
Biobjective Online Bipartite Matching

Gagan Aggarwal
Google Research

Mountain View, CA
gagana@google.com

Yang Cai
MIT

Cambridge, MA
ycai@mit.edu

Aranyak Mehta
Google Research

Mountain View, CA
aranyak@google.com

George Pierrakos
U.C. Berkeley
Berkeley, CA

georgios@cs.berkeley.edu

ABSTRACT
Motivated by Online Ad allocation when there are mul-
tiple conflicting objectives, we introduce and study the
problem of Biobjective Online Bipartite Matching, a
strict generalization of the standard setting of Karp,
Vazirani and Vazirani [9], where we are allowed to have
edges of two colors, and the goal is to find a matching
that is both large and balanced at the same time. We
study both deterministic and randomized algorithms for
this problem; after showing that the single color upper
bounds of 1/2 and 1− 1/e carry over to our biobjective
setting as well, we show that a very natural, albeit hard
to analyze, deterministic algorithm achieves a compet-
itive ratio of 0.343. We next show how a natural ran-
domized algorithm matches this ratio, through a simpler
analysis, and how a clever – and perhaps not immedi-
ately obvious – generalization of Ranking can beat the
1/2 bound and get a competitive ratio of 0.573, coming
close to matching the upper bound of 0.63.

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—Per-
mutations and Combinations; G.2.2 [Discrete Math-
ematics]: Graph Theory—Graph Algorithms

General Terms
Algorithms, Theory

Keywords
Online Algorithms, Bipartite Matching

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC 2013 Palo Alto, California USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Online Matching and Allocation is a topic that has re-
ceived considerable interest in the recent past, both due
to its practical importance in Internet Ad allocation,
and also due to purely theoretical interest and advances
that it has generated. The classic problem was intro-
duced in [9]: There is a graph G(U, V,E), with only U
known in advance, and vertices from V arriving online
in an adversarial order. As a vertex v ∈ V arrives, its
incident edges are revealed. The online algorithm can
match v to some neighbor u ∈ U which has not yet
been matched (if any such exist), or choose to leave v
unmatched. Each match made is irrevocable, and the
goal is to maximize the size of the matching obtained.

Several simple ideas, such as an arbitrary choice of
available neighbor (Greedy) or a random choice (Ran-
dom) provide a competitive ratio of 1/2, but no greater.
The algorithm provided in [9], called Ranking, first
permutes the vertices of U in a random permutation,
and then matches each arriving vertex to that available
neighbor which is highest according to the permutation.
This algorithm is optimal, providing a ratio of 1− 1/e.

Motivated by applications in Internet advertising – in
which U corresponds to advertisers, and V to arriving
ad slots – many different variations of this problem have
been studied recently, which includes different match-
ing constraints, as well as different input models (we
describe some of this related work in 1.4).

In this paper, we introduce a new direction in this
literature. In all the variants studied so far, the con-
straints of the problem vary, but there is one objective
function, namely the weight of the matching. However,
in practice, there are typically multiple objective func-
tions which an algorithm designer needs to consider, e.g.
quality, ROI, revenue, efficiency, etc. Sometimes, these
objective functions are not well-aligned and the designer
needs to achieve a good balance among them as pre-
scribed by business needs. In this paper, we introduce
a new problem which captures this motivation.

1.1 Model and Problem Defintion
We consider the basic setting of online bipartite match-

ing, to which we introduce the most natural notion
of multiple objectives, as follows: There is a bipartite
graph G(U, V,E) with |U | = |V | = n, where each edge
is colored either Red or Blue. As before, U is known

in advance, and the vertices of V arrive online together
with their incident edges. The goal is to find a matching
that “balances” the two colors, as described next.

Given a matching in G, let MatchRed be the number
of Red edges in the matching and let MatchBlue be
the number of Blue edges in the matching. Also let
MaxRed be the size of the maximum matching in the
graph G restricted to its Red edges and let MaxBlue be
the size of the maximum matching on the Blue edges of
G. Then, we define the objective function as

min

MatchBlue

MaxBlue
,
MatchRed

MaxRed

ff
The competitive ratio of an online algorithm is defined
as the minimum over all inputs of the ratio of its objec-
tive value to the optimal offline objective value.

We first observe that if MaxBlue and MaxRed are
of very different magnitudes, then no deterministic al-
gorithm A can achieve a non-trivial competitive ratio.
Indeed, consider the following graph GA, in which the
adversary presents the algorithm with a sequence of blue
edges {(u1, v1), . . . , (ui, vi)}, each one connecting an ar-
riving node vi to a new node ui (i.e. ui’s only neighbor
so far is vi), until A matches vi to ui through a blue edge
(if this does not happen then MatchBlue = 0 and we
are done). Once A matches vi to ui, the next node vi+1

is connected through a red edge to ui, which is already
taken. Continuing in this manner it is obvious that we
can guarantee MatchRed = 0 (while MaxRed > 0), so
min{MatchBlue/MaxBlue,MatchRed/MaxRed} = 0,
while the optimal objective function is strictly positive,
resulting in a competitive ratio of 0.

In order to bypass this issue and get to the essence of
the difficulty in handling two objective functions, we as-
sume that MaxBlue and MaxRed are comparable. In
fact, we will assume that there exists a perfect match-
ing on Red edges as well as a perfect matching on Blue
edges, i.e. MaxBlue = MaxRed = n. With this as-
sumption, optimizing the objective function reduces to
optimizing min{MatchBlue,MatchRed}, and we will
work with this objective function henceforth. Also, with
this assumption, it is not hard to show that there exists
a matching with n/2−o(n) Red as well Blue edges, giv-
ing us the following Proposition (proof in Appendix A).

Proposition 1. When MaxRed = MaxBlue = n,
the offline optimal value of min{MatchBlue,MatchRed}
is between n/2−O(

√
n) and n/2.

