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Abstract

We propose a framework for ensuring safe behavior of a reinforcement learning agent when the reward function may
be difficult to specify. In order to do this, we rely on the existence of demonstrations from expert policies, and we provide
a theoretical framework for the agent to optimize in the space of rewards consistent with its existing knowledge. We
propose two methods to solve the resulting optimization: an exact ellipsoid-based method and a method in the spirit of the
"follow-the-perturbed-leader" algorithm. Our experiments demonstrate the behavior of our algorithm in both discrete and
continuous problems. The trained agent safely avoids states with potential negative effects while imitating the behavior of
the expert in the other states.

1 Introduction
In Reinforcement Learning (RL), agent behavior is driven by an objective function defined through the specification of
rewards. Misspecified rewards may lead to negative side effects [2], when the agent acts unpredictably responding to the
aspects of the environment that the designer overlooked, and potentially causes harms to the environment or itself. As the
environment gets richer and more complex, it becomes more challenging to specify and balance rewards for every one of
its aspects. Yet if we want to have some type of safety guarantees in terms of the behavior of an agent learned by RL once
it is deployed in the real world, it is crucial to have a learning algorithm that is robust to mis-specifications.

We assume that the agent has some knowledge about the reward function either through past experience or demon-
strations from experts. The goal is to choose a robust/safe policy that achieves high reward with respect to any reward
function that is consistent with the agent’s knowledge. We formulate this as a maxmin learning problem where the agent
chooses a policy and an adversary chooses a reward function that is consistent with the agent’s current knowledge and
minimizes the agent’s reward. The goal of the agent is to learn a policy that maximizes the worst possible reward.

We assume that the reward functions are linear in some feature space. Our formulation has two appealing properties:
(1) it allows us to combine demonstrations from multiple experts even though they may disagree with each other; and (2)
the training environment/MDP in which the experts operate need not be the same as the testing environment/MDP where
the agent will be deployed, our results hold as long as the testing and training MDPs share the same feature space. As an
application, our algorithm can learn a maxmin robust policy in a new environment that contains a few features that are not
present in the training environment. See our gridworld experiment in Section 5.

Our first result (Theorem 1) shows that given any algorithm that can find the optimal policy for an MDP in polynomial
time, we can solve the maxmin learning problem exactly in polynomial time. Our algorithm is based on a seminal result
from combinatorial optimization – the equivalence between separation and optimization [8, 13] – and the ellipsoid method.
To understand the difficulty of our problem, it is useful to think of maxmin learning as a two-player zero-sum game
between the agent and the adversary. The deterministic policies correspond to the pure strategies of the agent. The
consistent reward functions we define in Section 3 form a convex set and the adversary’s pure strategies are the extreme
points of this convex set. Unfortunately, both the agent and the adversary may have exponentially many pure strategies,
which are hard to describe explicitly. This makes solving the two-player zero-sum game challenging. Using tools from
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combinatorial optimization, we manage to construct separation oracles for both the agent’s and the adversary’s set of
policies using the MDP solver as a subroutine. With the separation oracles, we can solve the maxmin learning problem in
polynomial time using the ellipsoid method.

Theorem 1 provides a polynomial time algorithm, but as it heavily relies on the ellipsoid method, it is computationally
expensive to run in practice. We propose another algorithm (Algorithm 3) based on the online learning algorithm –
followed-the-perturbed-leader (FPL), and show that after T iterations the algorithm computes a policy that is at most
O (1/

√
T) away from the true maxmin policy (Theorem 3). Moreover, each iteration of our algorithm is polynomial time.

Notice that many other low-regret learning algorithms, such as the multiplicative weights update method (MWU), are not
suitable for our problem. The MWU requires explicitly maintaining a weight for every pure strategy and updates them in
every iteration, resulting in an exponential time algorithm for our problem. Furthermore, we show that Algorithm 3 still
has similar performance when we only have a fully polynomial time approximation scheme (FPTAS) for solving the MDP.
The formal statement and proof are postponed to the supplemental material due to space limit.

Related Work In the sense of using expert demonstrations, our work is related to inverse reinforcement learning and
apprenticeship learning [17, 1, 20, 19]. In particular, the apprenticeship learning problem can also be formulated as a
maxmin problem [20, 19]. Despite the seemingly similarity, our maxmin learning problem aims to solve a completely
different problem than apprenticeship learning. Here is a simple example: the expert is consistent with two reward
functions w1 and w2 with ε = 25 1. The expert gets 100 under w1 and 70 under w2, and the only alternative policy
gives 90 and 90. Apprenticeship learning will return the expert policy while ours will return the latter solution. In
the worst case (under w2), our maxmin policy has better guarantees and thus is more robust. Unlike apprenticeship
learning/IRL, we do not want to mimic the experts or infer their rewards, but we want to produce a policy with robustness
guarantees by leveraging their data. As a consequence, our results are applicable to settings where the training and testing
environments are different (as discussed in the Introduction). Moreover, our formulation allows us to combine multiple
expert demonstrations.

Inverse reward design [9] uses a proxy reward and infers the true reward by estimating its posterior. Then it uses
risk-averse planning together with samples from the posterior in the testing environment to achieve safe exploration. Our
approach achieves a similar goal without assuming any distribution over the rewards and is arguably more robust. We
apply a single reward function to the whole MDP while they apply (maybe too pessimistically) per step/trajectory maxmin
planning. Furthermore, our algorithm is guaranteed to find the maxmin solution in polynomial time, and can naturally
accommodate multiple experts.

Robust Markov Decision Processes [18, 11] have addressed the problem of performing dynamic programming-
style optimization environments in which the transition probability matrix is uncertain. Lim, Xu & Mannor [15] have
extended this idea to reinforcement learning methods. This body of work also uses min-max optimization, but because
the optimization is with respect to worst-case transitions, this line of work results in very pessimistic policies. Our
algorithmic approach and flavor of results are also different. [16] have addressed a similar adversarial setup, but in which
the environment designs a worst-case disturbance to the dynamics of the agent, and have addressed this setup using H∞
control.

Paper Organization We introduce the notations and define the maxmin learning problem in Section 2. We provide
three different ways to define the set of consistent reward functions in Section 3, and present the ellipsoid-based exact
algorithm and its analysis in Section 4.1. The FPL-based algorithm and its analysis can be found in Section 4.2. We
provide experimental results in Section 5.

