
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

Reducing Bayesian Mechanism Design to Algorithm Design

Yang Cai�a, Constantinos Daskalakisb and Matthew Weinbergc

aComputer Science, McGill University, Montreal, QC, Canada
bEECS, Massachusetts Institute of Technology, Cambridge, MA, USA
cComputer Science, Princeton University, Princeton, NJ, USA

Keywords Mechanism design • Job scheduling • Fair allocation • Revenue maximization •
Equivalence of separation and optimization

Years and Authors of Summarized Original Work

STOC2012; Cai, Daskalakis, Weinberg
FOCS2012; Cai, Daskalakis, Weinberg
SODA2013; Cai, Daskalakis, Weinberg
FOCS2013; Cai, Daskalakis, Weinberg
SODA2015; Daskalakis, Weinberg

Problem Definition

The goal is to design algorithms that succeed in models where input is reported by strategic agents
(henceforth referred to as strategic input), as opposed to standard models where the input is directly
given (henceforth referred to as honest input). For example, consider a resource allocation problem
where a single user has m jobs to process on n self-interested machines. Each machine i can
process job j in time tij , and this is privately known only to the machine. Each machine reports
some processing times Otij to the user, who then runs some algorithm to determine where to process
the jobs. Good approximation algorithms are known when machines are honest (i.e., Otij D tij for
all i; j) if the user’s goal is to minimize the makespan, the time elapsed until all jobs are completed,
going back to seminal work of Lenstra, Shmoys, and Tardos [13]. However, such algorithms do not
account for the strategic nature of the machines, which may want to minimize their own work: why
would they report honestly their processing time for each job if they can elicit a more favorable
schedule by lying? To accommodate such challenges, new algorithmic tools must be developed
that draw inspiration from Game Theory.

Requiring solutions that are robust against potential strategic manipulation potentially increases
the computational difficulty of whatever problem is at hand. The discussed works provide a
framework with which to design such solutions (henceforth called mechanisms) and address the
following important question.

Question 1. How much (computationally) more difficult is mechanism design than algorithm
design?

�E-mail: cai@cs.mcgill.ca

Page 1 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

Using this framework, we resolve this question with an answer of “not at all” for several
important problems including job scheduling and fair allocation. Another application of our
framework provides efficient algorithms and structural characterization results for multi-item
revenue-optimal auction design, a central open problem in mathematical economics.

Model
Environment

1. Set F of feasible outcomes. Interpret F as the set of all (feasible) allocations of jobs to
machines, allocations of items to bidders, etc.

2. n agents who all care about which outcome is chosen.

Strategic Agents

1. Each agent i has a value ti .x/ for each outcome x 2 F . ti induces a function from F ! R and
is called the agent’s type.

2. Each ti is drawn independently from some distribution Di of finite support.
3. Agent i knows ti ; all other agents and the designer know only Di .
4. Agents are quasi-linear and risk neutral. That is, the utility of an agent of type t for a

randomized outcome (distribution over outcomes) X 2 �.F/, when he is charged price p,
is Ex X Œt.x/� � p.

5. Agents behave in a way that maximizes utility, taking into consideration beliefs about the
behavior of other agents.

Designer

1. Designs an allocation rule A and price rule P . A takes as input a type profile .t1; : : : ; tn/ and
outputs (possibly randomly) an outcome A.t/ 2 F . P takes as input a type profile and outputs
(possibly randomly) a price vector P.t/. The pair .A; P / is called a (direct) mechanism. Note
that it is without loss of generality to consider only the design of direct mechanisms by the
revelation principle [14].

2. Announces A and P to agents. Invites agents to report a type. When t is reported, selects the
outcome A.t/ and charges agent i price Pi.t/.

3. Has some objective function O to optimize. O may depend on the agents’ types, the outcome
selected, and the prices charged, so we write O.t; x; P/. Examples include:

• Social welfare: O.t; x; P/ DP
i ti .x/.

• Revenue: O.t; x; P/ DP
i Pi .t/.

• Makespan: O.t; x; P/ D maxif�ti .x/g (In job scheduling, agents’ values from allocations
are nonpositive, since they have cost for processing jobs. An agent’s cost for allocation x is
then �ti .x/.).

• Fairness: O.t; x; P/ D minifti .x/g.

