24, 29] is devoted to the time complexity and assumes

that the amount of memory available for parallel simulation is unlimited. This paper studies the

space complexity of parallel simulation. We derive the relationships of the space complexities

among sequential simulation, Chandy-Misra simulation, and Time Warp simulation. We show

that Chandy-Misra may consume more storage than sequential simulation, or vice versa. Then we

show that Time Warp always consumes more memory than sequential simulation. The derivations

indicate that parallel simulation may consume much more memory than sequential simulation.

Thus, it is important to design an efficient memory management protocol which guarantees that

the memory consumption of parallel simulation is of the same order as sequential simulation. (Such

an algorithm is referred to as an optimal memory management algorithm; a formal definition will

be given in Definition 1.) Previous work [6, 7, 8] has been devoted to reducing the space complexity

of Time Warp simulation. The first optimal memory management protocol (called cancelback) was

proposed by Jefferson [8]. Although cancelback is considered as a complete solution for the storage

management problem in Time Warp, some efficiency issues in implementing this algorithm must

be considered. In this paper, we propose an optimal algorithm called artificial rollback. We show

that this algorithm is easy to implement and analyze. An implementation of artificial rollback is

given, which is integrated with processor scheduling to adjust the memory consumption rate based

2

on the amount of free storage available in the system.

All notations used in this paper are listed in Appendix A.

2 Memory Usage in Parallel Simulation

This section gives the relationships among the space complexities of sequential simulation, Chandy-

Misra simulation, and Time Warp simulation. We show that (i) Chandy-Misra may consume more

storage than sequential simulation, or vice versa, and (ii) Time Warp always consumes more memory

than sequential simulation. Consider a K-process simulation1. Let ts(e) be the timestamp2 of an

event e. Without loss of generality, we assume that all events executed within a process have

different timestamps. Let Ψ be the set of events executed in a sequential simulation. Then Ψ is the

set of events executed in Chandy-Misra and is the set of committed events in the corresponding

Time Warp simulation. Let xi(τ) be the state of process pi after it has executed all events with

timestamp no later than τ . Suppose that the scheduling of an event e is due to the execution of

another event e0. Then the send time of e (denoted by ts′(e)) is defined as the timestamp of e0.

In other words, ts′(e) = ts(e0). Since the execution of an event always schedules events with later

timestamps, we have ts′(e) = ts(e0) < ts(e). Let E(τ) be the set of events in the event queue of

the sequential simulation when all events with timestamp earlier than τ have been executed. Then

E(τ) = {e ∈ Ψ|ts′(e) < τ, ts(e) ≥ τ}. For a given timestamp value τ , let τ−
i = ts(e) be the least

timestamp of the event e ∈ Ψi such that τ−
i < τ , and for all e′ ∈ Ψi, ts(e′) < τ ⇒ ts(e) ≤ τ−

i .

After pi has executed all events with timestamps earlier than τ , its process state is xi(τ
−
i). Thus,

the system state of the sequential simulation at τ (or the sequential snapshot at τ before the event

with timestamp τ is executed) is

Ms(τ) =

⋃

1≤i≤K

xi(τ
−
i), E(τ)

 (1)

Let an item be a message or a copy of process state. Let Ms(τ) = |Ms(τ)| be the amount of storage

required to store all items in Ms(τ). Then the storage consumed by the sequential simulation is

Ms = max
∀τ
|Ms(τ)|.

1We consider object-oriented simulation. Thus, the concept of “process” exists in sequential simulation.
2In the remainder of this paper, the term time means real time, and the term timestamp means simulation time.

3

Definition 1 Suppose that a sequential simulation consumes Ms units of memory. The corre-

sponding parallel simulation consumes constant bounded memory if and only if its space complexity

is O(Ms). A memory management algorithm is optimal if it ensures that every parallel simulation

consumes constant bounded memory.

2.1 Chandy-Misra

Consider a Chandy-Misra simulation at time t. Let xi(t) be the state of process pi at time t. We

assume that |xi(t1)| = |xi(t2)| = |xi| for all t1, t2 (i.e., the size of a process does not change).

Note that if all events with timestamps no later than τ have been executed by pi at time t, then

xi(t) = xi(τ). Let Ii(t) be the set of events scheduled for pi at time t; i.e., the events already in

pi’s input queue, and the events that have been sent from other processes, but not yet received by

pi. Let Oi(t) be the output queue of process pi at time t. Then the snapshot of Chandy-Misra at

time t is

Mcm(t) =
⋃

1≤i≤K

[xi(t), Ii(t), Oi(t)]

and the storage consumed by the Chandy-Misra simulation is Mcm = max
∀t
|Mcm(t)|.

Lemma 1 There exists a simulation such that Mcm < Ms.

Proof: Consider a 3-process simulation where a source process p1 sends messages (i.e., schedules

events) to two sink processes p2 and p3 (cf. Figure 1 (a)). Let ts(ei) = i. Initially, two events e1

and e2 are scheduled for p1. The execution of e1 results in the scheduling of e3 and e4 respectively.

The execution of e2 results in the scheduling of an event e5 to process p2 and an event e6 to process

p3. The executions of e3, e4, e5 and e6 do not schedule any new events. Consider a Chandy-Misra

simulation. If the memory used for process states is the same for both Chandy-Misra and sequential

simulations, then we only need to consider the memory used for event queues. Suppose that (i)

the lookahead of p1 is 2, which is known in advance, (ii) the event execution time is a constant,

and (iii) message sending delay is 0. Then the maximal amount of memory consumed by the input

queues in the Chandy-Misra simulation is 3 (cf. Figure 1 (a)). On the other hand, the maximal

amount of memory used in the corresponding sequential simulation is 4 (cf. Figure 1 (b)).

Now we show that Chandy-Misra may consume non-constant bounded memory. Lin and La-

zowska [17], and Jefferson [8] show that there exist Chandy-Misra simulations that have space

4

e3 e4 e5 e6

"!
#Ã

"!
#Ã

"!
#Ã

6

?

p1

p2

p3"!
#Ã"!
#Ã"!
#Ã

?

6

p3

p2

p1

"!
#Ã

"!
#Ã

"!
#Ã

6

?

p1

p2

p3

(b) Storage consumed in a sequential simulation.

(a) Storage consumed in a Chandy-Misra simulation.

t3t2t1

e3 e4e2e2

e5

e6e4

e3

e2e1 e2

e1

t3t2t1

Figure 1: The case when Chandy-Misra consumes less storage than the sequential simulation.

5

complexities of O(kMs) for arbitrary k. The following lemma generalizes the previous results by

showing that Chandy-Misra may have exponential space complexity compared with the sequential

simulation.

Lemma 2 For every positive integer k, there exists a simulation such that the space complexity

of Chandy-Misra is O(Mk
s).

Proof: Consider the simulation of a (k + 1)-level tree structure process network. Every subroot

(and the root) has k branches. Thus the root of the tree is a source process, and the leaves of

the tree are sink processes, and each subroot has one input channel and k output channels. The

simulation behaves as follows:

• One event is scheduled to the root at the beginning. The execution of the event results in

the scheduling of 2k events, two for each of its children.

• Every subroot pi will receive two messages (events) from its parent. The execution of the

event with earlier timestamp results in the scheduling of 2k events, two for each of its children.

The execution of the other event results in the scheduling of k events for pi itself.

• Every leaf will receive two messages (events) from its parent. The execution of the first event

results in the scheduling of k events to the leaf itself. The execution of the second event does

not schedule any new event.

• For every subtree of a subroot (or the root) pi, all events created and/or executed in that

subtree have timestamps earlier than the events scheduled to pi itself.