2 Preliminary
An MDP is a tuple M = (S,A, Psa, γ,D,R), including a finite set of states, S, a set of actions, A, and transition
probabilities, Psa. γ is a discount factor, and D is the distribution of initial states. The reward function R instructs the
learning process. We assume that the reward is a linear function of some vector of features φ: S → [0, 1]k over states.
That is R(s) = w · φ(s) for every state s ∈ S, where w ∈ Rk is called the reward weights of the MDP. Throughout the
paper, we use w∗ to denote the true reward weights and we assume that w∗ is unknown to the agent. We use 〈·〉 to denote
the bit complexity of an object. In particular, we use 〈M〉 to denote the bit complexity of an MDP M , which is the number

1See Section 3 for the formal definition of consistent rewards. Intuitively, it means that the expert’s policy yields a reward that is within ε of the
optimal possible reward.
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of bits required to represent the distribution of initial states, transition probabilities, the discount factor γ, and the rewards
at all the states. We use the notation M\R to denote a MDP without the reward function, and use 〈M\R〉 to denote its bit
complexity. We further assume that φ(s) can be represented using at most 〈φ〉 bits for any state s ∈ S.

An agent selects the action according to a policy π. The value of a policy under rewards w is Es0∼D[V π(s0)|M ] =
w · E[

∑∞
t=0 γ

tφ(st)|M,π]. It is expressed as the weights multiplied by the accumulated discounted feature value given a
policy, which we define as Ψ(π) = E[

∑∞
t=0 γ

tφ(st)|M,π].

MDP solver We assume that there is a RL algorithm ALG that takes an MDP as input and outputs an optimal
policy and its corresponding representation in the feature space. In particular, ALG(M) outputs (π∗, µ∗) such that
Es0∼D[V π

∗
(s0)|M ] = maxπ Es0∼D[V π(s0)|M ] and µ∗ = Ψ(π∗).

Maxmin Learning All weights that are consistent with the agent’s knowledge form a set PR. We will discuss several
formal ways to define this set in Section 3. The goal of the agent is to learn a policy that maximizes the reward for any
reward function that could be induced by weights in PR and adversarially chosen. More specifically, the max-min learning
problem is maxµ∈PF minw∈PR w

Tµ, where PF is the polytope that contains the representations of all policies in the
feature space, i.e. PF = {µ | µ = Ψ(π) for some policy π }. WLOG, we assume that all weights lie in [−1, 1]k.

Separation Oracles To perform maxmin learning, we often need to optimize linear functions over convex sets that are
intersections of exponentially many halfspaces. Such optimization problem is usually intractable, but if the convex set
permits a polynomial time separation oracle, then there exists polynomial time algorithms (e.g. ellipsoid method) that
optimize linear functions over it.

Definition 1. (Separation Oracle) Let P be a closed, convex subset of Euclidean space Rd. Then a Separation Oracle
for P is an algorithm that takes as input a point x ∈ Rd and outputs “YES” if x ∈ P , or a hyperplane (w, c) such that
w · y ≤ c for all y ∈ P , but w · x > c. Note that because P is closed and convex, such a hyperplane always exists
whenever x /∈ P .

3 Consistent Reward Polytope
In this section, we discuss several ways to define the consistent reward polytope PR.

Explicit Description We assume that the agent knows that the weights satisfy a set of explicitly defined linear inequalities
of the form c · w ≥ b. For example, such an inequality can be learned by observing that a particular policy yields a reward
that is larger or smaller than a certain threshold. 2

Implicitly Specified by an Expert Policy Usually, it may not be easy to obtain many explicit inequalities about the
weights. Instead, we may have observed a policy πE used by an expert. We further assume that the expert’s policy has a
reasonably good performance under the true rewards w∗. Namely, πE’s expected reward is only ε less than the optimal one.
Let the expert’s feature vector µE = Ψ(πE). The set PR therefore contains all w such that µE ·w ≥ µT ·w− ε,∀µ ∈ PF .
It is not hard to verify that under this definition PR is a convex set. Even though explicitly specifying PR is extremely
expensive as there are infinitely many µ ∈ PF , we can construct a polynomial time separation oracle SOR (Algorithm 1).
An alternative way to define PR is to assume that the expert policy can achieve (1− ε) of the optimal reward (assuming
the final reward is positive). We can again design a polynomial time separation oracle similar to Algorithm 1.

2Note that with a polynomial number of trajectories, one can apply standard Chernoff bounds to derive such inequalities that hold with high
probability. It is often the case that the probability is so close to 1 that the inequality can be treated as true always for any practical purposes.
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Algorithm 1 Separation Oracle SOR for the reward polytope PR
input w′ ∈ Rk

1: Let µw′ := argmaxµ∈PF µ · w
′. Notice that µw′ is the feature vector of the optimal policy under reward weights w′.

Hence, it can be computed by our MDP solver ALG.
2: if µw′ · w′ > µE · w′ + ε then
3: output “NO” , and (µE − µw′) ·w+ ε ≥ 0 as the separating hyperplane, since for all w ∈ PR, µE ·w ≥ µw′ ·w− ε.
4: else
5: output “YES”.
6: end if

Combining Multiple Experts How can we combine demonstrations of experts that come from drastically different
environments? Here is our model. For each environment i, there is a separate MDP Mi, and all the MDPs share the same
underlying weight as they are all about completing the same task although in different environments. The i-th expert’s
policy is nearly optimal in Mi. More specifically, we will assume that for expert i, her policy πEi is at most εi less than the
optimal policy in Mi. Therefore, each expert i provides a set of constraints that any consistent reward needs to satisfy, and
PR is the set of rewards that satisfy all constraints imposed by the experts. For each expert i, we can design a separation
oracle SO(i)

R (similar to Algorithm 1) that only accepts weights that respect the constraints given by expert i’s policy. We
can easily design a separation oracle for PR that only accepts weights that will be accepted by all separation oracles SO(i)

R .
From now on, we will not distinguish between the different ways to define and access the consistent reward polytope

PR, but simply assume that we have a polynomial time separation oracle for it. All the algorithms we design in this paper
only require access to this separation oracle. In Section 5, we will specify how the PR is defined for each experiment.

4 Maxmin Learning using an Exact MDP Solver
In this section, we show how to design maxmin learning algorithms. Our algorithm only interacts with the MDP through
the MDP solver, which can be either model-based or model-free. Our first algorithm solves the maxmin learning problem
exactly using the ellipsoid method. Despite the fact that the ellipsoid method has provable worst-case polynomial running
time, it is known to be inefficient sometimes in practice. Our second algorithm is an efficient iterative method based on the
online learning algorithm – follow-the-perturbed-leader (FPL).