Notation: For the rest of the paper, for the given
instance, we pick a perfect matching on Red edges, and
a perfect matching on Blue edges, which we will refer
to as the (canonical) Red and Blue perfect matchings
in the graph. For w ∈ U ∪ V we define Nb(w) as the
match of w in the Blue perfect matching, and Nr(w) as
the match of w in the Red perfect matching.

1.2 Results
We start by looking at deterministic algorithms. As

for any matching problem, we start by trying a greedy
algorithm: We quickly note that if the algorithm always
takes an edge whenever one is available (i.e., its other

end point in U is not yet matched), then its competitive
ratio can be no better than 0. Wlog assume that such an
algorithm picks a Blue edge for the first arriving vertex
if that vertex has exactly one incident edge of each color.
Then for the instance in Figure 1 since such an algorithm
never skips, it is forced to pick all the Blue edges, and
no Red edges.

Figure 1: Deterministic Greedy does no better than 0.

Thus our first important observation is that any de-
terministic online algorithm has to sometimes skip, i.e.,
keep the arriving vertex unmatched even though it has
an available neighbor. Note that this is very different
from all previous settings in online matching and alloca-
tion problems, where greedy algorithms achieve a com-
petitive ratio of 1/2. In Theorem 5 we prove an analo-
gous upper bound of 1/2 for randomized algorithms.

Since the objective is to balance the two colors, a sec-
ond natural approach is the following algorithm, called
Balance1. Before describing Balance we introduce
some notation which will we use repeatedly in the ex-
position and analysis of our deterministic algorithms.

First, we define CurrentBlue (resp. CurrentRed) as
the number of Blue (resp. Red) edges in the current
matching produced during the algorithm. We also de-
fine the following operations:
NoPreference: Match the arriving vertex to any avail-
able neighbor (irrespective of color).
OnlyBlue: Match the arriving vertex via an available
Blue edge. If only Red edges are available then leave
the vertex unmatched.
OnlyRed: Match the arriving vertex via an available Red
edge. If only Blue edges are available then leave the ver-
tex unmatched.

Algorithm Balance

For each arriving vertex v, switch case:
1. CurrentBlue = CurrentRed : NoPreference
2. CurrentBlue > CurrentRed : OnlyRed
3. CurrentRed > CurrentBlue: OnlyBlue

We will show in Theorem 1 that this algorithm has a
competitive ratio of 1/3. In fact, we take Balance as
the baseline algorithm that we will try to improve upon.

Next we try to improve upon this ratio. We observe
that Balance attempts to keep the two colors perfectly

1Note that in the existing literature, balance typically
refers to balancing the spend or the load on different
vertices – here it refers to balancing the two colors in
the current matching.

balanced, and skips an arriving vertex whenever the col-
ors are unbalanced and no edge of the lagging color is
available. So one can try giving the algorithm some lee-
way in how balanced the two colors need to be during
its run. To do that we introduce two new operations:
PreferBlue: If a Blue edge is available, match the ar-
riving vertex via one of them. Else match it via a Red
edge, if one is available.
PreferRed: If a Red edge is available, match the arriv-
ing vertex via one of them. Else match it via a Blue
edge, if one is available.
We are now ready to describe our next algorithm called
c-Balance.

Algorithm c-Balance

For each arriving vertex v, switch case:
1. CurrentBlue = CurrentRed: NoPreference
2. CurrentBlue > c · CurrentRed: OnlyRed

3. CurrentRed > c · CurrentBlue: OnlyBlue
4. CurrentRed < CurrentBlue ≤ c · CurrentRed:

PreferRed

5. CurrentBlue < CurrentRed ≤ c · CurrentBlue:
PreferBlue

This algorithm tries to pick up some extra edges of the
leading color (in case the arrival of edges of the leading
colors slows down in the future), but not too many (as
picking edges now reduces available vertices on the left,
reducing the opportunity to pick lagging-color edges in
the future).

In Theorem 2, we show that this algorithm achieves a
competitive ratio of 2c

(1+c)(2+c)
, for 1 ≤ c ≤ 2, and that

this analysis is tight, i.e., there is a family of examples
on which it performs no better. This function is max-
imized at c =

√
2, giving the algorithm a competitive

ratio of 0.343. We note that while c-Balance seems
more flexible than Balance (and its analysis is much
more difficult), it does not perform significantly bet-
ter. Nevertheless, it is our first example which beats
the baseline of Balance.

From a hardness standpoint, in Theorem 3, we show
that no deterministic algorithm can achieve a ratio bet-
ter than 1/2. This follows from a generalization of the
standard hard example for the classic single color prob-
lem. The gap between the best deterministic algorithm
and the upper bound remains open.

Next we turn our attention to randomized algorithms.
The performance of a randomized algorithm is defined
as

Exp min{MatchRed,MatchBlue}

Note that we have to be careful in making the definition.
We do not define it as the minimum of the two expec-
tations: This is an easier objective, and does not match
our motivation. Indeed, to optimize the Min-of-Exps
objective, one could simply flip a coin in the beginning
to choose one of the two colors to optimize, and run
Ranking only for edges of that color. This would give
an expected (1 − 1/e)/2 matches for each color, and a
ratio of 1− 1/e. Clearly, the Exp-of-Mins objective is 0
for this algorithm.

We first observe, in Theorem 4, that there is no ran-
domized online algorithm that achieves a competitive
ratio better than 1 − 1/e. This follows from a slight
modification of the standard hard instance (in the single
color problem) of the upper-triangular adjacency ma-
trix.

In terms of designing an algorithm, a natural first
attempt to balance the two colors is the following:

Algorithm ProbGreedy

For each arriving vertex v:
w.p. 1/2, match v via an available Red edge, if any.
w.p. 1/2, match v via an available Blue edge, if any.