• For every two subtrees rooted at pi, all events created and/or executed at one subtree have

timestamps earlier than that at the other subtree.

Suppose that the execution of an event takes one unit of time, and the message sending delay is

ignored. Then the space complexity of the sequential simulation is O(k2), and the space complexity

for the Chandy-Misra simulation (with any size of input buffer) is O(kk+1) or O(Mk′

s) for k′ =

k − 1.

6

2.2 Time Warp

Consider Time Warp. Let Xi(t) be the set of states in the state queue of process pi at time t.

Let Ii(t) be the set of events scheduled for pi at time t; i.e., the events already in pi’s input queue

(including the input messages that have already been processed but not yet discarded by fossil

collection; the definition for fossil collection will be given later)3 and the events that have been sent

from other processes, but not yet received by pi. Let Oi(t) be the output queue (i.e., the collection

of negative messages) of process pi at time t. (Note that the definition of the output queue in Time

Warp is different from that in Chandy-Misra.) Then the snapshot of Time Warp at time t is

Mtw(t) =
⋃

1≤i≤K

[Xi(t), Ii(t), Oi(t)]

and the storage consumed by the Time Warp simulation is Mtw = max
∀t
|Mtw(t)|.

Let cki(t) be the local clock of process pi at time t; that is, cki(t) is the timestamp of the event

executed by pi at time t. Let an unprocessed message be a message in transit or a message in the

the input queue of a process, but not yet executed. The global virtual time (GVT) is defined as

follows.

Definition 2 GVT at time t (denoted as GVT(t)) is the minimum of (i) the values of all local

clocks at time t, and (ii) the timestamps4 of all unprocessed messages.

It is difficult to obtain GV T (t) in practice (especially in a distributed environment). In general,

only lower bounds for GV T (t) can be computed [12, 28]. We assume that the true GV T (t) can be

obtained. The results in this paper generalize for the case where only a lower bound for GV T (t)

is available. It is apparent that at any real time there exists a global virtual time GVT such that

all executed messages with timestamps earlier than GVT cannot be rolled back. Since GVT is

no larger than the timestamp of every unprocessed message in the system, we have the following

theorem [7].

Theorem 1 (i) At time t, any event with timestamp earlier than GVT(t) cannot be rolled back,

and may be irrevocably committed with safety. (ii) GVT is a non-decreasing function of time which
3Note that in Chandy-Misra simulation, Ii(t) does not include any message which is already executed.
4In the original definition of GVT given by Jefferson [7], the send times of unprocessed messages are considered

in computing GVT, instead of their timestamps. This paper follows the definition given in Fujimoto [5], and Lin and
Lazowska [12].

7

guarantees global progress of the Time Warp simulation.

The following two corollaries are direct consequences of Theorem 1. Let ts(x) be the timestamp of

a process state x (ts(x) = ts(e) if the process state of pi is x after it executes e).

Corollary 1 Let τ ≤ GV T (t). After time t, the following items in a process pi are obsolete and

can be deleted:

• The messages with timestamps earlier than τ in the input queue.

• The copies of process state with timestamps no later than τ except for the one with the

largest timestamp no later than τ . From Theorem 1, this process state is xi(τ) if the process

has completed the execution of an event with timestamp τ . Otherwise, the state is xi(τ
−
i).

• The messages with send times earlier than τ in the output queue.5

A fossil collection is performed up to simulation time τ at time t, if all obsolete items in Corollary 1

are discarded, and the storage for these items is reclaimed at time t.

Corollary 2 Consider a Time Warp simulation. Suppose that fossil collection is performed up

to simulation time τFC(t) ≤ GV T (t) at time t. Consider a timestamp τ such that τFC(t) ≤ τ ≤

GV T (t). Let Ii,τ (t) = {e ∈ Ii(t)|ts
′(e) < τ}, and let Ψi be the set of events executed by pi in the

sequential simulation. (That is,
⋃

1≤i≤K

Ψi = Ψ.) Then

Ii,τ (t) = {e ∈ Ψi|ts
′(e) < τ, ts(e) ≥ τFC(t)}

Proof: From Corollary 1, for every e ∈ Ii,τ (t), ts(e) ≥ τFC(t). From Theorem 1 and because Time

Warp has the same semantics as the sequential simulation, we have

Ii,τ (t) = {e ∈ Ψi|ts
′(e) < τ, ts(e) ≥ τFC(t)}

Lemma 3 For all simulations, Mtw ≥Ms.
5In fact, output messages with send times equal to τ can also be discarded. For our purpose, we assume that

these messages are not discarded. This assumption will slightly increase the amount of memory consumed by memory
management protocols such as cancelback and artificial rollback.

8

Proof: Consider a Time Warp simulation. Suppose that fossil collection is performed up to

simulation time τFC(t) ≤ GV T (t) at time t. Consider a timestamp τ such that τFC(t) ≤ τ ≤

GV T (t). From Corollary 2,

Ii,τ (t) = {e ∈ Ψi|ts
′(e) < τ, ts(e) ≥ τFC(t)}

Since E(τ) = {e ∈ Ψ|ts′(e) < τ, ts(e) ≥ τ}, we have

E(τ) ⊆
⋃

1≤i≤K

Ii,τ (t) ⊆
⋃

1≤i≤K

Ii(t)

This implies that for all t, and for any τ such that τFC(t) ≤ τ ≤ GV T (t), we have

Mtw(t) ≥Ms(τ) (2)

(Note that Time Warp consumes more storage for process states than sequential simulation does.)

From the definition of GVT, we have

for all t, GV T (t) ∈ {ts(e)|e ∈ Ψ} (3)

Based on (2) and (3), we have

for all τ there exists t such that Mtw(t) ≥Ms(τ)

That is, Mtw ≥Ms.

The intuition behind Lemma 3 is that Time Warp always contains a sequential snapshot in order to

support rollback. Thus, more storage must be used in Time Warp. Lemma 3 holds for Time Warp

with memory management protocols such as the optimal checkpoint interval approach [11, 25], fossil

collection, cancelback protocols [6, 8], or the artificial rollback protocol to be described later.

The following lemma holds for Time Warp if fossil collection is the only means for memory man-

agement (the proof is omitted).

Lemma 4 For all positive integer functions f(x) > x, there exists a Time Warp simulation with

fossil collection such that its space complexity is O(f(Ms)).

Although Chandy-Misra tends to consume less memory than Time Warp, it is not difficult to find

examples where Time Warp is more economic in memory usage. Furthermore, to our knowledge,

9

there is no optimal memory management protocol for Chandy-Misra simulation. On the other

hand, such protocols exist for Time Warp. Section 3 describes Gafni’s protocol and the cancelback

protocol. Gafni’s protocol is not optimal. However, it does reduce the amount of memory required

in a Time Warp simulation. The cancelback protocol is optimal in a shared memory architecture.

Section 4 proposes an optimal protocol (for a shared memory architecture) called artificial rollback.

The significance of the cancelback and artificial rollback protocols is that, while a Chandy-Misra

simulation may fail due to non-constant bounded memory usage in a shared memory computer

system with O(Ms) storage, a Time Warp simulation will survive.

3 Cancelback Protocols

This section describes Gafni’s protocol [6] and the cancelback protocol [8]. We first define the term

“memory exhaustion”.

Definition 3 Consider a Time Warp simulation with memory management algorithm Y . Let F (t)

be the amount of free storage available at time t. The system exhausts the storage if and only if

F (t) < δ(t) at some t before the simulation completes, where δ(t) is the minimal amount of storage

required to make the simulation progress (i.e., to advance GVT) at time t, and algorithm Y cannot

produce more storage such that F (t′) ≥ δ(t) for all t′ ≥ t.