Page 2 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

Game Theoretic Definitions

1. The interim rule of a mechanism is a function that takes as input an agent i and type ti and
outputs the distribution of allocations and prices that agent i sees when reporting type ti over
the randomness of the mechanism and the other agents’ types, assuming they tell the truth. So
the interim allocation rule .�; p/ of the mechanism .A; P / satisfies:

PrŒx �i.ti /� D Et�i D�i
ŒPrŒA.ti I t�i / D x�� :

PrŒp pi.ti /� D Et�i D�i
ŒPrŒPi.ti I t�i / D p�� :

2. A mechanism is Bayesian Incentive Compatible (BIC) if every agent receives at least as much
utility by reporting their true type as any other type (assuming other agents report truthfully).
Formally, ti .�i.ti //� pi.ti / � ti .�i .t

0
i //� pi.t

0
i / for all i; ti ; t 0i (We use the shorthand ti .�i.t

0
i //

to denote the expected value of ti for the random allocation drawn from �i.t
0
i /. Formally,

ti .�i.t
0
i // D Ex �i .t

0

i /Œti .x/�.). A commonly used relaxation of BIC is called �-Bayesian
Incentive Compatible (�-BIC). A mechanism is �-BIC if every agent derives at most � less
utility by reporting their true type comparing to any other type (assuming other agents report
truthfully). Formally, ti .�i.ti // � pi.ti / � ti .�i.t

0
i // � pi.t

0
i / � � for all i; ti ; t 0i .

3. A mechanism is individually rational (IR) if every agent has nonnegative expected utility by
participating in the mechanism (assuming other agents report truthfully). Formally, ti .�i.ti //�
pi.ti / � 0 for all i; ti .

Bayesian Mechanism Design (BMeD)
Here we describe formally the mechanism design problem we study. BMeD is parameterized by a
set of feasible outcomes F , objective function O, and set of possible types V . Both V and F can
be discrete or continuous. We assume that every element v 2 V and x 2 F can be represented by a
finite bit string hvi and hxi. V and F also specify how those bit strings are interpreted. For instance,
V might be the class of all submodular functions, and the bit strings used to represent them may
be interpreted as indexing a black-box value oracle. Or V might be the class of all subadditive
functions, and the bit strings used to represent them may be interpreted as an explicit circuit. Or
V could be the class of all additive functions, and the bit strings used to represent them may be
interpreted as a vector containing values for each item. So we are parameterizing our problems
both by the actual classes V and F but also by how elements of these classes are represented. Now,
we are ready to formally discuss the problem BMeD(F ;V;O).
BMeD(F ;V;O):

INPUT: For each agent i 2 Œn�, a discrete distribution Di over types in V , described explicitly
by listing the support of Di and the corresponding probabilities.
OUTPUT: A BIC, IR mechanism.
GOAL: Find the mechanism that optimizes O in expectation, with respect to all BIC, IR
mechanisms (when n bidders with types drawn from �iDi report truthfully).
APPROXIMATION: A mechanism is said to be an .�; ˛/-approximation to BMeD if it outputs
an �-BIC mechanism whose expected value of O (when n bidders with types drawn from �iDi

report truthfully) is at least ˛OPT � � (or at most ˛OPTC � for minimization problems).

Page 3 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

Generalized Objective Optimization Problem (GOOP)
Here we describe formally the algorithmic problem we show has strong connections to BMeD.
GOOP is parameterized by a set of feasible outcomes F , objective function O, and set of possible
types V . We therefore formally discuss the problem GOOP(F ;V;O). Below, V� denotes the
closure of V under linear combinations. Functions in V� are represented by a finite list of elements
of V , along with (possibly negative) scalar multipliers.
GOOP(F ;V;O):

INPUT: For each agent i 2 Œn�, a type gi 2 V , multiplier mi 2 R, and cost function fi 2 V�.
Additionally, an indicator bit b (The indicator bit b is included so that the optimization of justP

i fi .x/ (without price multipliers or O) is formally a special case of GOOP.F ;V;O/.).
OUTPUT: An allocation x 2 F , and price vector p 2 R

n.
GOAL: Find arg maxx2F ;pfb � O.g; x; p/ C P

i mipi C P
i fi .x/g (or arg min, if O is a

minimization objective like makespan).
APPROXIMATION: .x; p/ is said to be an .˛; ˇ/-approximation to GOOP if ˇ � b �O.g; x; p/CP

i mipi CP
i fi .x/ is at least/most ˛ � OPT. Note that a .˛; 1/-approximation is the standard

notion of an ˛-approximation. Allowing ˇ ¤ 1 boosts/discounts the value of O (the objective)
before comparing to ˛ � OPT. Note also that allowing ˇ ¤ 1 provides no benefit if b D 0.