Note that ProbGreedy “skips” a vertex when it has
available edges of a single color, but the vertex chooses
the other color. In Theorem 6, we show that this algo-
rithm achieves a competitive ratio of 1/3, with proba-
bility almost 1. Next, we analyze a generalization of the
above algorithm:

Algorithm p-ProbGreedy

For each arriving vertex v:
w.p. p, match v via an available Red edge, if any.
w.p. p, match v via an available Blue edge, if any.
w.p. 1− 2p, leave v unmatched.

This algorithm sometimes skips vertices even when
edges of both colors are available. Surprisingly, it does
better than ProbGreedy for some values of p. In Theo-
rem 6, we show that this algorithm has a competitive ra-

tio of 2p(1−p)
1+p

with probability almost 1. Amazingly, this
is the same bound as that achieved by c-Balance for
p = 1

1+c
, which also explains the identical competitive

ratio of 1/3 achieved by Balance and ProbGreedy.
We do not know if there is a deeper connection between
the two algorithms, and we leave this possibility as an
open question. As in c-Balance, this function is max-
imized for p =

√
2 − 1, giving a competitive ratio of

0.343.
So far, randomization has not helped us get an im-

proved competitive ratio, although the randomized al-
gorithms are simpler in that they do not need to keep
any state. Also, the analysis for p-ProbGreedy is sig-
nificantly simpler than that of c-Balance. The next
question to ask is whether there is another random-
ized algorithm that actually improves upon the ratios
we have so far. Stepping back, we recall the classic ran-
domized algorithm for online bipartite matching (with-
out colors), namely Ranking [9], defined below.

Algorithm Ranking

1. Pick a permutation σ of the vertices in U uniformly
at random.
2. For each arriving vertex:

Match it to the highest available neighbor (according
to σ).

This algorithm by itself has a competitive ratio of 0,
which can be seen again from the instance in Figure 1.

With probability almost 1, one of the first few arriving
vertices will pick its Blue neighbor, and after that, every
vertex is forced to pick its Blue neighbor. Is there a way
to extend Ranking for our bi-objective problem?

In our first attempt, called DisjointRanking, we try
to remove edges from the graph in order to break up
the bi-objective instance into two disjoint instances, one
of each color, and then use Ranking on each instance
independently.

Algorithm DisjointRanking

1. Each vertex in U ∪ V picks a color uar, and throws
away edges of that color. Note that only those edges
which were not thrown away by either endpoint survive.
2. Run Algorithm Ranking on the resulting subgraph.

It is easy to see that this algorithm can be run online.
Next we note that the first step creates a subgraph with
two vertex partitions, such that no edges go from one
part to the other, the edges within one part are all Blue,
while the edges within the other part are all Red. Since
each edge survives with probability 1/4, there is a Blue
(resp. Red) matching of size n/4 − O(

√
n) in the Blue

(resp. Red) part, whp. Also, running Ranking on this
graph is equivalent to running it on each part separately.
Hence, we will obtain a matching with ≈ (1 − 1/e)n

4
Red edges as well as ≈ (1 − 1/e)n

4
Blue edges. This

shows that the algorithm achieves a competitive ratio

of 1−1/e
2
' 0.316.

DisjointRanking throws away 3/4 of the edges and
loses a factor of 1/2 immediately (since the size of the
guaranteed matching drops to n/4 and OPT is n/2). So
one can try and throw away fewer edges. One way to
do this is to let vertices of only one side (either U or V)
pick a color at random and throw away incident edges
of that color. This gives us two algorithms, namely
LeftSubgraphRanking and RightSubgraphRank-
ing, defined below:

Algorithm LeftSubgraphRanking

1. Each vertex in U picks a color uar, and throws away
edges of that color.
2. Run Algorithm Ranking on the resulting subgraph.

Algorithm RightSubgraphRanking

1. Each vertex in V picks a color uar, and throws away
edges of that color.
2. Run Algorithm Ranking on the resulting subgraph.

These algorithms throw away fewer edges than Dis-
jointRanking, thereby ensuring a matching having ≈
n/2 edges of each color in the resulting subgraph. So we
can hope for an online algorithm that gets a matching
with≈ (1−1/e)n/2 edges of each color, achieving a ratio
of 1−1/e. However, we have lost the partition into a Red
and a Blue instance and the analysis needs to take into
account the interaction between edges of different col-
ors in the resulting subgraph. This interaction results in
some loss. We show in Theorem 8 that the competitive

ratio of LeftSubgraphRanking is 3 − 4/
√
e ' 0.573,

and this analysis is tight.
Although RightSubgraphRanking is very similar,

our technique does not carry over immediately; the rea-
son is that the analysis of Ranking looks at misses on
the permuted (offline) side of the graph. In LeftSub-
graphRanking the offline side is also the side that ran-
domly picks colors (i.e., all randomness is decided by the
offline nodes), which enables our analysis. This is not
the case with RightSubgraphRanking, which makes
it hard to point which vertex to charge to; we leave the
analysis of RightSubgraphRanking as an interesting
open question.

Another obvious open question is to close the gap for
randomized algorithms. If there is a better algorithm,
is it a different generalization of Ranking?

Lower Bound Upper Bound
(Algorithm) (Impossibility)

Det. w/o Skips 0 0
Deterministic 0.343 0.5

Rand. w/o Skips ? 0.5
Randomized 3− 4/

√
e ' 0.573 1− 1/e ' 0.63

Figure 2: Table of Results

1.3 Techniques
We analyze c-Balance using a charging argument

that starts off as usual – for every miss, we can point
to a hit, namely its perfect matching neighbor (of the
appropriate color) that must have been matched. This,
by itself, gives a very weak bound; the new idea is that,
instead of allowing every hit to be charged by a miss, we
identify a set of hits that cannot be charged by misses –
These are precisely the hits that cause the imbalance to
grow during the PreferRed and PreferBlue operations,
since every time this happens it is because the perfect
matching neighbor of that hit (of the lagging color) is
itself a hit (and not a miss).