From Definition 3, a Time Warp simulation does not necessarily exhaust storage when F (t) < δ(t).

With the memory management algorithms to be described in this paper, free storage could be

reclaimed, and the simulation may continue.

The basic idea is to cancel “possibly-correct computation”, if necessary, to obtain more free memory.

In Gafni’s protocol (cf. Figure 2), if fossil collection cannot reclaim enough free memory to satisfy

the request of a process p, then some stored item of p has to be removed to make more room.

The cancelled item will be re-produced later. If e is an input message (i.e., a positive message),

then it is removed from p’s input queue, and sent in the reverse direction back to its sender q’s

output queue. Message e is annihilated with its antimessage present in the output queue (most

likely), and possibly causes a rollback at q. If e is an output message (i.e., a negative message),

then it is removed from the output queue, and transmitted forward to annihilate its antimessage

10

while p needs more storage do
/* let Γp be the set of items in p with send times larger than GVT */

if Γp 6= ∅ then
select the item e with the largest send time from Γp;
case e.type of

input message:
return e to its sender; discard e;

output message:
transmit e; discard e;

state:
discard e;

end case;
else

call block-mode routine;
end if

end while

Figure 2: Gafni’s Protocol.

(the positive copy). If e is a state, then it is deleted, and p rolls back to the state preceding e.

Gafni’s algorithm assumes that every process has its own memory space. In the following example,

we show that even if all processes share the same free storage pool (and there is no fragmentation

problem), Gafni’s algorithm may still consume unbounded memory, because a process can only

cancel items within itself. Consider a K-process simulation, where K ≥ 3. Let ts(ei) = i. Initially,

an event e(i−1)K+1 is scheduled for process pi, 1 ≤ i ≤ K. After e(i−1)K+1 is executed, K − 1

events e(i−1)K+2, e(i−1)K+3, ..., eiK are scheduled for pi. The executions of these events do not

create any new event. The space complexity of the sequential simulation is O(K). We show that,

in the worst case, the space complexity for Gafni’s protocol is O(KMs) = O(K2) even if the free

storage is shared by all processes. Without loss of generality, we only consider the storage used in

input queues. Suppose that every process is executed by a processor, and (i + 0.5)K units (where

1 ≤ i < K) of memory are available for the simulation. Consider the following scenario: At time

t, processes pK−i+1, ..., pK have completed execution, and iK units of memory are occupied by the

events in their input queues. Process pj , 1 ≤ j ≤ K − i, has not completed the execution of event

e(j−1)K+1. Thus, only 0.5K units of memory are left for p1, .., pK−i to compete. Since the execution

for e1 has not been completed, fossil collection does not produce any free memory. Thus, processes

p1, ..., pK−i must cancel items within themselves. However, Gafni’s protocol can at most produce

11

arrive()
/* Let Γ be the set of items with send times larger than GVT */

1 if fossil collection does not reclaim any free storage then
2 atomic if Γ 6= ∅ then
3 select an item e ∈ Γ and cancel it;

/* The cancellation operation is the same as the case statement */
/* in Gafni’s algorithm */

4 else fail(“memory exhaustion”);
end if

end if

Figure 3: The arrive Procedure in the Cancelback Protocol.

0.5K units of free memory, and the simulation fails. Hence, we have the following lemma.

Lemma 5 Time Warp simulation with Gafni’s protocol may consume non-constant bounded mem-

ory.

Jefferson proposed an optimal protocol called cancelback in a shared memory architecture. In this

protocol, if a process p needs storage for an item u, the protocol assumes that u is always allocated,

but after the allocation, the system may not have enough free storage to continue the simulation. If

so, a procedure arrive (cf. Figure 3) is invoked to generate more free storage. The main difference

between this protocol and Gafni’s protocol is that in cancelback, it is possible to cancel items

in processes other than the processes that request free storage. In other words, cancelback is

implemented in the system level with interrupt capability.

In this protocol (as well as Gafni’s protocol), only items with send times larger than GVT can

be cancelled. Since the history of a process with timestamps earlier than GVT may have been

discarded by fossil collection, the items with send times earlier than GVT cannot be re-produced.

The items with send times equal to GVT cannot be cancelled, otherwise cancelback may be trapped

in an infinite loop [9]. Consider a two-process Time Warp simulation. Suppose that at time t, (i)

ck1(t) = ck2(t) = GV T (t), (ii) both processes request memory, and (iii) F (t) = 0. If all items in the

system have send times no larger than GV T (t), then these two processes will cancel an item with

send time equal to GV T (t) in each other (suppose that such items exist), re-execute, and cancel

each other again. This action will repeat forever.

12

Although cancelback is considered as a complete solution for the storage management problem

in Time Warp, the algorithm may not be implemented efficiently. In the following sections, we

propose an optimal algorithm called artificial rollback. We show that this algorithm is easy to

implement and analyze. We also give an implementation of artificial rollback, which is integrated

with processor scheduling to adjust memory consumption rate based on the amount of free storage

available in the system.

4 Artificial Rollback Protocol

We first introduce the concept of artificial rollback.

Definition 4 Without receiving a straggler, a process p may (on purpose) roll back its computation

to a timestamp τ earlier than its local clock. Process p is said to artificially roll back to timestamp

τ .

Lin and Lazowska [11] showed that artificial rollback does not affect the behavior of a Time Warp

simulation (i.e., with or without artificial rollback, Time Warp produces the same result).

In several aspects, artificial rollback is equivalent to cancelback: The cancellation of an input

message e is equivalent to an artificial rollback of the sender of e. The cancellation of a process

state or an output message of a process is equivalent to an artificial rollback of that process. We

introduce the concept of artificial rollback for the following reasons.

Artificial rollback is easy to implement. An artificial rollback is exactly the same as a normal

rollback. Thus, the implementation of artificial rollback adds little overhead to the Time

Warp mechanism. The protocol avoids several inefficiencies in the cancelback implementation.

Examples are listed below.

• To determine which item to cancel, cancelback needs to access the inner structures (i.e.,

input queues, output queues, and state queues) of processes (cf. Line 2 of Figure 3).

This may interfere or interrupt the executions of processes. On the other hand, using the

concept of artificial rollback, an arbitrary timestamp larger than GVT can be selected

to which to roll back an arbitrary process without accessing the inner structures of the

process.

13

• To detect memory exhaustion, all items in the system must be examined by an atomic in-

struction (Line 2 of Figure 3). This operation is very expensive. We will show that in the

artificial rollback protocol, memory exhaustion can be easily detected (cf. Lemma 11).

• Cancelback requires message preemption [15] while a protocol based on artificial rollback

does not (cf. Section 5).

• Inefficiency may occur due to busy cancelback: Jefferson [8] showed that a reverse message

may cause the sender to roll back, re-execute, and then resend, only to find that there

is still not enough buffer space, and the sender must roll back, re-execute, and resend

again. Another type of busy cancelback is due to the fact that the arrive() procedure is

invoked independently by processes. Two processes (with local clocks later than GVT)

may cancel an item of each other, re-execute, and cancel each other again. Although

busy cancelback cannot repeat forever, it must be avoided for the purpose of improving

performance. To solve this problem, we integrate artificial rollback with the processor

scheduling policy (cf. Section 5).

• In cancelback, if an input message e in a process pi is canceled, it is also sent in the

reverse direction to cancel its antimessage e− in another process pj . If the simulation runs

in a distributed environment with non-FIFO communication delay, then confusion may

arise: Suppose that pi receives e− after e is sent back, then there are two possibilities.