4.1 Ellipsoid-Method-Based Solution
Theorem 1. Given a polynomial time separation oracle SOR for the consistent reward polytope PR and an exact
polynomial time MDP solver ALG, we have a polynomial time algorithm such that for any MDP without the reward
function M\R, the algorithm computes the maxmin policy π∗ with respect to M\R and PR.

The plan is to first solve the maxmin learning problem in the feature space then convert it back to the policy space.
Solving the maxmin learning problem in the feature space is equivalent to solving the linear program in Figure 1.

max z

subject to z ≤ µ · w, ∀w ∈ PR
µ ∈ PF

Figure 1: Maxmin Learning LP.

The challenges for solving the LP are that (i) it is not clear how to check whether µ lies in the polytope PF , and (ii)
there are seemingly infinitely many constraints of the type z ≤ µ · w as there are infinitely many w ∈ PR. Next, we show
that given an exact MDP solver ALG, we can design a polynomial time separation oracle for the set of feasible variables
(µ, z) of LP 1. With this separation oracle, we can apply the ellipsoid method (see Theorem 2 in the supplementary
material) to solve LP 1 in polynomial time.

The following theorem, reworded from [14, 8, 13], states that given a separation oracle of a convex polytope, the
ellipsoid method can optimize any linear function over the convex polytope in polynomial time.
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Theorem 2 (Ellipsoid Method). ([14, 8, 13]) Let P be a d-dimensional closed, convex subset of Rd defined as the
intersection of finitely many halfspaces, and SO be a poly-time separation oracle for P . Then it is possible to find an
element in argmaxx∈P {c · x} for any c ∈ Rd (i.e. solve linear programs) in time polynomial in d and 〈P 〉 using the
ellipsoid method, if P can be described implicitly using 〈P 〉 bits. 3

Next, we design a separation oracle for polytope PF by invoking a seminal result from optimization – the equivalence
between separation and optimization.

4.1.1 Separation Oracle for Polytope PF

Lemma 1 (Separation ≡ Optimization). [8, 13] Consider any convex polytope P = {x : Ax ≤ b} ∈ Rd and the
following two problems:
– Linear Optimization: given a linear objective c ∈ Rd, compute x∗ ∈ argmaxx∈P c · x
– Separation: given a point y ∈ Rd, decide that y ∈ P , or else find h ∈ Rd s.t. h · x < h · y, ∀x ∈ P .

If P can be described implicitly using 〈P 〉 bits, then the separation problem is solvable in poly(〈P 〉, d, 〈y〉) time for P
if and only if the linear optimization problem is solvable in poly(〈P 〉, d, 〈c〉) time.

It is not hard to see that if one can solve the separation problem, one can construct a separation oracle in polynomial
time and apply the ellipsoid method to solve the linear optimization problem. The less obvious direction in the result
above states that if one can solve the linear optimization problem, one can also use it to construct a separation oracle. The
equivalence between these two problems turns out to have profound implications in combinatorial optimization and has
enabled numerous polynomial time algorithms for many problems that are difficult to solve otherwise.

Our goal is to design a polynomial time separation oracle for the polytope PF . The key observation is that the linear
optimization problem over polytope PF : maxµ∈PF w · µ is exactly the same as solving the MDP with reward function
R(·) = w · φ(·). Therefore, we can use the MDP solver to design a polynomial time separation oracle for PF .

Lemma 2. Given access to an MDP solver ALG that solves any MDP M in time polynomial in 〈M〉, we can design a
separation oracle SOF for PF that runs in time polynomial in 〈M\R〉, 〈φ〉, k, and the bit complexity of the input 4.

The proof is in Section 7 of the supplementary material.
With SOF , we first design a polynomial time separation oracle for checking the feasible (z, µ) pairs in LP 1 (see

Algorithm 2). With the separation oracle, we can solve LP 1 using the ellipsoid method. The last difficulty is that
the optimal solution only gives us the maxmin feature vector instead of the corresponding maxmin policy. We use the
following nice property of SOF to convert the optimal solution in the feature space to the policy space. See Section 7 in
the supplementary material for intuition behind Lemma 3.

Lemma 3. [8, 13, 6] If SOF (µ) = “YES”, there exists a set, C, of weights w ∈ Rk such that SOF has queried the
MDP solver ALG on reward function w · φ(·) for every w ∈ C. Let (πw, µw) be the output of ALG on weight w, then µ
lies in the convex hull of {µw|w ∈ C}.

The intuition behind Lemma 3 is that the separation oracle SOF tries to search over all possible weights w to find one
to separate the query point µ from PF using the ellipsoid method. Along the way, it queries a set of weights (this is our set
C) on ALG trying to find a separating weight w such that µ · w > µw · w. If such a separating weight is found, SOF
terminates immediately and outputs “NO” together with the corresponding separating hyperplane. The SOF says “YES”
only when it has searched over a polynomial number of weights and concludes that there is no possible weight to separate
µ. The reason that SOF can draw such a conclusion is due to the ellipsoid method. In particular, when SOF says “YES”,
the correctness of the ellipsoid algorithm implies that µ is in the convex hull of all the extreme points of PF that have been
outputted by the ALG.

4.1.2 Exact max-min solution

We prove Theorem 1 in this section. First, we design a polynomial time separation oracle for checking the feasible (z, µ)
pairs in LP 1 (see Algorithm 2).

3We say a polytope P can be described implicitly using ` bits if there exists a description of the polytope P such that all constraints only use
coefficients with bit complexity `.

4Note that SOF only depends on the bit complexity of M\R, but not the actual model of M\R such as the distributions of the initial states or the
transition probabilities. We only require access to ALG and an upper bound of 〈M\R〉.
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Algorithm 2 Separation Oracle for the feasible (µ, z) in LP 1
input (µ′, z′) ∈ Rk+1

1: Query SOF (µ′).
2: if µ′ /∈ PF then
3: output “NO” and output the same separating hyperplane as outputted by SOF (µ′).
4: else
5: Let w∗ ∈ argminw∈PR µ

′ · w and V = µ′ · w∗. This requires solving a linear optimization problem over PR using
the ellipsoid method with the separation oracle SOR.