ProbGreedy balances the two colors probabilisti-
cally, and we show that a set of natural constraints
holds whp, which puts a bound on the expected size of
the minimum color. For LeftSubgraphRanking too,
we use a charging argument, except that each miss is
charged to several hits just like in the analysis of Rank-
ing. However, unlike Ranking, we charge each miss
not just to hits in events obtained by changing the lo-
cation of the hit, but also to hits in events obtained by
changing the color choice of the miss vertex. This lets
us charge each miss to 2n hits, which is crucial, since
the original map of Ranking gives a much worse factor.
This gives a factor of 3− 4/

√
e for the minimum of the

expectations of the two colors.
However, when we try to bound the expectation of

the minimum color, even with this augmented charg-
ing map, we get some hits potentially getting charged
twice, which could lead to a factor of 1 − 2/e ' 0.26.
The key insight that helps us overcome this problem is
that our charging map has the property of “locality”, i.e.
misses in a given event map to hits in “nearby” events
(according to an appropriate metric). This in turn lets

us claim that the number of hits that get double-charged
are small, giving us a nearly identical competitive ratio
of 3− 4/

√
e− o(1) for the expectation of the minimum.

1.4 Related Work
Motivated by applications in Internet advertising, sev-

eral variants and generalizations of Online Matching
have been studied recently, starting with the “Adwords”
problem ([11], [3]), which generalized the setting to that
with bids and budgets. Further generalizations included
the Weighted-Vertex Matching problem [1], weighted
edges with free-disposal (“Display Ads”) [6], among many
others. There have also been variants which study stochas-
tic inputs for all these settings, as well as stochastic re-
wards (we do not mention all the references, since this
literature is quite extensive by now). Ours is an orthog-
onal direction, in introducing multiple objectives to this
set of problems. We have started with the basic match-
ing problem, but the question extends to the entire set
of variants.

In another thread of work, there is a long research
tradition of studying combinatorial optimization prob-
lems with multiple objectives, initiated by the paper
of Papadimitriou and Yannakakis [14], which identifies
a relaxed notion of Pareto set (the set of all solutions
that are not dominated by any other in all objectives).
Our problem fits only loosely in this literature: being an
online problem, we are interested in implementing one
balanced solution as the vertices arrive, not the entire
Pareto set of trade-offs.

A similar motivation to ours can be found in a series
of papers [4, 5, 13], which study the problem of design-
ing an auction to balance revenue and efficiency. From
a practical view, the importance of multiple objectives
like quality, ROI and revenue in budgeted ad allocation,
were described in [8].

An unrelated set of online problems with two objec-
tives were studied in [7]. A related offline problem of
exact matchings, i.e. finding a matching with exactly k
Red edges was studied in [12, 10, 15], and the problem
of approximately sampling and counting exact match-
ings was studied in [2].

2. DETERMINISTIC ALGORITHMS

2.1 Analysis of Balance

Theorem 1. Balance achieves a competitive ratio
of 1/3, and this is tight.

Proof. Consider a miss of the algorithm, i.e., a ver-
tex v ∈ V which is left unmatched at the end of the
algorithm. When v arrives, Balance might have per-
formed one of the three operations, depending on the
values of CurrentRed and CurrentBlue. We charge the
miss v to a hit u ∈ U as follows:

If the algorithm performed OnlyRed, then it means
that it was looking for an available Red edge, but could
not find one. This means that Nr(v) had already been
matched earlier. We charge the miss v to the hit Nr(v)
via the Red edge between v and Nr(v). Similarly, if
the algorithm performed OnlyBlue, we charge the miss

v to the hit Nb(v) via the Blue edge. If the algorithm
performed NoPreference, this means that there was no
available neighbor (of either color) and both Nb(v) and
Nr(v) were already matched. We charge the miss v to
the hit Nb(v) via the Blue edge (choosing one of the two
arbitrarily).

Note that each hit (of u ∈ U) gets charged at most
two times: once by a miss Nb(u) via a Blue edge and
once by a miss Nr(u) via a Red edge. Therefore the
number of misses is no more than twice the number of
hits. Let h denote all the hits of u ∈ U , and m denote
all the misses of v ∈ V . Then, we have shown that
m ≤ 2h. Also, h + m = n. This gives that the total
number of hits h ≥ n/3. Now, let hb and hr denote
the number of Blue and Red edges in the final matching
obtained by the algorithm. Note that the algorithm has
the invariant that |CurrentBlue − CurrentRed| ≤ 1, so
|hb − hr| ≤ 1, making both hb and hr at least n/6− 1.
Since OPT ≤ n/2, by Proposition 1, we get that the
competitive ratio is 1/3.

The tightness of the analysis follows from the tight-
ness of the analysis of c-Balance in the next subsec-
tion.

2.2 Analysis of c-Balance
Next, we analyze c-Balance for any c ≥ 1, which is

a generalization of Balance (in particular 1-Balance
is identical to Balance).

Theorem 2. c-Balance achieves a competitive ra-
tio of 2c

(1+c)(2+c)
, and this is tight.

Proof. We first define our Charging Scheme: A
miss of an arriving vertex v will be charged to:

• hit Nb(v) via a Blue edge, if v performed an Only-

Blue operation,

• hit Nr(v) via a Red edge, if v performed an On-

lyRed operation,

• hit Nb(v) via a Blue edge or hit Nr(v) via a Red
edge (we will make a specific choice later), if v
performed any of the remaining operations, since
in these three cases, we know that neither of the
two neighbors was available.

Suppose that the algorithm never performs an On-

lyRed operation. In this case, we can charge each miss
v ∈ V to the hit Nb(v) via the Blue edge (v,Nb(v)).
Since we charge a hit through a Blue edge alone, a hit
u ∈ U is charged at most once (by a miss Nb(u)). Thus,
the number of misses is no more than the number of hits,
giving us at least n/2 hits in total. Since the imbalance
between colors is no more than 1 : c, the number of hits
of each color is at least n

2(1+c)
. Also, OPT ≤ n/2, giv-

ing a competitive ratio of 1
1+c

, which is greater than the
claimed ratio. The same analysis holds if the algorithm
never performs an OnlyBlue operation.