Key Results

We provide a poly-time black-box reduction from BMeD(F ;V;O) to GOOP(F ;V;O). That is,
we provide a reduction from Bayesian mechanism design to traditional algorithm design.

Theorem 1. Let G be an .˛; ˇ/-approximation algorithm for GOOP.F ,V ,O/. Then for all � >

0, there is an .�; ˛=ˇ/-approximation algorithm for BMeD.F ,V ,O). If ` is the length of the input
to a BMeD.F ,V ,O) instance, the algorithm succeeds with probability 1 � exp .�poly.`; 1=�//,
makes poly.`; 1=�/ black-box calls to G on inputs of size poly.`; 1=�/, and terminates in time
poly.`; 1=�/ (times the running time of each oracle call to G).

This reduction is developed in a recent series of papers by the authors [4–7, 9]. The possibility
of failure and additive error is due to a sampling procedure in the reduction. In addition to the
computational aspect provided in Theorem 1, our reduction also has a structural aspect. Namely,
we provide a characterization of the optimal mechanism in Bayesian settings.

Theorem 2. For all objectives O, feasibility constraints F , set of possible types V , and
inputs D to BMeD.F ;V;O/, the optimal mechanism is a distribution over generalized objective
maximizers. Formally, there exists a joint distribution � over an indicator bit bı and mappings
.f ı

1 ; : : : ; f ı
n /, where each f ı

i maps types ti to multipliers mı
i .ti / 2 R and cost functions �ı

i .ti / 2
V�, such that the optimal mechanism first samples .bı; fı/ from � then maps the type profile t
to the allocation and price vector .x.t/; p.t// D arg maxx2F ;pfbı � O.t; x; p/ CP

i mı
i .ti /pi CP

i �ı
i .ti /.x/g.

Perhaps the most interesting case of Theorem 2 is when the objective is revenue. In this case, we
may interpret the cost functions �ı

i 2 V� as the virtual valuation function of bidder i . By virtual

Page 4 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

valuations, we do not mean Myerson’s specific virtual valuation functions [14], which aren’t even
defined for multi-item instances. Instead we simply mean some virtual valuation functions that
may or may not be the same as the types/valuations reported by the agents. We include this and
other applications of Theorems 1 and 2 below.

Applications

In this section, we apply Theorem 1 to the objectives of revenue, makespan, and fairness.
Revenue Maximization: We apply Theorem 1 to reduce the BMeD problem of optimizing revenue
in multi-item settings to GOOP. In [7], it is shown that for this case, one need only consider
instances of GOOP with b D m1 D : : : D mn D 0, so the GOOP instances that must be solved
require just optimization of the cost function (which we call virtual welfare for this application).
We obtain the following computational and structural results on optimal auction design in general
multi-item settings, addressing a long-standing open question following Myerson’s seminal work
on single-item auctions [14].

Theorem 3 (Revenue Maximization, Computational). Let G be an ˛-approximation algorithm
for maximizing virtual welfare over F when all virtual types are from V�. Then for all � > 0,
there is an .�; ˛/-approximation algorithm for the problem BMeD.F ;V; REVENUE/ that makes
polynomially many black-box calls to G. If ` is the length of the input to a BMeD.F ,V ,REVENUE/

instance, the algorithm succeeds with probability 1 � exp .�poly.`; 1=�//, makes poly.`; 1=�/

black-box calls to G on inputs of size poly.`; 1=�/, and terminates in time poly.`; 1=�/ (times the
running time of each oracle call to G).