6: if z′ ≤ V then
7: output “YES”
8: else
9: output “NO”, and a separating hyperplane z ≤ µ · w∗, as z′ > µ′ · w∗ and all feasible solutions of LP 1 respect

this constraint.
10: end if
11: end if

With the separation oracle, we can solve LP 1 using the ellipsoid method. The last difficulty is that the optimal solution
only gives us the maxmin feature vector instead of the corresponding maxmin policy. We address this issue using Lemma 3.
See the proof of Theorem 1 for details.
Proof of Theorem 1: It is not hard to see that Algorithm 2 is a valid polynomial time separation oracle for the feasible
(µ, z) pairs in LP 1. Hence, we can solve LP 1 in polynomial time with the ellipsoid method with access to Algorithm 2.
Next, we show how to convert the optimal solution µ∗ of LP 1 to the corresponding maxmin optimal policy π∗. Here, we
invoke Lemma 3. We query SOF on µ∗ and we record all weights w that SOF has queried the MDP solver ALG on. Let
C = {w1, . . . , w`} be all the queried weights. As SOF is a polynomial time algorithm, ` is also polynomial in the input
size. By Lemma 3, we know that µ is in the convex hull of ({µw|w ∈ C}), which means there exists a set of nonnegative
numbers p1, . . . , p`, such that

∑`
i=1 pi = 1 and µ∗ =

∑`
i=1 pi · µwi . Clearly, the discounted accumulated feature value

of the randomized policy
∑`
i=1 pi · πwi equals to

∑`
i=1 pi ·Ψ(πwi) =

∑`
i=1 pi · µwi = µ∗. We can compute the pis in

poly-time via linear programming and
∑`
i=1 pi · πwi is the maxmin policy. 2

4.2 Finding the Maxmin Policy using Follow the Perturbed Leader
The exact algorithm of Theorem 1 may be computationally expensive to run, as the separation oracle SOF requires running
the ellipsoid method to answer every query, and on top of that we need to run the ellipsoid method with queries to SOF .
In this section, we propose a simpler and faster algorithm that is based on the algorithm – follow-the-perturbed-leader
(FPL) [12].

Theorem 3. For any ξ ∈ (0, 1/2), with probability at least 1−2ξ, Algorithm 3 finds a policy π after T rounds of iterations

such that its expected reward under any weight from PR is at least maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

. In every
iteration, Algorithm 3 makes one query to ALG and O(k2(〈M\R〉2 + (log T )2)) queries to SOR.

FPL is a classical online learning algorithm that solves a problem where a series of decisions d1, d2, ... need to be made.
Each di is from a possibly infinite set D ⊆ Rn. The state st ∈ S ⊆ Rn at step t is observed after the decision dt. The
goal is to have the total reward

∑
t dt · st not far from the best expert’s reward with hindsight, that is maxd∈D

∑
t d · st.

The FPL algorithm guarantees that after T rounds, the regret
∑
t dt · st − maxd∈D

∑
t d · st scales linearly in

√
T .

This guarantee holds for both oblivious and adaptive adversary, and the bound holds both in expectation and with high
probability (see Theorem 4 in Section 7 of the supplementary material for the formal statement).

FPL falls into a large class of algorithms that are called low-regret algorithms, as the regret grows sub-linearly in T . It
is well known that low-regret algorithms can be used to solve two-player zero-sum games approximately. The maxmin
problem we face here can also be modeled as a two-player zero-sum games. One player is the agent whose strategy is a
policy π, and the other player is the reward designer whose strategy is a weight w ∈ PR. The agent’s payoff is the reward
that it collects using policy π, which is Ψ(π) ·w, and the designer’s payoff is −Ψ(π) ·w. Finding the maxmin strategy for
the agent is equivalent to finding the maxmin policy. One challenge here is that the numbers of strategies for both players
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are infinite. Even if we only consider the pure strategies which correspond to the extreme points of PF and PR, there are
still exponentially many of them. Many low-regret algorithms such as multiplicative-weights-update requires explicitly
maintaining a distribution over the pure strategies, and update it in every iteration. In our case, these algorithms will take
exponential time to finish just a single iteration. This is the reason why we favor the FPL algorithm, as the FPL algorithm
only requires finding the best policy giving the past weights, which can be done by the MDP solver ALG. Next, we prove
Theorem 3.

Algorithm 3 FPL Maxmin Learning
input T : the number of iterations

1: Set δ := 1/k
√
T .

2: Arbitrarily pick some policy π1, compute µ1 ∈ PF . Arbitrarily pick some reward weights w1, and set t = 1.
3: while t ≤ T do
4: Use ALG to compute the optimal policy πt and µt = Ψ(πt) that maximizes the expected reward under reward

function
(∑t−1

i=1 wi + pt

)
· φ(·), where pt is drawn uniformly from [0, 1/δ]k.

5: Let wt := argminw∈PR w
T (
∑t−1
i=1 µt + qt), where qt is drawn uniformly from [0, 1/δ]k.

6: t := t+ 1.
7: end while
8: Output the randomized policy 1

T ·
∑T
t=1 πt.

Proof of Theorem 3: We use P to denote the sequence p1, . . . , pT and Q to denote the sequence q1, . . . , qT . First, notice
that every realization of Q defines a deterministic adaptive adversary for the agent. In the setting of Algorithm 3, we can
take C1 to be k, C2 to be k2, and C3 to be k. By Theorem 4 (Section 7 of the supplementary material), we know that for all
ξ ≥ 0, PrP∼U [0,1/δ]kT [

∑T
t=1 µt ·wt−maxµ∈PF

∑T
t=1 µ ·wt ≥ −k2

√
T (3+2

√
ln 1/ξ)|Q] ≥ 1−ξ for every realization

of Q. Similarly, every realization of P also defines a deterministic adaptive adversary for the designer, and by Theorem 4
, we know that PrQ∼U [0,1/δ]kT [−

∑T
t=1 µt · wt + minw∈PR

∑T
t=1 µt · w ≥ −k2

√
T (3 + 2

√
ln 1/ξ)|P ] ≥ 1 − ξ for

any realization of P . Let B = k2
√
T
(

3 + 2
√

ln 1/ξ
)

. By the union bound, with probability at least 1 − 2ξ over the
randomness of P and Q

T∑
t=1

µt · wt − max
µ∈PF

T∑
t=1

µ · wt ≥ −B (1)

and

−
T∑
t=1

µt · wt + min
w∈PR

T∑
t=1

µt · w ≥ −B (2)

Next, we argue that 1
T ·
∑T
t=1 πt is an approximate maxmin policy.

min
w∈PR

T∑
t=1

µt · w ≥
T∑
t=1

µt · wt −B (Eq. (2))