When the algorithm performs both an OnlyRed and
an OnlyBlue operation, it has to charge some misses
through a Red edge and some misses through a Blue
edge. Therefore, a given hit u might get charged twice,
once by Nb(u) and once by Nr(u), irrespective of how we
choose to charge misses incurred while performing the
remaining three types of operations. A naive analysis

that simply argues that the number of misses is no more
than twice the number of hits will give a competitive
ratio of 2

3(1+c)
≤ 1

3
.

Hence, we need a new insight into the dynamics of
the algorithm. For this, we examine the PreferRed and
PreferBlue operations more closely – in fact, we ex-
amine not the misses but the hits obtained by these
operations. We observe that each time an arriving ver-
tex v picks a Red edge during a PreferBlue operation,
it does so because there is no Blue edge available. Let
u = Nb(v). Then u is a hit. Moreover, Nb(u) (which
is v) is also a hit, so hit u will never get charged by a
miss through a Blue edge, since the only such charge
can come from a miss of Nb(u). Simply put, whenever
the algorithm picks an edge of the leading color, thereby
making the matching less balanced, we can identify a hit
which cannot be charged by two misses.

If we can lower bound the number of such operations,
we can get a better upper bound on the number of
misses. For this, we note that when the algorithm per-
forms an OnlyRed or an OnlyBlue operation, its match-
ing is in a fairly unbalanced state (the colors are in the
ratio c : 1). Since the algorithm starts off in a balanced
state, it must have performed several PreferBlue / Pre-

ferRed operations in which it made the matching less
balanced. All that remains is to count such operations.

Figure 3: The states in the proof of Theorem 2; top
graph is for the special (hardest) case, bottom graph is
for the general case.

Special (hardest) case: In the following, we use the
pair (CurrentRed,CurrentBlue) to summarize the cur-

rent state of the matching. As a warm up to the full
analysis, we will consider a particular form of run of
the algorithm: in this the algorithm passes through the
following states (for some x), and after leaving state
S, it uses only PreferRed, PreferBlue and NoPrefer-

ence operations. We will see later that this type of run
is, in fact, the worst case for the algorithm.

P : (x, x)

Q : (cx+ 1, x)

R : (cx+ 1, cx+ 1)

S : (cx+ 1, c(cx+ 1) + 1)

In this case, the Red edges picked in going from state
P to state Q (except the very first one) are picked by
the PreferBlue operation. Each of these, say for the
arriving vertex v, identifies a hit Nb(v) that will never
be charged by a miss via a Blue edge. Thus, we have
identified a total of cx+ 1− x− 1 = (c− 1)x hits that
will never be charged via a Blue edge. Let ChargeB(Q)
be the number of hits that occur up to state Q that can
be charged via a Blue edge. The total number of hits
up to state Q is cx+ 1 + x. So

ChargeB(Q) ≤ (cx+1+x) − (c−1)x = 2x+1 (1)

Similarly, the Blue edges picked in going from state
R to state S (except the first one) are picked by the
PreferRed operation and identify a set of hits that will
never get charged via a Red edge. The number of such
hits is c(cx + 1) + 1 − (cx + 1) − 1 = (c − 1)(cx + 1).
Let ChargeR(S) be the number of hits that occur upto
state S that can be charged via a Red edge. Since the
total number of hits upto state S is cx+1+c(cx+1)+1,

ChargeR(S)

≤ (cx+ 1 + c(cx+ 1) + 1)− (c− 1)(cx+ 1)

= 2cx+ 3 (2)

Now we are ready to complete the specification of the
charging scheme. Recall that for misses during op-
erations PreferBlue, PreferRed and NoPreference, we
had a choice to charge via a Red or a Blue edge. In
the above run where the last “only” operation is an On-

lyRed operation, we charge all of these misses via their
Red perfect matching edge. The number of misses is
equal to the number of charges made via Red edges
plus the number of charges made via Blue edges. Since
all the charges via Blue edges occur while performing
OnlyBlue operations, all of them occur by the time the
algorithm leaves state Q, and thus do not exceed 2x+1,
by Equation (1). Also, the total number of charges via
Red edges to hits occurring up to state S do not exceed
2cx+3, by Equation (2). Let m1 be the total number of
misses that are charged to hits occurring up to S. Then,

m1 ≤ ChargeB(Q) + ChargeR(S)

≤ 2x+ 1 + 2cx+ 3

= 2(c+ 1)x+ 4 (3)

Note that these include all the misses that occur before
leaving state S, and may also include some misses that
occur after leaving state S. The only misses that remain
unaccounted for, call these m2, are those that occur

after leaving state S and are charged via Red edges (as
none of them occurs during an OnlyBlue operation) to
some hit that occurs after leaving state S.

Let h1 be the number of hits that occur before leaving
state S and h2 be the number of hits that occur after
leaving state S. We just saw that

m2 ≤ h2 (4)

Also, from the description of state S,

h1 = cx+ 1 + c(cx+ 1) + 1 (5)

Combining equations (3), (4) and (5) and noting that
m1 +m2 + h1 + h2 = n, we get

h1 + h2 ≥
cn

c+ 2
−O(1)

Since the imbalance between colors is no more than 1 : c,
the number of hits of each color is at least cn

(c+1)(c+2)
.

Also, OPT ≤ n/2, which gives a competitive ratio of
2c

(c+1)(c+2)
.

Thus far, we have proved the claimed ratio for the
special case when the run of the algorithm follows the
path along states P, Q, R, S. It turns out that any devia-
tion from this path only improves the competitive ratio,
and in fact the tight example for the algorithm follows
such a path.