(i) Message e− is the antimessage of e, and pi should ignore it (because the positive

copy is already cancelled). (ii) The antimessage of e is already annihilated, but pj re-

produces another negative message e−, and this message is sent to pi because of another

rollback at pj . In this case, pi should not ignore the arriving e−. Unfortunately, pi

cannot distinguish case (i) from case (ii) without extra treatment. In artificial rollback,

there is no concept of canceling messages. Thus, this problem is avoided.

Artificial rollback is easy to analyze. Intuitively, if fossil collection is performed up to GVT,

and all processes roll back to GVT, then the items left in the system are the same as those in

the corresponding sequential simulation at simulation time GVT. Thus, it is easy to show that

the space complexity of a protocol based on artificial rollback is O(Ms) in a shared memory

architecture.

14

Now we show how to design an optimal memory management protocol based on artificial rollback.

We assume that the simulation is run on a shared memory architecture. Suppose that there are K

processes and L processors in a Time Warp simulation. In a shared memory architecture, memory

freed from a processor can be claimed by another processor. Let Ψi(τ, t) = {e ∈ Ii(t), ts(e) = τ}

and Ψ(τ, t) =
⋃

1≤i≤K Ψi(τ, t). Let ψ+(e) be the set of events scheduled due to the execution of

event e and ψ−(e) be the set of negative messages created due to the execution of event e. I.e.,

ψ−(e) = {e−|e− is the antimessage of e+ where e+ ∈ ψ+(e)}. Thus, |ψ−(e)| = |ψ+(e)|.

Definition 5 A system artificial rollback or system AR with simulation time τ at time t is composed

of two parts. In the first part, a fossil collection is performed up to τ ≤ GV T (t). In the second

part, some processes are selected to be (artificially) rolled back. These processes are rolled back to

timestamp no earlier than τ .

Lemma 6 Consider a Time Warp simulation. Suppose that a system AR is performed with τ at

time t, and all processes are artificially rolled back to τ . If the system AR is completed at time t+,

then Mtw(t+) is bounded as

M−
tw(τ) ≤Mtw(t+) ≤M+

tw(τ), where

M−
tw(τ) =

∑

1≤i≤K

|xi|+ |E(τ)| and (4)

M+
tw(τ) =

∑

1≤i≤K

|xi|+ |E(τ)|+ 2

∣

∣

∣

∣

∣

∣

⋃

e∈Ψ(t)

ψ+(e)

∣

∣

∣

∣

∣

∣

(5)

Proof:

From Corollary 1, if fossil collection is performed up to τ , then

∀e ∈ Ii(t
+) ⇒ ts(e) ≥ τ, ∀e ∈ Oi(t

+) ⇒ ts′(e) ≥ τ, ∀x ∈ Xi(t
+) ⇒ ts(x) ≥ τ−

i (6)

If all processes artificially roll back to τ at time t, then all negative messages with send times later

than τ are sent to annihilate the corresponding positive messages. In other words, after all rollbacks

15

complete, all messages have send times no later than τ , and all process states have timestamps no

later than τ . Thus,

∀e ∈ Ii(t
+) ⇒ ts′(e) ≤ τ, ∀e ∈ Oi(t

+) ⇒ ts′(e) ≤ τ, and ∀x ∈ Xi(t
+) ⇒ ts(x) ≤ τ (7)

Hence, (7) and (6) imply that

Ii(t
+) = {e ∈ Ii(t)|ts

′(e) ≤ τ, ts(e) ≥ τ} (8)

Oi(t
+) = {e ∈ Oi(t)|ts

′(e) ≤ τ, ts′(e) ≥ τ} (9)

Xi(t
+) = {x ∈ xi(t)|ts(x) ≤ τ, ts(x) ≥ τ−

i } = {x(τ)} or {x(τ−
i)} (10)

Based on Theorem 1, Ψ(τ, t+) = Ψ(τ, t) = {e ∈ Ψ|ts(e) = τ}. After t+, no new messages with

timestamps τ will be created, and none of the events in Ψ(τ, t+) will be cancelled. There are three

cases:

Case I GV T (t) > τ . From Definition 2, executions of all e ∈ Ψ(τ, t) have been completed by time

t. Thus, (9) implies that

Oi(t
+) = {e ∈ Oi(t)|ts

′(e) = τ} =
⋃

e∈Ψi(τ,t)

ψ−(e) (11)

Note that if Ψi(τ, t) = ∅, then
⋃

e∈Ψi(τ,t) ψ−(e) = ∅.

From Corollary 2 and (8), Ii(t
+) = Ii,τ (t) = {e ∈ Ψi|ts

′(e) ≤ τ, ts(e) ≥ τ}. Thus,

⋃

1≤i≤K

Ii(t
+) = {e ∈ Ψ|ts′(e) ≤ τ, ts(e) ≥ τ}

= {e ∈ Ψ|ts′(e) < τ, ts(e) ≥ τ} ∪ {e ∈ Ψ|ts′(e) = τ}

= E(τ)
⋃

⋃

e∈Ψ(τ,t)

ψ+(e)

 (12)

Note that Xi(t
+) = {xi(τ

−
i)} or {xi(τ)} but not both. From (10), (11) and (12), and because

|ψ−(e)| = |ψ+(e)|, we have

Mtw(t+) =

∣

∣

∣

∣

∣

∣

⋃

1≤i≤K

Xi(t
+)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

1≤i≤K

Ii(t
+)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

1≤i≤K

Oi(t
+)

∣

∣

∣

∣

∣

∣

= M+
tw(τ)

Case II τ = GV T (t) and none of events e ∈ Ψ(τ, t) have been executed at time t. We have

∀e ∈ Oi(t) ⇒ ts′(e) < τ (13)

16

From (9) and (13),

Oi(t
+) = {e ∈ Oi(t)|ts

′(e) < τ, ts′(e) ≥ τ} = ∅ (14)

From (8) and Corollary 2, Ii(t) = {e ∈ Ψi|ts
′(e) < τ, ts(e) ≥ τ}, which implies

⋃

1≤i≤K

Ii(t) = {e ∈ Ψ|ts′(e) < τ, ts(e) ≥ τ} = E(τ) (15)

From (10), (14), and (15), we have Mtw(t+) = M−
tw(τ).

Case III τ = GV T (t) and some (but not all) events in Ψ(τ, t) have been executed. The amount of

memory consumed at t+ is between that in Case I and Case II; that is, M−
tw(τ) ≤ Mtw(t+) ≤

M+
tw(τ).

From Cases I, II, and III, we have M−
tw(τ) ≤Mtw(t+) ≤M+

tw(τ).

Note that even if Mtw(t+) < M+
tw(τ), the Time Warp simulation needs storage no less than M+

tw(τ)

to advance GVT after t+. Thus, the minimal amount of storage required to complete a Time Warp

simulation is

Mtw,min = max
∀τ

M+
tw(τ) (16)

Since Ms = max
∀τ

Ms(τ), from (5) and (16), and let C1 and C2 be two constants, we have

Mtw,min = C1Ms + C2 (17)

In other words, if we perform artificial rollback frequently, then the space complexity of a Time

Warp simulation is O(Ms), the same as the corresponding sequential simulation. Note that C1 and

C2 are small. If the size of a message in Time Warp is the same as the size of an event in sequential

simulation, then C1 = 1.

However, several issues must be considered in implementing the artificial rollback protocol:

Issue 1 When to perform artificial rollback.

Issue 2 Which process to roll back.

Issue 3 How far to roll back.

17

For Issue 1, a natural choice is to perform artificial rollback when the amount of free storage is not

large enough to satisfy the request of a process at time t. Thus, in this paper we define a Time

Warp simulation with artificial rollback as follows.