≥ max
µ∈PF

T∑
t=1

µ · wt − 2B (Eq. (1))

≥ T · max
µ∈PF

min
w∈PR

µ · w − 2B

The last inequality is because that on the LHS (line 2) the designer is choosing a fixed strategy 1
T ·
∑T
t=1 wt, while on

the RHS (line 3) the designer can choose the worst possible strategy for the agent. Therefore, if the agent uses policy
1
T ·
∑T
t=1 πt, it guarantees expected reward maxµ∈PF minw∈PR µ · w − 2B/T . Finally, in every iteration t, we query

ALG once to compute πt and µt, and we use the ellipsoid method to find wt using O(k4(log n+ log T )) queries to SOR
and poly(k, log n, log T ) regular computation steps. During each query, SOR calls ALG. Thus, our result is a reduction
from the maxmin learning problem to simply solving an MDP under given weights. Any improvement on ALG will
also improve the running time of Algorithm 3. We discuss the empirical running time in section 9 of the supplementary
material. 2
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We also show that a similar result holds even if we replace the exact MDP solver with an additive FPTAS ÂLG. Our
generalization to cases where we only have access to ÂLG is postponed to Section 8 in the supplementary material.

5 Experiments
Gridworld We use gridworlds in the first set of experiments. Each grid may have a different "terrain" type such that
passing the grid will incur certain reward. For each grid, a feature vector φ(s) denotes the terrain type, and the true
reward can be expressed as R∗ = w∗ · φ(s). The agent’s goal is to move to a goal grid with maximal reward under the
worst possible weights that are consistent with the expert. In other words, the maxmin policy is a safe policy, as it avoids
possible negative side effects [2]. In the experiments, we construct the expert policy πE that is optimal in a small (10×10)
demonstration gridworld that contains a subset of the terrain types.

Figure 2: An example of maxmin policy in gridworlds. Left: an expert policy in the small demonstration MDP, where 4 of
5 terrain types were used and their weights were randomly chosen. The expert policy guides moving towards the yellow
goal grid while preferring the terrains with higher rewards (light blue and light green). Middle: when faced with terrain
types (red-colored) that the expert policy never experienced, maxmin policy avoids such terrains and the accompanying
negative side effects. The agent learns to operate in a larger (50×50) grid world. Right: an agent in a smaller MDP to
facilitate observation.The maxmin policy generates two possible trajectories.

An example behavior is shown in Figure 2. There are 5 possible terrain types. The expert policy in Figure 2 (left)
has only seen 4 terrain types. We compute the maxmin policy in the "real-world" MDP of a much larger size (50×50)
with all 5 terrain types using Algorithm 3 with the reward polytope PR implicitly specified by the expert policy. Figure 2
(middle) shows that our maxmin policy avoids the red-colored terrain that was missing from the demonstration MDP. To
facilitate observation, Figure 2 (right) shows the same behavior by an agent trained in a smaller MDP. Figure 3 compares
the maxmin policy to a baseline. The baseline policy is computed in an MDP whose reward weights are the same as the
demonstration MDP for the first four terrain types and the fifth terrain weight is chosen at random. Our maxmin policy is
much safer than the baseline as it completely avoids the fifth terrain type. It also imitates the expert’s behavior by favoring
the same terrain types.

We also implemented the maxmin method in gridworlds with a stochastic transition model. The maxmin policy (see
Figure 8 in Section 9 of the supplementary material) is more conservative comparing to the deterministic model, and
chooses paths that are further away from any unknown terrains. More details and computation time can be found in the
supplementary material.

CartPole Our next experiments are based on the classic control task of cartpole and the environment provided by OpenAI
Gym [5]. While we can only solve the problem approximately using model-free learning methods, our experiments show
that our FPL-based algorithm can learn a safe policy efficiently for a continuous task. Moreover, if provided with more
expert policies, our maxmin learning method can easily accomodate and learn from multiple experts.

We modify the cartpole problem by adding two possible features to the environment as the two question blocks shown
in Figure 4, and more details in the supplementary material. The agent has no idea of what consequences passing these
two blocks may have. Instead of knowing the rewards associated with these two blocks, we have expert policies from two
other related scenarios. The first expert policy (Expert A) performs well in scenario A where only the blue block to the left
of the center is present, and the second expert policy (Expert B) performs well in scenario B where only the yellow block
to the right of the center is present. The behavior of expert policies in a default scenario (without any question blocks), and
scenarios A and B are shown in Figure 5. It is obvious that comparing with the default scenario, the expert policies in the
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Figure 3: Experiment results comparing our maxmin policy to a baseline. The baseline was computed with a random
reward for the fifth terrain and the other four terrain rewards set the same as the demonstration MDP. Our maxmin policy
is much safer than the baseline as it completely avoids traversing the fifth (unknown) terrain type. It should also be noticed
that the maxmin policy learns from the expert policy while achieving the goal of avoiding potential negative side effects,
as the fraction of trajectory of each terrain type closely resemble the expert.

Figure 4: Modified cartpole task with two additional features – questions blocks to either side of the center. The rewards
associated with passing these blocks are not provided to the agent.

other two scenarios prefer to travel to the right side. Intuitively, it seems that the blue block incurs negative effects while
the yellow block is either neutral or positive.

Now we train the agent in the presence of both question blocks. First, we provide the agent with Expert A policy alone,
and learn a maxmin policy. The maxmin policy’s behavior is shown in Figure 6 (top). It tries to avoid both question blocks
since it observes that Expert A avoids the blue block and it has no knowledge of the yellow block. Then, we provide both
Expert A and Expert B to the agent, and the resulting maxmin policy guides movement in a wider range extending
to the right of the field as shown in Figure 6 (bottom). This time, our maxmin policy also learns from Expert B that the
yellow block is not harmful.

The experiment demonstrates that our maxmin method works well with complex reinforcement learning tasks where
only approximate MDP solvers are available.

6 Discussion
In this paper, we provided a theoretical treatment of the problem of reinforcement learning in the presence of mis-
specifications of the agent’s reward function, by leveraging data provided by experts. The posed optimization can be
solved exactly in polynomial-time by using the ellipsoid methods, but a more practical solution is provided by an algorithm
which takes a follow-the-perturbed-leader approach. Our experiments illustrate the fact that this approach can successfully
learn robust policies from imperfect expert data, in both discrete and continuous environments. It will be interesting to see
whether our maxmin formulation can be combined with other methods in RL such as hierarchical learning to produce
robust solutions in larger problems.
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Figure 5: Behavior examples of different policies. Oc-
cupancy is defined as the number of steps appearing at
a location divided by the total steps. top: In the default
setting without any question blocks, the travel range is
relatively symmetric around the center of the field. mid:
In the presence of the blue question block to the left, an
expert policy A guides movements to the right. bottom: In
scenario B where only the yellow question block is present,
expert policy B also guides movement to the right.