The intuition is that when the algorithm picks up
some Blue edges during PreferBlue operations on its
way from doing NoPreference operations to doing Only-

Blue operations, the number of hits that can be charged
by Blue misses does not increase in proportion to the in-
crease in the number of hits. More concretely, an extra y
Blue hits during PreferBlue operations creates the need
for an extra cy Red hits during the PreferBlue oper-
ations in order to start doing OnlyBlue operations. So
we have an extra (1 + c)y hits of which cy cannot be
charged by Blue misses, leaving only a 1/c fraction of
the extra hits chargeable by Blue misses. This is better
than what we need to get the final ratio – recall that
for state Q, we could only claim that (c − 1)x of the
(c+ 1)x hits upto that state cannot be charged by Blue
misses, leaving a 2/(c+1) fraction of the hits chargeable
by Blue hits.

Tight Example: Figure 4 provides a tight example
for c-Balance. It follows the path in the special case
outlined above.

We postpone the full analysis for the general case as
well as a detailed explanation of the tight example to
Appendix B.

Corollary 1.
√

2–Balance achieves a competitive ra-
tio of 0.3431

2.3 An Upper Bound of 1/2

Theorem 3. No deterministic algorithm can achieve
a competitive ratio greater than 1/2.

It is well known that a simple 2×2 graph yields a hard-
ness result of 1/2 for the single color case; the idea is to

Figure 4: The tight example of Theorem 2.

reduce from the single color case, constructing a graph
G in the biobjective setting (i.e. a graph with both a
Blue and a Red perfect matching) such that if an algo-
rithm can achieve a competitive ratio better than 1/2
on G then the same algorithm could beat the 1/2 upper
bound for the single color case, thus reaching a contra-
diction. Unfortunately the standard 2× 2 graph cannot
be easily turned into a graph with two perfect match-
ings, so instead we resort to the use of an adaptive ver-
sion of the standard hard instance for the randomized
case (in the single color problem) of the upper-triangular
adjacency matrix, for which we argue that a determin-
istic algorithm cannot get more than n/2 edges (details
can be found in the full paper).

3. UPPER BOUNDS FOR RANDOMIZED
ALGORITHMS

Theorem 4. No randomized algorithm can achieve a
competitive ratio greater than 1− 1/e.

The main idea is to find a (family of) examples, such
that the graph has a Blue as well as a Red perfect
matching, with the following property. If we ignored
the colors, then (as a single color problem) no random-
ized algorithm can beat 1 − 1/e on this family. This
would imply the claim. We modify the standard upper
triangular matrix example to achieve this; the proof is
provided in Appendix C.

As in the case of deterministic algorithms, we show a
limit on the performance of algorithms that always pick
an edge if one is available.

Theorem 5. No randomized algorithm that never skips
can achieve a competitive ratio greater than 1/2.

The idea is to modify the example in Figure 1, to get
a distribution over two examples, which would give the
claim via Yao’s lemma (proof in Appendix C).

4. ANALYSIS OF P-PROBGREEDY

Theorem 6. p-ProbGreedy achieves a competitive

ratio of 2p(1−p)
1+p

with high probability.2

Proof. Let mb,mr, hb, hr be the random variables
that denote the number of Blue and Red misses and
Blue and Red hits respectively (a Blue (resp. Red) hit
(resp. miss) is a hit that happens at a node that has
selected Blue as its color). We start by noting that

mb + hb = |{v ∈ V that picked Blue}| = pn± o(n) whp
(6)

mr + hr = |{v ∈ V that picked Red}| = pn± o(n) whp
(7)

where both statements follow from Chernoff bounds and
“with high probability” stands for always, except with
probability exponentially small in n. From now on we
will ignore the lower order term o(n), as it will not affect
our analysis.

Next we will relate the number of Red and Blue misses
to the total number of hits, through the following charg-
ing argument: every time a node v ∈ V that picked Blue
(resp. Red) as its color has a miss, we charge it through
a Blue (resp. Red) edge to its neighbor Nb(v) (resp.
Nr(v)).

We say a hit (u, v) is Blue chargeable if v 6= Nb(u) and
v arrives earlier than Nb(u). Now define a collection of
random variables {Xi}i∈[n] as follows:

Xi =

8>>><>>>:
1− p there exists the i-th Blue chargeable hit

(u,v), where Nb(u) chooses Blue;
−p there exists the i-th blue chargeable hit

(u,v), where Nb(u) chooses Red or skip;
0 otherwise

It is clear that a hit (u, v) will be charged through
a Blue edge, only if it is Blue chargeable and Nb(u)
chooses Blue. So mb ≤ B, where B is a random variable
that equals to the size of {Xi|Xi > 0}.

Now we want to bound B. To do that, we make the
following important observation: {Xi}i∈[n] is a martin-
gale. The proof is simple

E[Xi|X1, X2, . . . , Xi−1]

= q(p · (1− p)− (1− p)p) + (1− q) · 0
= 0

where q is the probability that there exists the i-th
Blue chargeable hit conditioned on X1, X2, . . . , Xi−1.
As |Xi| ≤ 1, by Azuma’s inequality, we have

Pr

"
nX
i=1

Xi ≥ n3/4

#
≤ exp(−n

1/2

2
).

If we let the random variable S to be |{Xi|Xi 6= 0}|,
the above inequality means that whp (1− p)B − p(S −
B) ≤ n3/4. So whp B ≤ pS + n3/4.

Notice that S is always smaller than hr + hb, and
hr + hb ≥ pn whp. Therefore,

mb ≤ B ≤ (p+ n−1/5)(hr + hb) whp.
2Note that, amazingly, this ratio is equal to the ratio
attained by c-Balance for p = 1

1+c
.