Theorem 4 (Revenue Maximization, Structural). In any multi-item setting with arbitrary feasi-
bility constraints and possible agent types, the allocation rule of the revenue-optimal auction is a
distribution over virtual welfare maximizers. Formally, there exists a distribution � over mappings
.�1; : : : ; �n/, where each �i maps types ti to cost functions fi 2 V�, such that the allocation
rule for the optimal mechanism first samples � from � then maps type profile t to the allocation
arg maxx2FfPi �i .ti /.x/g.

We further consider the following important special case: There are m items for sale to n buyers.
Any allocation of items to buyers is feasible (that is, each item can be awarded to at most one
buyer), so we can denote the set of feasible allocations as F D ŒnC 1�m. Furthermore, each buyer
i has a value vij for item j and is additive across items, meaning that their value for a set S of
items is

P
j2S vij . So we can denote the set of possible types as RmC (and have types represented

as such).

Theorem 5 (Revenue Maximization for Additive Buyers, Computational). There is a poly-
time algorithm for GOOP.ŒnC 1�m;RmC; REVENUE/. Therefore, there is a poly-time algorithm for
BMeD.ŒnC 1�m;RmC; REVENUE) (In this special case, no sampling is required in the reduction, so
the theorem holds even for � D 0. Formally, this is a .0; 1/-approximation (an exact algorithm).
See [4] for details.).

Page 5 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

Theorem 6 (Revenue Maximization for Additive Buyers, Structural). In any multi-item setting
with n additive buyers and m items for sale, the allocation rule of the revenue-optimal auction is a
distribution over virtual welfare maximizers. Formally, there exists a distribution � over mappings
.�1; : : : ; �n/, where each �i maps types ti to cost functions fi 2 R

m, such that the allocation
rule for the optimal mechanism first samples � from � then awards every item j to a buyer in
arg maxif�ij .vi /g if their virtual value for item j is nonnegative and does not allocate the item
otherwise.

Job Scheduling on Unrelated Machines: The problem of job scheduling on unrelated machines
consists of m jobs and n machines, with machine i able to process job j in time tij . The goal is to
find a schedule (that assigns each job to exactly one machine) minimizing the makespan. Specifi-
cally, if Si are the jobs assigned to machine i , the makespan is maxifPj2Si

tij g. As a mechanism
design problem, one considers the machines to be strategic agents who know their processing
time for each job (but the designer and other machines do not). In the language of BMeD, we
can denote the feasibility constraints as Œn�m, the set of possible types as RmC, and the objective as
MAKESPAN. Theorem 1 reduces BMeD(Œn�m;RmC; MAKESPAN) to GOOP(Œn�m;RmC; MAKESPAN).
It is shown in [7] that for objectives that don’t depend on the prices charged at all (called
“allocation-only”), only instances of GOOP with mi D 0 8i need be considered. It is further
shown in [9] that GOOP(Œn�m;RmC; MAKESPAN) can be interpreted as a job scheduling problem
with costs. Specifically, GOOP(Œn�m;RmC; MAKESPAN) takes as input a processing time tij � 0,
and monetary cost cij 2 R for all machines i and jobs j . The goal is to find a schedule that
minimizes the makespan plus cost. Formally, partition the jobs into disjoint sets Si to minimize
maxifPj2Si

tij g CP
i

P
j cij . While it is NP-hard to approximate GOOP(Œn�m;RmC; MAKESPAN)

within any finite factor, a result of Shmoys and Tardos from the early 1990s obtains a polynomial
time .1; 1=2/-approximation algorithm [15]. In combination with Theorem 1, this yields the
following theorem:

Theorem 7 (Job Scheduling on Unrelated Machines). For all � > 0, there is a poly-
time .�; 2/-approximation algorithm for BMeD.Œn�m;RmC; MAKESPAN). If ` is the length of
the input to a BMeD.Œn�m,RmC,MAKESPAN) instance, the algorithm succeeds with probability
1 � exp .�poly.`; 1=�// and terminates in time poly.`; 1=�/.