Definition 6 In a Time Warp simulation with artificial rollback (TWAR), a system AR (cf. Def-

inition 5) is invoked with timestamp GV T (t) at time t if and only if F (t) is not large enough to

satisfy the request of a process at t.

Let M be the amount of storage available for the simulation.

Constraint 1 If M ≥ Mtw,min then TWAR eventually completes.

Constraint 2 If M < Mtw,min then TWAR terminates when the system exhausts storage.

If both Constraints 1 and 2 are satisfied, then from (17), a TWAR is optimal. With arbitrary

decisions for Issues 2 and 3, TWAR may be trapped in an infinite loop (either Constraint 1 or

Constraint 2 is not satisfied) or TWAR may terminate due to false “memory exhaustion” detection

(i.e., Constraint 1 is not satisfied).

Definition 7 A TWAR implementation is correct if and only if both Constraints 1 and 2 are

satisfied.

Now we propose an approach to implement a correct TWAR. Consider Constraint 1.

Lemma 7 If M ≥ Mtw,min then Constraint 1 is satisfied if and only if when a process with local

clock GV T requests storage, it is eventually satisfied.

Proof: TWAR eventually completes ⇔ if a process requests storage, it is eventually satisfied ⇔ if

a process pi with local clock GV T requests storage, it is eventually satisfied.

Consider a TWAR. Suppose that a process pi executes an event e at time t. Let ∆i(t) be the total

amount of storage required to complete the execution for e after (and including) t, and let δi(t) be

the amount of storage requested by process pi at time t. If pi does not need any storage at t then

δi(t) = 0. If pi requests storage, then it can only request the amount for one process state or one

message at a time; i.e., δi(t) = |xi(t)| = |xi| or |e| (we assume that the sizes of all messages in the

18

Time Warp simulation are the same). Thus, δi(t) ≤ ∆i(t), and if the free storage is sufficient large,

then there exists t′ ≥ t such that δi(t
′) = ∆i(t

′) (i.e., if pi’s request is satisfied at time t′, then after

t′, pi will not require any storage to complete e’s execution). If the execution of e is started at t,

then ∆i(t) = |xi(t)|+ |ψ
+(e)|+ |ψ−(e)| = |xi(t)|+2|ψ+(e)|. Let P(τ, t) be the set of processes that

execute events e ∈ Ψ(τ, t). Suppose that a system AR is performed with τ = GV T (t) at time t and

all processes roll back to GV T (t). If the system AR is completed at time t+, then

Mtw(t+) +
∑

pi∈P(τ,t)

∆i(t) = M+
tw(GV T (t)) (18)

Let P (t) be the set of processes that request memory when a system AR is performed at time t.

Let PGV T (t) = {pi|pi ∈ P (t), cki(t) = GV T (t)}. (That is, PGV T (t) = P (t) ∩ P(GV T (t), t).) For a

process pj with ckj(t) 6= GV T (t), its memory request is not critical to the progress of Time Warp.

Thus,
∑

pi∈PGV T (t)

δi(t) = δ(t).

Definition 8 A system AR performed at time t is effective if and only if (i) the AR is with

timestamp GV T (t) (i.e., the fossil collection is performed up to GV T (t)) and (ii) after the AR is

performed (i.e., at time t+)

F (t+) ≥
∑

pi∈PGV T (t)

δi(t) = δ(t)

From Definition 8 and Lemma 7, we have the following lemma.

Lemma 8 A TWAR satisfies Constraint 1 if every system AR is effective and after the AR is

performed, all processes pi ∈ PGV T (t) obtain storage first.

Definition 9 Let α = max

[

max
1≤i≤K

(|xi|), |e|

]

. A system AR performed at time t is strong if (i)

F (t+) ≥ Kα or (ii) F (t+) < Kα and all processes are rolled back to GV T (t).

Note that a process cannot request more storage than α units at a time.

Definition 10 A Time Warp simulation with strong artificial rollback (TWSAR) is a TWAR such

that for all t, any system AR performed at t is strong, and all processes in PGV T (t) obtain storage

first after the AR is performed.

19

Lemma 9 Consider a TWAR. If M ≥Mtw,min then a strong system AR is effective.

Proof: Suppose that a system AR is performed at time t. Since δi(t) ≤ α for all pi ∈ PGV T (t), we

have
∑

pi∈PGV T (t)

δi(t) ≤ Kα. If F (t+) ≥ Kα then F (t+) ≥
∑

pi∈PGV T (t)

δi(t) and the AR is effective.

Suppose that F (t+) < Kα, then all processes are rolled back to GVT(t) (Definition 9). From (18),

we have

Mtw(t+) +
∑

pi∈PGV T (t)

δi(t) ≤Mtw(t+) +
∑

pi∈PGV T (t)

∆i(t) = M+
tw(τ) ≤ Mtw,min

Since Mtw(t+) = M − F (t+), and M ≥ Mtw,min, we have F (t+) ≥
∑

pi∈PGV T (t)

δi(t) and the AR is

effective.

From Definition 10 and Lemmas 8 and 9, we have

Lemma 10 TWSAR satisfies Constraint 1.

Now we show that TWSAR satisfies Constraint 2.

Lemma 11 Consider a TWSAR. A strong system AR is not effective if and only if M < Mtw,min.

Proof: Lemma 9 shows that, in TWSAR, if a system AR is not effective then M < Mtw,min. We

only need to prove that a system AR is not effective if M < Mtw,min. Since M < Mtw,min, there

exists τ ′ such that

M−
tw(τ ′) ≤M < M+

tw(τ ′) (19)

Let τ be the earliest timestamp that satisfies (19). Then M ≥ M+
tw(τ ′′) for all τ ′′ < τ . From

Lemma 10, TWSAR progresses until GV T (t) = τ for some time t. Suppose that a strong system

AR is performed at time t. Since M < M+
tw(τ), we have F (t+) <

∑

pi∈PGV T (t)

∆i(t). Thus, at some

time t′ ≥ t after a finite number of strong system ARs have been performed, we have F (t′+) <
∑

pi∈PGV T (t′)

δi(t
′), and the last AR is not effective.

Since we can easily test whether a system AR is effective in TWSAR, memory exhaustion can be

effectively detected. Thus, from Lemmas 10 and 11, we have

20

Theorem 2 Every TWSAR is correct.

Theorem 2 suggests one way to implement a Time Warp simulation with the space complexity of

O(Ms) in a shared memory architecture. However, TWSAR cannot guarantee constant bounded

memory usage in a distributed environment. In such an environment, we assume that there are

J sites. In site j, where 1 ≤ j ≤ J , Lj processors execute Kj processes, where
∑

1≤j≤J

Lj = L

and
∑

1≤j≤J

Kj = K. Theoretically, we can find a modified AR protocol with space complexity

O(JMs). However, to achieve this space complexity, intensive synchronizations among sites may

be required, which may significantly increase the time complexity. Thus, instead of proposing

an optimal memory management protocol, we describe a simple protocol similar to the TWSAR

for the shared memory architecture: The strong system AR is performed within a site, and α is

replaced by αj = max

[

max
pi∈Pj

(|xi|), |e|

]

, where Pj is the set of processes executed in site j. If a

strong system AR within a site is not effective, then the processor exhausts its memory and the

simulation terminates.