From now on, we will ignore the n−1/5 as it will not
affect our competitive ratio. Via an identical argument
we also get mr ≤ p(hb + hr) whp; combining these two
inequalities with (6) and (7) we get that, with high prob-
ability, the number of Blue and Red hits must be feasible
solutions of the following linear system:

(p+ 1)hb + phr ≥ pn

phb + (p+ 1)hr ≥ pn

0 ≤ hb, hr ≤ pn

From the system above it follows easily that the two fea-
sible solutions which minimize the objective min{hb, hr}
are hb = p(1−p)

1+p
n, hr = pn and hb = pn, hr = p(1−p)

1+p
n.

Since the optimal offline solution achieves an objective
of at most n

2
+o(n) (see Proposition 1) it follows that the

competitive ratio of p-ProbGreedyis at most 2p(1−p)
1+p

.

Theorem 7. ProbGreedy achieves a competitive ra-
tio of 1/3 and this is tight.

Proof. The fact that the competitive ratio is at least
1/3 follows from the previous theorem. Figure 5 pro-
vides an example where the ratio is no more than 1/3.
It is explained in more detail in Appendix D.

Figure 5: The tight example of Theorem 7.

5. ANALYSIS OF LEFTSUBGRAPHRANK-
ING

In this section we prove the main result of this paper
on the performance of LeftSubgraphRanking. Recall
the definition of the algorithm:

Algorithm LeftSubgraphRanking

1. Each vertex in U picks a color uar, and throws away
edges of that color.
2. Run Algorithm Ranking on the resulting subgraph.

Theorem 8. For any constant ε > 0, and sufficiently
large n, the competitive ratio of LeftSubgraphRank-
ing is at least 3− 4√

e
− 4ε− 10√

n
.

We will begin by showing that for each color, the ex-
pected number of edges of that color in the matching
produced by the algorithm is at least (3− 4√

e
)n

2
. Note

that this, by itself, does not imply a competitive ratio
of 3− 4√

e
, as the objective fuction is the expectation of

the minimum color’s edges in the matching, rather that
the minimum of the two expectations. However, this is
clearly necessary, and we will show how to extend the
argument to prove an almost identical ratio for the ex-
pectation of the minimum, giving Theorem 8.

5.1 Bounding the Minimum of the two Ex-
pectations

To prove a bound on the expected number of edges
of a given color, we use a charging argument, which is
an augmentation of the charging argument for Rank-
ing (see [1] for one such proof). The probability space
of the algorithm consists of all tuples (σ, λ), where σ is
a permutation of U and λ ∈ {r, b}n is the vector of col-
ors 3 chosen by vertices in U . In order to describe the
charging argument, we make the following definitions.

Definition 1. For any σ, u ∈ U and i ∈ [n], let σiu
be the permutation obtained by removing u from σ and
inserting it back into σ at position i. Likewise, for any
λ, u ∈ U and d ∈ {r, b}, let λdu be such that λdu(u) = d
and λdu(v) = λ(v) for all v 6= u.

Definition 2 (Set of Misses and Hits). Define
Qdt (resp. Rdt) as the set of all event–position pairs
(σ, λ), t), s.t. the vertex in position t in σ (say u) has
λ(u) = d, and was matched (resp. unmatched) under
(σ, λ). Formally:

Qdt ={(σ, λ, t) : σ(u) = t, λ(u) = d and

u is matched in the event (σ, λ)}

Rdt ={(σ, λ, t) : σ(u) = t, λ(u) = d and

u is unmatched in the event (σ, λ)}

Recall that Nd(u) denotes the partner of u in the per-
fect matching of color d. We are now ready to define the
main charging map ψ from a miss to a set of hits.

Consider a triple (σ, λ, t) s.t. that vertex u at position
t in σ is unmatched and let d = λ(u). Then, we define
the d-ChargingMap of the triple (σ, λ, t) as the set of all
triples (σ′, λ′, s), such that σ′ = σiu for some i ∈ [n] and
λ′ = λdu for some d ∈ {r, b}, and s is the rank of the
vertex to which Nd(u) is matched in the event (σ′, λ′).

Definition 3 (Charging Map). For every
(σ, λ, t) ∈ Rdt , define the map

ψd(σ, λ, t) = {(σiu, λd
′
u , s) : 1 ≤ i ≤ n, d′ ∈ {r, b},

σ(u) = t and Nd(u) is matched to u′

with σiu(u′) = s in the event (σiu, λ
d′
u)}

The following lemma proves that the above charging
maps are well-defined (i.e. s always exists) and that

3Through this section, we will use r and b to denote
color Red and Blue respectively.

s ≤ t for all such mappings. This essentially follows the
standard alternating path argument for Ranking (see
e.g. [1]), except that we also need to argue that the
same holds even when u flips its color and throws away
a different set of edges.

Lemma 1. For any ranking σ and coloring λ, if ver-
tex u has rank t in σ and is left unmatched in the event
(σ, λ), then Nλ(u)(u) is matched to some node u′ in the

event (σiu, λ
b
u) and some node u′′ in the event (σiu, λ

r
u),

for any 1 ≤ i ≤ n. Moreover, σiu(u′) ≤ t and σiu(u′′) ≤
t.

The proof can be found in Appendix E. We next show
that for a fixed t, the set-values ψd(σ, λ, t) are disjoint
for different σ or λ.

Claim 1. If (σ, λ, s) ∈ ψd(σ
′, λ′, t) and (σ, λ, s) ∈

ψd(σ
′′, λ′′, t), then σ′ = σ′′ and λ′ = λ′′.

Proof. WLOG, we can assume d = r. It is clear
that except for the node at rank t the two orderings
and colorings are the same. Let u′ ∈ U be the vertex
with σ(u′) = s, and let ū ∈ V be the vertex to which
u′ is matched in the event (σ, λ). Finally let u ∈ U
be the vertex which ū is matched to in the perfect red
matching. Since we are using the charging map ψr(·), it
follows that λ(u) = λ′(u) = r and σ(u) = σ′(u) = t.

We can now prove the bound on the expectation of
each color.