Figure 6: Maxmin policy learnt with different expert poli-
cies. top: Given Expert A policy only, the agent learns to
stay within a narrow range near slightly right to the cen-
ter to avoid both question blocks. Because the agent has
no knowledge about the yellow block, a maxmin policy
avoids it. bottom: When given both Expert A and Expert
B policies, the agent learns that it is safe to pass the yel-
low block, so the range is wider and extends more to the
right comparing to the maxmin policy learnt from Expert
A alone.
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Supplementary Material

7 Missing Proofs from Section 4
Proof of Lemma 2: Lemma 4 shows that PF can be implicitly described using 〈PF 〉 = poly(〈M \ R〉, 〈φ〉, k) bits.
Maximizing any linear function w ·µ can be solved by querying ALG on MDP M \R with reward function w ·φ(·). Since
MDP (M \R,w · φ(·)) has bit complexity polynomial in 〈M \R〉, 〈φ〉, k, and 〈w〉, we can solve the linear optimization
problem in time poly(〈PF 〉, k, 〈w〉). By Lemma 1, we can solve the separation problem in time poly(〈PF 〉, k, 〈y〉) on any
input y ∈ Rk. Hence, we can design a polynomial time separation oracle. 2

Lemma 4. Polytope PF for any MDP without reward function M \ R can be implicitly described using poly(〈M \
R〉, 〈φ〉, k) bits.

Proof. The following constraints explicitly describe all µ ∈ PF , where xsas correspond to the occupancy measure of
some policy π.

µ =
∑
s

φ(s)
∑
a

xsa∑
a

xsa = Pr(s0 = s) + γ
∑
s′,a

xs′aPsa ∀s

xsa ≥ 0

Our statement follows from the fact that all the coefficients in these constraints have bit complexity 〈M \R〉 or 〈φ〉.

Follow-the-Perturbed-Leader Kalai and Vempala [12] proposed the FPL algorithm and showed that in expectation, the
regret is small against any oblivious adversary. [10] showed that the same regret bound extends to settings with adaptive
adversary. To obtain a high probability bound, one can construct a martingale to connect the actual reward and the expected
reward obtained by the agent, then apply the Hoeffding-Azuma inequality.

Theorem 4 (Follow-the-Perturbed-Leader). [12, 10, 7] Let d1, . . . , dT be a sequence of decisions. Let s1, . . . , sT be a
state sequence chosen by an adaptive adversary, that is, st can be selected based on all the previous states s1, . . . , st−1
and all the previous decisions d1, . . . , dt−1 for every t ≤ T . If we let dt be argmaxd∈Dd ·

(∑t−1
i=1 si + pt

)
, where pt is

drawn uniformly from [0, 1/δ]n for some δ > 0, then

E

[
T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st

]
≥ −δ · C1C2T −

2C3

δ
.

C1 is an upper bound of ||s||1 for all s ∈ S, C2 is an upper bound of |d · s| for all d ∈ D and s ∈ S, and C3 is an upper
bound of ||d||1 for all d ∈ D. Moreover, for all ξ ≥ 0, with probability at least 1 − ξ, the actual accumulative reward
under any adaptive adversary satisfies,

T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st ≥ −δ · C1C2T −
2C3

δ
− 2C2

√
T ln

1

ξ
.

8 Maxmin Learning using an Approximate MDP Solver
In the previous sections, we assume that we have access to an MDP solver ALG that solves any MDP M optimally in
time polynomial in 〈M〉. However, in practice, solving large-size MDPs, e.g. continuous control problems, exactly could
be computationally expensive or infeasible. Our FPL-based algorithm also works in cases where we can only solve MDPs
approximately.

Suppose we are given access to an additive FPTAS ÂLG for solving MDPS. More specifically, ÂLG finds in time
polynomial in 〈M〉, 1/η a solution (π∗η , µ

∗
η), such that Es0∼D[V π

∗
η (s0)|M ] ≥ maxπ Es0∼D[V π(s0)|M ]− η. Notice that

the weights of M ’s reward function have L1-norm L.
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We face two challenges when we replace ALG with ÂLG: (i) we can no longer find the best policy µt with respect to
all the previous weights plus the perturbation in every iteration, and (ii) we no longer have a separation oracle for PR,
as the SOR (Algorithm 1) relies on the MDP solver when PR is implicitly specified by the expert’s policy. It turns out
(i) is not hard to deal with, as the FPL algorithm is robust enough to work with only an approximate leader. (ii) is much
more subtle. We design a new algorithm and use it as a proxy for the polytope PR. We call this new algorithm a weird
separation oracle (following the terminology in [6]) as the points it may accept do not necessarily form a convex set, even
though it does accept all points in PR. It may seem at first not clear at all why such a weird separation oracle can help us.
However, we manage to prove that just with this weird separation oracle, we can still compute an approximate minimizing
weight vector wt in PR in every iteration (Step 5 of Algorithm 3). Combining this with our solution for challenge (i), we
can still compute an approximately maxmin policy with essentially the same performance as in Algorithm 3.

Theorem 5. If we replace the exact MDP solver ALG with an approximate solver ÂLG in step 4 of Algorithm 3, then for
any ξ ∈ (0, 1/2) and any c > 0, with probability at least 1− 2ξ, Algorithm 3 finds a policy π after T rounds of iterations

such that its expected reward under any weight from PR is at least maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

− 2c. In

every iteration, Algorithm 3 makes one query to ÂLG and a polynomial number of queries to SOR. In particular, for
every query to ÂLG, we first divide the input by 2T then feed it to ÂLG and ask for a policy that is at most c/2T worse
than the optimal one.

The proof of Theorem 5 is similar to the proof of Theorem 3. We use the bounds provided by Lemma 5 instead of
Theorem 4, and change the RHS in Equation (1) from −B to −k2

√
T
(

3 + 2
√

ln 1/ξ
)
− 2cT accordingly. The rest of

the proof remains the same.
Assume we have a procedure Mη for η-approximating linear programs over the decision set D such that for all s ∈ Rk,

s ·Mη(s) ≥ argmaxd∈Ds · d− η.