5 An Implementation for the Artificial Rollback Protocol

This section gives one implementation for the artificial rollback protocol in a shared memory ar-

chitecture. In this implementation, artificial rollback is integrated with a non-work-conserving

processor scheduling algorithm to avoid the busy cancelback phenomenon in the cancelback pro-

tocol. In this policy, the number of active processors is dynamically adjusted according to the

amount of free storage in the system. The variables used in the algorithm are listed in Table 1. A

global variable is accessed atomically in an atomic operation. A global variable can be accessed

simultaneously by two processes if each of them executes a non-atomic operation (usually a “read”

to the variable), and no other process accesses the variable via an atomic operation. Constants L

and K represent the numbers of processors and processes respectively, where L ≤ K. Variable F

represents the amount of free storage in the system. Every processor runs a schedule procedure (cf.

Figure 4) independently until the simulation completes (i.e., the variable eos=true in Line S1; eos

is set true when distributed termination condition is detected by some algorithm) or the system

exhausts memory (i.e., fail = true; fail is set true when variable success = false in Line R11,

Figure 5). If the simulation terminates due to memory exhaustion, then all processes are killed

21

α, β [constant] α is the maximal amount of storage that a process may request at a time. β = Kα.

bi [global] bi = on iff process pi requests storage when it enters the AR mode.

ck+(Q) [local] The largest local clock of processes in Q.

eos [global] eos = true iff the simulation completes.

F [global] The amount of free storage in the system.

fail [global] fail = true iff the memory is exhausted.

flagar [global] flagar = true iff the system is in the AR mode.

GV T [global] The computed global virtual time.

l [global] The number of processors that have entered the AR mode.

n [local] The amount of storage requested by a process. n ≤ α.

pid, prid [local] pid is the id of a process, and prid is the id of a processor.

PGV T [global] PGV T = {i|cki = GV T, bi = on}.

Q0 [local] Q0 = {pi ∈ Q1|cki ≥ ckj , ∀pj ∈ Q1}

Q1 [global] The set of processes that have not been selected to (artificially) roll back.

Q2 [local] The set of processes selected to roll back.

Q3 [global] The set of processes in Q2 that have not been rolled back to ck+(Q1).

Qe, Qr [global] pi is in Qe iff it is being executed by some processor. Otherwise, it is in Qr.

success [local] success = true iff the memory request of a process is satisfied.

Table 1: The variables used in procedures request, schedule and AR.

22

(cf. Line S13). A process pi belongs to one of the two sets Qe and Qr. Process pi is in Qe if it

is being executed by some processor. Otherwise, it is in Qr. The select operation (cf. Line S2)

removes a process from Qr. The process is executed by a processor (i.e., the process joins the set

Qe). The execute operation (cf. Line S9) executes a process according to the Time Warp protocol.

The completion of the execute operation depends on the processor scheduling policy used. For

example, in a round-robin policy, the process returns the control to the scheduler when the time

quantum expires. A process may also give up the control when it invokes the procedure block (cf.

Line R7). A processor is in one of four modes:

Normal rollback (NR) mode. (Lines S2-S3) The processor always executes a process that will

perform roll back (if any); that is, the processes that receive stragglers have highest priority

to execute. After a process rolls back, it returns control to the scheduler.

Artificial rollback (AR) mode. (Lines S5-S6) If the system cannot satisfy the memory request

of a process (i.e., flagar = true in Line S4; flagar is set true if the system cannot allocate

enough storage for a process; cf. Lines R4, R5, and R6 in Figure 5), then the procedure AR

is invoked to (artificially) roll back some processes to reclaim more storage.

Aggressive execution (AE) mode. (Lines S8-S9) If the amount of free storage F is above a

threshold β then all processors are active. In our design, β = Kα where α = max

[

max
1≤i≤K

(|xi|), |e|

]

.

Conservative execution (CE) mode. If F < β, then the number of active processors is
⌈

F
α

⌉

.

The priorities for the executions of the modes are NR > AR > AE (CE). When a process needs n

units of memory, it executes the procedure request (cf. Figure 5). Normally, PGV T = ∅ (we will

discuss R0 later). Consider Line R1. If F ≥ n then the allocate procedure satisfies the request, and

assigns success the value true. Otherwise, fossil collection is performed (Line R3). If F < n after

fossil collection, then some processes must be (artificially) rolled back to make more room. The

process sets flagar = true (Line R6) which forces the system to enter the AR mode. The process

blocks itself at Line R7 (i.e., the process gives up the execution right and is queued on Qr). In the

AR mode, all processors stop executing processes. Instead, they cooperate to roll back processes

(i.e., all processors execute Lines S5-S6 eventually). The system exits from the AR mode if

(i) F > β, or

23

schedule()
/* Initially eos = fail = false, l = 0 and flagar = false */
S1 while (not eos) and (not fail) do
S2 atomic select a process pi with a straggler message;
S3 if pi exists then roll back pi; /* normal rollback mode */
S4 elseif flagar = true then /* artificial rollback mode */
S5 atomic l = l + 1;
S6 AR();
S7 elseif F ≥ β then /* aggressive execution mode */
S8 atomic select a process pi;
S9 execute pi;

S10 elseif atomic |Qe| < dF
α
e then /* conservative execution mode */

S11 atomic select a process pi;
S12 execute pi;

end if;
end while
if fail then kill all processes;

Figure 4: The schedule procedure.

(ii) all processes except the ones with the smallest local clocks have been rolled back.

In other words, a strong system AR is completed when the system transfers from the AR mode to

the AE/CE mode. Let us consider the AR mode in detail. When a processor enters the AR mode,

the variable l increments by 1 (cf. Line S5 in Figure 4), and the procedure AR is invoked (cf. Line

S6). Before a processor executes Line A3, it makes sure that all the other processors are in the AR

mode (i.e., l = L at Line A1, and all processes are in Qr).

In the procedure AR, Q1 is the set of processes that have not yet been selected to (artificially) roll

back, and Q2 is the set of processes selected to roll back. Thus, Q1 ∪ Q2 = Qr and Q1 ∩ Q2 = ∅.

Initially, Q2 is empty (before Procedure AR is executed), and Q1 ← Qr (Line A3). The processor

with processor id pr id = 1 is the coordinator that determines the set of processes to be rolled

back. In Lines A4-A5, the set Q0 of processes with the largest local clocks in Q1 are moved to Q2.

Then all processes in Q2 are rolled back to the timestamp ck+(Q1), the largest local clock of any

process in Q1. This procedure continues until either conditions (i) or (ii) are satisfied. The set Q3

consists of processes in Q2 that have not been rolled back to ck+(Q1). Before Line A7 is executed,

Q3 is empty. At Line A7, Q3 ← Q2. The remove function atomically removes a process pi from

24

/* At the beginning of the simulation, PGV T = ∅, fail = flagar = false, and bi = off */
/* Variable success is an output parameter returned by request */
request(n)
R0 while PGV T 6= ∅ do nop;
R1 allocate(n, success);/* success is an out parameter */
R2 while not success do
R3 compute GV T and perform fossil collection;
R4 allocate(n, success);
R5 if not success then
R6 bi = on; flagar = true;
R7 block();
R8 if PGV T = ∅ then allocate(n, success);
R9 elseif p id ∈ PGV T then
R10 allocate(n, success);
R11 if not success then fail = true;
R12 else atomic PGV T = PGV T − {p id};
R13 else
R14 while PGV T 6= ∅ do nop;
R15 allocate(n, success);

end if;
R16 bi = off ;

end if;
end while

Figure 5: The procedure request.