Lemma 2. Both the number of red matches and the
number of blue matches are at least (3

2
− 2√

e
)n.

Proof. We will show the lemma for the number of
red matches, as the proof for the blue matches is identi-
cal. Let xt be the probability that the node in position

t has a red match (xt =
|Qr

t |
2nn!

).
By Claim 1, we have:

1

2
− xt ≤

1

2n

X
s≤t

(xs + ys)

=⇒ 1

2
− xt ≤

1

2n

X
s≤t

(xs +
1

2
).

Letting zs = xs + 1/2, we can rewrite the above for-
mula as

1− zt ≤
1

2n

X
s≤t

zs

Therefore, we getX
t≤n

zt ≥ (2− 2√
e

)n.

So X
t≤n

xt ≥ (
3

2
− 2√

e
)n ≈ 0.2869n

5.2 Bounding the Expectation of the Min-
imum Color

In order to bound the expectation of the number of
matches of the minimum color, we need to consider two
parts of the probability space – the events for which Red
is the trailing color (where we need to count the num-
ber of Red matches) and the events for which Blue is
the trailing color (where we need to count the number
of Blue matches), breaking ties arbitrarily. However in
doing so, a new difficulty arises – when we were bound-
ing the expected number of matches of one color, we
were guaranteed that the charging maps for all misses
of that color are disjoint. However, this is no longer
true when we look at the charging maps for Red misses
for some of the events and the charging map for Blue
misses for the remaining events – the same hit might
appear in the charging map for some Blue miss and for
some Red miss. Naively allowing double charging will
lead to a large loss in competitive ratio, giving a ratio
of 1− 2/e ' 0.26.

Here we make the second key observation of the anal-
ysis that lets us show essentially the same bound for
expectation of the minimum color, with a loss of only
lower order terms. Let ∆(σ, λ) be the difference be-
tween the number of Red matches and Blue matches in
the matching produced by the algorithm for the event
(σ, λ). We observe that our charging map is “local”, i.e.
misses in an event (σ, λ) map to hits in events whose ∆
value is within 2 of ∆(σ, λ), as shown in Lemma 3. If we
partition the events by their ∆ value, we want to count
the number of Blue misses for events whose ∆ value
is positive and the number of Red misses for the rest.
By the lemma, we know that Blue misses of interest
charge to events whose ∆ value is at least -1, while the
Red misses of interest charge to events whose ∆ value
is at most 2. So the only events whose hits get double-
charged are those whose ∆ value is in {−1, 0, 1, 2}. If
we could show that the number of hits in such events is
small, we will be done. Unfortunately, we do not know
how to show this. What we can show is that there is
some k ∈ [1, 4

√
n] s.t. the probability mass of hits in

events with ∆ value in {k, k+ 1, k+ 2, k+ 3} is no more
than 1√

n
, as shown in Fact 1. So if we look at the charges

from Blue misses in events with ∆ value greater than
k+1, and the charges from Red misses from the remain-
ing events, we will double charge only a small number
of the hits, thereby giving us the required bound.

The full proof can be found in Appendix F.
Tight example: Interestingly, our analysis is tight.

Consider the following family of graphs. Let the up-
per triangular entries (without the diagonal) and the
bottom left entry of the adjacency matrix filled with
Red edges, and the rest filled with Blue edges. This
guarantees two perfect matchings. But running Left-
SubgraphRanking on this graph gives no more than
(3
2
− 2√

e
)n red matches (Figure 6 provides an illustra-

tion; details can be found in the full paper).

6. REFERENCES
[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande,

and Aranyak Mehta. Online vertex-weighted

Figure 6: A tight example for LeftSubgraphRanking.

bipartite matching and single-bid budgeted
allocations. SODA, 2010.

[2] N. Bhatnagar, D. Randall, V.V. Vazirani, and
E. Vigoda. Random bichromatic matchings.
Algorithmica, 50(4):418–445, 2008.

[3] N. Buchbinder, K. Jain, and J.S. Naor. Online
Primal-Dual Algorithms for Maximizing
Ad-Auctions Revenue. In ESA, 2007.

[4] Constantinos Daskalakis and George Pierrakos.
Simple, optimal and efficient auctions. In WINE,
2011.

[5] Ilias Diakonikolas, Christos H. Papadimitriou,
George Pierrakos, and Yaron Singer.
Efficiency-revenue trade-offs in auctions. In
ICALP (2), pages 488–499, 2012.

[6] Jon Feldman, Nitish Korula, Vahab S. Mirrokni,
S. Muthukrishnan, and Martin Pál. Online ad
assignment with free disposal. In WINE, 2009.

[7] M. Flammini and G. Nicosia. On multicriteria
online problems. Algorithms-ESA 2000, 2000.

[8] Chinmay Karande, Aranyak Mehta, and
Ramakrishnan Srikant. Optimizing budget
constrained spend in search advertising. In
WSDM, 2013 (to appear).

[9] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An
optimal algorithm for online bipartite matching.
In STOC, 1990.

[10] AV Karzanov. Maximum matching of given
weight in complete and complete bipartite graphs.
Cybernetics and Systems Analysis, 1987.

[11] Aranyak Mehta, Amin Saberi, Umesh Vazirani,
and Vijay Vazirani. Adwords and generalized
online matching. In FOCS, 2005.

[12] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani.
Matching is as easy as matrix inversion. In
Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages
345–354. ACM, 1987.

[13] Silvio Micali Pablo Azar, Constantinos Daskalakis
and Matt Weinberg. Optimal and efficient
parametric auctions. In SODA, 2013.

[14] C. H. Papadimitriou and M. Yannakakis. On the
approximability of trade-offs and optimal access of
web sources. In FOCS, 2000.

[15] T. Yi, K.G. Murty, and C. Spera. Matchings in
colored bipartite networks. Discrete Applied
Mathematics, 121(1):261–277, 2002.