Lemma 5 (Follow the Approximate Perturbed Leader). [3] Let d1, . . . , dT be a sequence of decision made by an
η-approximating procedure Mη such that dt = Mη(

∑t−1
i=1 si + pt). Then

E

[
T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st

]
≥ −δ · C1C2T −

2C3

δ
− 2ηT.

The definition of constants C1, C2 and C3 are the same as in Theorem 4. Moreover, for all ξ ≥ 0, with probability at least
1− ξ, the actual accumulative reward under any adaptive adversary satisfies,

T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st ≥

− δ · C1C2T −
2C3

δ
− 2C2

√
T ln

1

ξ
− 2ηT.

An astute reader may have noticed that in the analysis above, we used the same separation oracle SOR as in section 3.
However, in the case when the separation oracle for the reward polytope is implicitly specified by an expert policy, SOR
queries the MDP solver in step 1 of algorithm 1. If we do not have an exact MDP solver ALG, it is not clear how we can
define a separation oracle for polytope PR. We use Algorithm 4 as an proxy to polytope PR.

We call WSOηR a weird separation oracle for for the reward polytope for PR, because the set of w′ that it will accept
is not necessarily convex. For example, the following may happen. First, we query two points w1 and w2 that are close
to each other. Both are accepted by WSOηR, and it happens to be the case that ÂLG(w1, η) and ALG(w2, η) are both
η away from the optimal solutions. Now we query w3 = (w1 + w2)/2, and run WSOηR. Luckily (or unfortunately)
ÂLG(w3, η) is close to optimal, and w3 is rejected.

Lemma 6. For any linear optimization problem, we can construct a polynomial time algorithm based on the ellipsoid-
method that queries WSOηR, such that it finds a solution that is at least as good as the best solution in polytope
P = {w|w · µE ≥ w · ÂLG(w′, η)− ε,∀w′, ‖w′‖1 ≤ L}, although our solution does not necessarily lie in P .
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Algorithm 4 Weird Separation Oracle WSOηR for the reward polytope PR

1: Let µ(η)
w′ := ÂLG(w′, η). It is the feature vector of the policy computed by the approximate MDP solver ÂLG with

accuracy η, and µ(η)
w′ · w′ ≥ maxµ∈PR µ · w′ − η.

2: if µ(η)
w′ · w′ > µE · w′ + ε then

3: output “NO” , and
(
µE − µ(η)

w′

)
·w+ε ≥ 0 as the separating hyperplane, since for allw ∈ PR, µE ·w ≥ µ(η)

w′ ·w−ε.
4: else
5: output “YES”.
6: end if

Proof of Lemma 6: We only sketch the proof here. Solving a linear optimization can be converted into solving a sequence
of feasibility problems by doing binary search on the objective value. We show that for any objective value α, as long as
there is a solution x ∈ P whose objective value c · x ≥ α, our algorithm also finds a solution x′ such that c · x′ ≥ α. First,
imagine we have a separation oracle for P , and the ellipsoid method needs to run N iterations to determine whether there
is a solution in P whose objective value is at least α. The correctness of ellipsoid method guarantees that if it hasn’t found
any solution after N iterations, then the intersection of the halfspace c · x ≥ α and P is empty. The reason is that if the
intersection is not empty it must have volume at least r, and the ellipsoid method maintains an ellipsoid that contains the
intersection of the halfspace c · x ≥ α and P and shrinks the volume of the ellipsoid in every iteration. After N iterations
the ellipsoid already has volume less than r.

Our algorithm also runs the ellipsoid method for N iterations. In each iteration, we first check the constraint c · x ≥ α,
if not satisfied, we output this constraint as the separating hyperplane. If it is satisfied, instead of querying the real
separation oracle for P , we query WSOηR. If the answer is “YES", we have found a solution x such that c · x ≥ α. If the
answer is “NO", clearly this query point is not in P , and the outputted separating hyperplane contains the intersection of
the halfspace c · x ≥ α and P . Therefore, whenever our algorithm accepts a point, it must have objective value higher than
α. Otherwise, the shrinking ellipsoid still contains the intersection of the halfspace c · x ≥ α and P . If our algorithm
terminates after N iterations without accepting point, we know that the intersection between the halfspace c · x ≥ α and P
is empty as the volume of the ellipsoid after N iterations is already too small.

2

Consider the following three polytopes:
(i) PR := {w | w · µE ≥ w · µ− ε, ∀µ ∈ PF }

(ii) P = {w|w · µE ≥ w · ÂLG(w′, η)− ε,∀w′, ‖w′‖1 ≤ L}

(iii) P (ε+η)
R := {w | w · µE ≥ w · µ− ε− η,∀µ ∈ PF }.

Fact 1. PR ⊆ P .

Fact 2. WSOηR only accepts points that are in P (ε+η)
R .

Proof. Suppose w /∈ P (ε+η)
R , then clearly w · ÂLG(w, η) ≥ maxµ∈PF w · µ− ε− η > w · µE . Hence, WSOηR will not

accept w.

Lemma 7. For all w in P (ε+η)
R , w · ε

ε+η is in PR.

Proof of Lemma 7: From the definition of P (ε+η)
R , multiply both side of the inequality with ε

ε+η , and let w′ = w · ε
ε+η , w′

is in PR. 2

Theorem 6. For any c > 0 and ξ ∈ (0, 1/2), with probability at least 1 − 2ξ, Algorithm 3 finds a policy π after T
rounds of iterations such that its expected reward under any weight from PR is at least maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

− 4c. In every iteration, Algorithm 5 makes one query to ALGη and a polynomial number of queries to
Algorithm 4.

Now, we are ready to describe the algorithm using only access to WSOηR.
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Algorithm 5 Finding the Maxmin Policy using Follow-the-Perturbed-Leader (FPL)
input T : the number of iterations

1: Set δ := 1
k
√
T

, where ||w||1 ≤ L for all w ∈ PR. Set η1 := c
2T and η2 := cε

2k2T−c .
2: Arbitrarily pick some policy π1 and compute µ1 ∈ PF . Arbitrarily pick some reward weights w1, and set t = 1.
3: while t ≤ T do
4: Let policy πt and µt = Ψ(πt) be the output of ÂLG

((∑t−1
i=1 wi + pt

)
/T, η1

)
, where pt is drawn uniformly

from [0, 1/δ]k.
5: Use our algorithm in Lemma 6 with WSOη2R to solve minwT (

∑t−1
i=1 µt + qt), where qt is drawn uniformly from

[0, 1/δ]k. Let w′t be the solution and set wt to be w′t · ε
ε+η2

.
6: t := t+ 1.
7: end while
8: Output the randomized policy 1

T ·
∑T
t=1 πt.