25

AR()
/* Initially, Q2 = Q3 = ∅, and PGV T = ∅ */

A1 while l < L do nop;
A2 if pr id = 1 then /* the coordinator */
A3 Q1 = Qr;
A4 Q0 = {pi ∈ Q1|cki ≥ ckj , ∀pj ∈ Q1};
A5 move Q0 from Q1 to Q2;
A6 while (F < β) and (|Q1| > 1) do
A7 atomic Q3 = Q2;
A8 while atomic remove(pi, Q3) do roll back pi to ck+(Q1);

/* Q3 = ∅ */
A9 Q0 = {pi ∈ Q1|cki ≥ ckj , ∀pj ∈ Q1};
A10 move Q0 from Q1 to Q2;

end while;
A11 Q2 = ∅;
A12 l = 0;
A13 PGV T = {i|cki = GV T and bi = on};
A14 flagar = false;

else /* a process other than the coordinator */
A15 while flagar do
A16 while atomic remove(pi, Q3) do roll back pi to ck+(Q1);

end while;
end if

Figure 6: The procedure AR.

26

Q3. This function returns true if pi exists, otherwise it returns false. The coordinator (Line A8)

and the other processors (Line A16) roll back all processes in Q2. When the coordinator executes

Lines A9-A10 and A6-A7, Q3 is empty, and the other processors keep testing the condition at Line

A16 and do nothing. After the coordinator exits from the loop A6-A10, Q2 ← ∅ and l ← 0 (Lines

A11 and A12) and flagar ← false (Line A14; we will elaborate more on Line A13 later). At Line

A15, flagar = false, all processors leave the AR mode and enter the execution mode.

The bit bi is on if pi blocks itself when the system enters the AR mode (Line R6). The variable

PGV T represents the set of the processes that have local clocks GV T 6 when they execute Line R3. It

is not difficult to see that these processes resume their executions at Line R8. The blocked processes

re-execute the allocate procedure (Lines R8-R15). If F < n, then the while loop (Lines R2-R15)

repeats, or the process announces memory exhaustion (Line R11), and terminates the simulation.

In Lines R8-R15, processes in PGV T must obtain memory first (cf. Definition 10). Thus a process

not in PGV T must wait until the processes in PGV T are all served (Lines R0 and R14). (Note that a

process that executes R0 is not in PGV T). If a process in PGV T cannot obtain the amount of storage

it needs, then the simulation exhausts memory (cf. Lemma 11) and terminates. Note that if there

is enough free storage, then the execution of request is very efficient. In such a case, PGV T = ∅ in

Line R0, the while loop is executed once, and the process exits from the request procedure after

R1 is executed.

6 Conclusion

This paper studied the space complexity of parallel simulation. The goal is to design an efficient

optimal memory management protocol which guarantees that the memory consumption of parallel

simulation is of the same order as sequential simulation. We first derived the relationships among the

space complexities of sequential simulation, Chandy-Misra simulation, and Time Warp simulation.

We showed that Chandy-Misra may consume more storage than sequential simulation, or vice versa.

Then we showed that Time Warp never consumes less memory than sequential simulation. Then we

describe cancelback, a previously proposed optimal memory management protocol for Time Warp.

Although cancelback is considered as a complete solution for the storage management problem in

Time Warp, some efficiency issues in implementing this algorithm must be considered. In this

6GV T is the global virtual time computed at Line R3, not the current global virtual time.

27

paper, we proposed an optimal algorithm called artificial rollback. We showed that our algorithm

is easy to implement and analyze. An implementation of artificial rollback was given, which is

integrated with processor scheduling to adjust memory consumption rate based on the amount of

free storage available in the system.

With the artificial rollback protocol, Time Warp is able to reduce the amount of memory used in

parallel simulation (while other simulation approaches such as the Chandy-Misra protocol cannot).

However, the progress of the simulation may degrade. The trade-off between time and space is still

an open question. Several Studies [1, 25] have been conducted to investigate this issue.

Acknowledgement

We would like to thank Ian Akyildiz, Richard Fujimoto, Will Leland, David Jefferson, Victor Mak,

Peter Reiher, and the four anonymous reviewers for their valuable comments.

References

[1] Akyildiz, I.F., Chen, L., Das, S.R., Fujimoto, R.M., Serfozo, R.F. Performance Analysis of

Time Warp with Limited Memory. To appear in 1992 ACM Sigmetrics Conf. on Measurement

and Modeling of Computer Systems.

[2] Chandy, K.M., and Misra, J. Distributed Simulation: A Case Study in Design and Verifica-

tion of Distributed Programs. IEEE Transactions on Software Engineering, SE-5(5):440–452,

September 1979.

[3] Fujimoto, R.M. Performance Measurements of Distributed Simulation Strategies. Transactions

of the Society for Computer Simulation, 6(2):89–132, April 1989.

[4] Fujimoto, R.M. Time Warp on a Shared Memory Multiprocessor. Proc. 1989 International

Conference on Parallel Processing, Volume III:242–249, August 1989.

[5] Fujimoto, R.M. Parallel Discrete Event Simulation. Communications of the ACM, 33(10):31–

53, October 1990.

[6] Gafni, A. Rollback Mechanisms for Optimistic Distributed Simulation. Proc. 1988 SCS Mul-

ticonference on Distributed Simulation, pages 61–67, February 1988.

28

[7] Jefferson, D. Virtual Time. ACM Transactions on Programming Languages and Systems,

7(3):404–425, July 1985.

[8] Jefferson, D. Virtual Time II: The Cancelback Protocol for Storage Management in Time

Warp. Proc. 9th Annual ACM Symposium on Principles of Distributed Computing, pages

75–90, August 1990.

[9] Jefferson, D. Private communication. 1991.

[10] Kaudel, F. J. A Literature Survey on Distributed Discrete Event Simulation. Simuletter,

18(2):11–21, June 1987.

[11] Lin, Y.-B., and Lazowska. Design Issues on Optimistic Distributed Simulation. Submitted for

publication, 1991.

[12] Lin, Y.-B., and Lazowska, E.D. Determining the Global Virtual Time in a Distributed Simu-

lation. Proc. International Conference on Parallel Processing, III:201–209, 1990.

[13] Lin, Y.-B., and Lazowska, E.D. Exploiting Lookahead in Parallel Simulation. IEEE Transac-

tions on Parallel and Distributed Systems, 1(4):457–469, October 1990.

[14] Lin, Y.-B., and Lazowska, E.D. Optimality Considerations for Time Warp Parallel Simulation.

Proc. 1990 SCS Multiconference on Distributed Simulation, pages 29–34, January 1990.

[15] Lin, Y.-B., and Lazowska, E.D. A Study of Time Warp Rollback Mechanisms. ACM Trans-

actions on Modeling and Computer Simulation, 1(1), 1991.

[16] Lin, Y.-B., and Lazowska, E.D. A Time-Division Algorithm for Parallel Simulation. ACM

Transactions on Modeling and Computer Simulation, 1(1), 1991.

[17] Lin, Y.-B., Lazowska, E.D., and Baer, J.-L. Conservative Parallel Simulation For Systems With

No Lookahead. Technical Report 89-07-07, Department of Computer Science and Engineering,

University of Washington, July 1989.

[18] Lin, Y.-B., Lazowska, E.D., and Bailey, M.L. Comparing Synchronization Protocols for Parallel

Logic-Level Simulation. Proc. International Conference on Parallel Processing, III:223–227,

1990.

29

[19] Lipton, R.J., and Mizell, D.W. Time Warp vs. Chandy-Misra: A Worst-Case Comparison.

Proc. 1990 SCS Multiconference on Distributed Simulation, pages 137–143, January 1990.

[20] Loucks, W.M., and Preiss, B.R. The Role of Knowledge in Distributed Simulation. Proc. 1990

SCS Multiconference on Distributed Simulation, pages 9–16, January 1990.

[21] Madisetti, V., Walrand, J., and Messerschmitt, D. Synchronization in Message-passing Com-

puters – Models, Algorithms, and Analysis. Proc. 1990 SCS Multiconference on Distributed

Simulation, pages 35–48, January 1990.