Proof of Theorem 6: At each time step t, using WSOR, Algorithm 5 step 5 outputs a wt. By Lemma 6 and Fact 1,

w′t ·

(
t−1∑
i=1

µi + qt

)
≤ min
w∈PR

w ·

(
t−1∑
i=1

µi + qt

)
.

By Lemma 7 and Fact 2,

wt ·

(
t−1∑
i=1

µi + qt

)
=

ε

ε+ η2
· w′t ·

(
t−1∑
i=1

µi + qt

)

≤ min
w∈PR

w ·

(
t−1∑
i=1

µi + qt

)
+

2k2T

ε+ η2
,

where we used the fact that

−wt

(
t−1∑
i=1

µi + qt

)
≤ 2k2T.

Since c = 2η2k
2T

ε+η2
, we can use Lemma 5 and replace the RHS in Equation (2) that was used in the proof of Theorem 3 to

−k2
√
T
(

3 + 2
√

ln 1/ξ
)
− 2cT . The analysis for µt remains the same as in Thoerem 5. 2

9 Experiment Details
In every iteration of Algorithm 3 and Algorithm 5, step 5 computes a minimizing weight in PR. Instead of using the
ellipsoid method to solve the LP, we use the analytic center cutting-plane method (see [4] for a brief overview) throughout
our experiments. The method combines good practical performance with reasonable simplicity.

9.1 Gridworld
The domain contains five types of terrain. Four terrain types are used in the demonstration gridworld where we construct
the expert policy. We select the rewards for these four terrain types uniformly from [−0.5, 0], and the target has a reward
of 10. The reward of each terrain type is deterministic. The demonstration MDP is uniformly composed of four terrain
types, 25% each type. The fifth terrain type (red colored as in Figure 2) is not present in the demonstration gridworld. The
agent is trained in a "real-world" MDP that is composed uniformly of all five terrain types, 20% each. We select maps that
are feasible, such that for all rewards in the consistent reward polytope, value iteration has a solution for the agent to reach
the goal. We use feature vectors that indicate the terrain type of each state, choose a discount factor of 0.95, and use value
iteration throughout the experiment. The consistency between the expert policy and the reward function is defined with
ε = 0.5.
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Deterministic transition model In an MDP with deterministic transition model, the agent moves in exactly the direction
chosen by the agent. We run FPL for 5000 iterations and use the average of policies output by the last 2500 iterations as the
maxmin policy. Figure 3 shows that our maxmin policy is much safer than a baseline. The baseline policy is computed in
an MDP whose reward weights are the same as the demonstration MDP for the first four terrain types and the fifth terrain
weight is chosen uniformly at random from [-1,0]. The expert policy for the displayed results is constructed by computing
the optimal policy in an demonstration MDP with rewards for the first four terrain type set as [−0.5,−0.2,−0.4,−0.1].
The results are accumulated from 100 individual runs using the same expert policy. Examples of the baseline trajectories
are shown in Figure 7.

Figure 7: Trajectories chosen by policies generated using weights randomly assigned to the red-colored unknown feature.
Although this feature may have negative side effects, the random agent may still go through it.

Stochastic transition model At each state, there is 10% chance that the agent will go in a random direction regardless
of the action chosen by the agent. The agent will receive rewards based on the state it actually lands in. We show in
Figure 8 that to mitigate the higher risk of traversing the unknown terrain type, our maxmin policy appears to be more
conservative than the deterministic case. Although Figure 9 shows that it cannot absolutely avoid the unknown terrain type
due of the stochastic nature of the model, the percentage is much lower than the baseline. The baseline was computed with
the same reward weights as in the deterministic case.

Computation Performance In our grid world experiment, the worst case running time of ALG isO(n2), but experiments
show a more benign runtime of O(n1.5). For a 50× 50 grid world with 25 features, Algorithm 3 appears to converge after
325 iterations of FPL with total runtime of 3324 seconds (average of 20 trials, ordinary desktop computer). Instead of
using the ellipsoid method, we used analytic center cutting-plane method, and the running time appears to scale in the
order of O(k2).

Figure 8: At each state, there is 10% chance that the agent will go in a random direction irrespective of the action chosen
by the agent, our maxmin method is still valid. Comparing to Figure 2 (right), the maxmin policy also avoids going to the
peripheral of the red-colored unknown feature.
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Figure 9: In the gridworld with stochastic transition model, our maxmin policy has a small chance of traversing the
unknown terrain type disregard of being more conservative than the maxmin policy in the deterministic case. The
percentage is much lower than the baseline.

9.2 CartPole
We modify the classic CartPole task in the OpenAI Gym environment by adding features that may incur additional rewards.
This is represented by the question blocks in Figure 4. The two question blocks correspond to feature indicators for the
agent’s horizontal position in the range of [−1.2, 0) and [0.6, 1.8). We keep the same episode termination criterions for
the pole angle and cart position as the original environment. An episode is considered ending without failing if the pole
angel and cart position meet the criterion and the episode length is greater than 500. The agent receives a reward of +1 for
surviving every step.

We use longer episodes than the original problem to allow more diverse movement, while it also makes the task
more challenging. During validation of a policy, we consider the task solved as getting a target average reward over 100
consecutive episodes with less than five failed episodes. The target average reward depends on the reward we assign for
passing the question blocks. If each step spent at question block i incurs reward of ri, the target average reward is set to be
450 + 25

∑
ri. For example, in scenario A, only the blue question block exists and it incurs reward of −2, our expert

policy Expert A passes the validation criterion by getting average reward higher than 400 over 100 consecutive episodes
with less than 5 failed episodes. Indeed, our Expert A policy performs quite well by getting a reward greater than 450 in
scenario A. In scenario B, only the yellow question block is present and it incurs reward of +2. Expert B passes the
validation criterion with reward greater than 1000.

The agent is in an MDP with both blue and yellow question blocks whose reward polytopes are implicitly defined by
the expert policy. We use Q-learning and apply updates using minibatches of stored samples as the MDP solver. Notice
that for this problem, our MDP solver is not necessarily optimal. We computed maxmin policies when provided with
different expert policies. The results in Figure 6 are from testing the maxmin policy for 2000 episodes.
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