[22] Misra, J. Distributed Discrete-Event Simulation. Computing Surveys, 18(1):39–65, March

1986.

[23] Nicol, D.M. Parallel Discrete-Event Simulation of FCFS Stochastic Queueing Networks. Proc.

ACM SIGPLAN Symposium on Parallel Programming: Experience with Applications, Lan-

guages, and Systems, pages 124–137, 1988.

[24] Preiss, B.R. Performance of Discrete Event Simulation on a Multiprocessor Using Optimistic

and Conservative Synchronization. Proc. International Conference on Parallel Processing,

III:218–222, 1990.

[25] Preiss, B.R., MacIntyre, I.D., and Loucks, W.M. On the Trade-off between Time and Space in

Optimistic Parallel Discrete-Event Simulation. Proc. 6th Workshop on Parallel and Distributed

Simulation, 1992.

[26] Reynolds, P.F. Heterogeneous Distributed Simulation. Proc. 1988 Winter Simulation Confer-

ence, pages 206–209, December 1988.

[27] Righter, R., and Walrand, J.C. Distributed Simulation of Discrete Event Systems. Proceedings

of the IEEE, 77(1), January 1989.

[28] Samadi, B. Distributed Simulation, Algorithms and Performance Analysis. PhD thesis, Com-

puter Science Department, University of California, Los Angeles, 1985.

[29] Wagner, D.B., and Lazowska, E.D. Parallel Simulation of Queueing Networks: Limitations and

Potentials. Proc. 1989 ACM SIGMETRICS and Performance ’89 Conference, pages 146–155,

1989.

30

A Notation

This section serves as an index to the notation used in this paper. Every notation is followed by

either s (sequential), cm (Chandy-Misra), or tw (Time Warp) which indicates the protocol where

the notation is defined.

| · | [s,cm,tw] | · | is the amount of memory required to store the item “·”.

α [tw] α = max

[

max
1≤i≤K

(|xi|), |e|

]

.

cki(t) [tw] cki(t) is the local clock of process pi at time t or the timestamp of the event

executed by pi at time t.

∆i(t) [tw] Suppose that an event e is executed by process pi at time t. ∆i(t) is the

total amount of storage required by pi to complete the execution for e after (and

including) t.

δi(t) [tw] Suppose that an event e is executed by process pi at time t. δi(t) is the amount

of storage requested by process pi at time t. If pi does not need any storage at t

then δi(t) = 0. If pi requests storage, then it can only request the amount for one

process state or one message at a time; i.e., δi(t) = |xi| or |e|.

δ(t) [tw] δ(t) is the minimal amount of storage required to make the Time Warp sim-

ulation progress at time t. δ(t) =
∑

pi∈PGV T (t)

δi(t).

e [s,cm,tw] e is an event.

E(τ) [s] E(τ) = {e ∈ Ψ|ts′(e) < τ, ts(e) ≥ τ}.

F (t) [tw] F (t) is the amount of free storage available for Time Warp simulation at time

t.

Γp, Γ [tw] Γp is the set of items in process p with send times larger than GVT in Time

Warp, and Γ =
⋃

∀p

Γp.

31

GV T (t) [tw] GV T (t) is the global virtual time of Time Warp at time t.

Ii(t) [cm,tw] Ii(t) is the set of events scheduled for pi at time t; i.e., the events already

in pi’s input queue, and the events that have been sent from other processes, but

not yet received by pi.

Ii,τ (t) [tw] For τFC(t) ≤ τ ≤ GV T (t), Ii,τ (t) = {e ∈ Ψi|ts
′(e) < τ, ts(e) ≥ τFC(t)}.

K [s,cm,tw] K is the number of processes in the simulation.

L [cm,tw] L is the number of processors in the simulation.

M−
tw(τ) [tw] M−

tw(τ) =
∑

1≤i≤K

|xi|+ |E(τ)|.

M+
tw(τ) [tw] M+

tw(τ) =
∑

1≤i≤K

|xi|+ |E(τ)|+ 2

∣

∣

∣

∣

∣

∣

⋃

e∈Ψ(t)

ψ+(e)

∣

∣

∣

∣

∣

∣

.

Mtw,min [tw] Mtw,min = max∀τ M+
tw(τ).

M [s,cm,tw] M is the amount of storage available for the simulation.

Ms(τ) [s] Ms =

⋃

1≤i≤K

xi(τ
−
i), E(τ)

 is the sequential snapshot at simulation time τ .

Mcm(t) [cm] Mcm(t) =
⋃

1≤i≤K

[xi(t), Ii(t), Oi(t)] is a snapshot of Chandy-Misra at t.

Mtw(t) [tw] Mtw(t) =
⋃

1≤i≤K

[xi(t), Ii(t), Oi(t)] is the snapshot of Time Warp at t.

Ms(τ), Ms [s] Ms(τ) = |Ms(τ)| and Ms = max
∀τ

Ms(τ).

Mcm [cm] Mcm = max
∀t
|Mcm(t)|.

Mtw(t), Mtw [tw] Mtw(t) = |Mtw(t)|, and Mtw = max
∀t

Mtw(t).

Oi(t) [cm,tw] Oi(t) is the output queue of process pi at time t.

32

pi [s,cm,tw] pi is a process in simulation.

P (t) [tw] P (t) is the set of processes that request memory when a system AR is per-

formed at time t.

PGV T (t) [tw] PGV T (t) = {pi|pi ∈ P (t), cki(t) = GV T (t)}.

P(τ, t) [tw] P(τ, t) is the set of processes that execute events e ∈ Ψ(τ, t).

τ−
i [s,tw] τ−

i = ts(e) such that e ∈ Ψi, τ−
i < τ , and for all e′ ∈ Ψi, ts(e′) < τ ⇒

ts(e′) ≤ τ−
i .

ψ+(e) [s,tw] ψ+(e) is the set of events scheduled due to the execution of event e.

ψ−(e) [tw] ψ−(e) is the set of negative messages created due to the execution of event

e. I.e., ψ−(e) = {e−|e− is the antimessage of e+ and e+ ∈ ψ+(e)}. Note that

|ψ−(e)| = |ψ+(e)|.

Ψi(τ, t), Ψ(τ, t) [tw] Ψi(τ, t) = {e ∈ Ii(t), ts(e) = τ}. Ψ(τ, t) =
⋃

1≤i≤<K Ψi(τ, t).

Ψi, Ψ [s] Ψi is the set of events executed by pi in the sequential simulation. Ψ =
⋃

1≤i≤K Ψi.

τFC(t) [tw] At time t, fossil collection is performed up to simulation time τFC(t) ≤

GV T (t).

t+ [tw] In the artificial rollback protocol, if a fossil collection is performed up to

simulation time τ , and all processes are artificially rolled back to τ at time t, then

the fossil collection and artificial rollback are completed at time t+.

ts(e) [s,cm,tw] ts(e) is the timestamp of event e.

ts′(e) [s,cm,tw] ts′(e) is the send time of e. If the scheduling of e is due to the execution

of e0, then ts′(e) = ts(e0).

33

ts(x) [tw] The timestamp of the process state x. ts(x) = ts(e) if the process state of pi

is x after it executes an event e.

xi(τ) [s] xi(τ) is the state of process pi after it has executed all events with timestamps

no later than τ in the sequential simulation.

xi(t) [cm,tw] xi(t) is the state of process pi at time t.

|xi| [s,tw] |xi| is the amount of memory required to store a state of process pi.

Xi(t) [tw] Xi(t) is the set of states in the state queue of process pi at time t.

34