Fair Allocation of Indivisible Goods: The problem of fairly allocating indivisible goods consists
of m indivisible goods and n children, with child i receiving value vij for good j . The goal
is to find an allocation of goods (that assigns each good to at most one child) maximizing the
fairness. Specifically, if Si are the goods allocated to child i , the fairness is minifPj2Si

vij g.
As a mechanism design problem, one considers the children to be strategic agents who know
their own value for each good (but the designer and other children do not). In the language
of BMeD, we can denote the feasibility constraints as Œn C 1�m, the set of possible types as
R

mC, and the objective as FAIRNESS. Theorem 1 reduces BMeD(Œn C 1�m;RmC; FAIRNESS) to
GOOP(ŒnC 1�m;RmC; FAIRNESS), which can be interpreted as a fair allocation problem with costs
(again, because FAIRNESS is allocation only) [7,9]. Specifically, GOOP(ŒnC 1�m;RmC; FAIRNESS)
takes as input a value vij � 0 and monetary cost cij 2 R for all children i and goods j . The goal
is to find an allocation that maximizes the fairness minus cost. Formally, allocate the goods into
disjoint sets Si to maximize minifPj2Si

vij g �P
i

P
j cij . While it is NP-hard to approximate

GOOP(Œn C 1�m;RmC; FAIRNESS) within any finite factor, we develop poly-time .1; m � n C 1/-

Page 6 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

and .1=2; QO.
p

n//-approximation algorithms for fair allocation with costs, based on algorithms of
Bezáková and Dani [2] and Asadpour and Saberi [1] for fair allocation (without costs).

Theorem 8 (Fair Allocation of Indivisible Goods). There are poly-time .1; m � n C 1/- and
.1=2; QO.

p
n//-approximation algorithms for GOOP.Œn C 1�m;RmC; FAIRNESS). Therefore, for

all � > 0, there is a .�; minf QO.
p

n/; m � n C 1g/-approximation algorithm for BMeD.Œn C
1�m;RmC; FAIRNESS). If ` is the length of the input to a BMeD.ŒnC1�m,RmC,FAIRNESS) instance, the
algorithm succeeds with probability 1 � exp .�poly.`; 1=�// and terminates in time poly.`; 1=�/.

Tools for Convex Optimization

We prove Theorems 1 and 2 by solving a linear program over the space of possible interim
allocation rules and generalizations of interim allocation rules that we do not discuss here. In
doing so, we also develop new tools applicable for general convex optimization that we discuss
here. We omit full details of the approach and refer the reader to a series of papers by the
authors [5–7, 9] for specifics of the linear program solved and why it addresses BMeD. Seminal
works of Khachiyan [12], Grötschel, Lovász, and Schrijver [10], and Karp and Papadimitriou [11]
study the problems of optimization and separation over a close, convex region P � R

d (Below,
we denote by ˛P D f˛xjx 2 P }. Also, for simplicity of exposition, we only consider P that
contain the origin, so that ˛P � P for all ˛ � 1, but our results extend to all closed, convex P .
See [9] for our most general results.). Formally, these problems are:

Optimize(P):

INPUT: A direction c 2 R
d .

OUTPUT: A point x 2 P .
GOAL: Find x� 2 arg maxx2P fc � xg.

Separate(P):

INPUT: A point x 2 R
d .

OUTPUT: “Yes,” or a direction c 2 R
d .

GOAL: If x 2 P , output “yes.” Otherwise, output any c such that c � x > maxy2P fc � yg.
Khachiyan’s Ellipsoid algorithm shows that if one can solve the problem Separate(P) in time
poly.d/, then one can also solve Optimize(P) in time poly.d/. Grötschel, Lovász, and Schrijver
and independently Karp and Papadimitriou show that the other direction holds as well: if one can
solve Optimize(P) in time poly.d/, then one can also solve Separate(P) in time poly.d/. This is
colloquially called “the equivalence of separation and optimization.” While separation as a means
for optimization has obvious uses, optimization as a means for separation is more subtle. Still,
numerous applications exist (including our results) and we refer the reader to [10, 11] for several
others, including the first poly-time algorithm for submodular minimization.

In order to provide our guarantees with respect to approximation, we develop further the
equivalence of separation and optimization to accommodate approximation. Specifically, consider
the following problems, further parameterized by some ˛ < 1:
˛-Optimize(P):

INPUT: A direction c 2 R
d .

Page 7 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

OUTPUT: A point x 2 P .
GOAL: Find x satisfying c � x � ˛ maxy2P fc � yg.

˛-Separate(P):

INPUT: A point x 2 R
d .

OUTPUT: “Yes” and a proof that x 2 P , or a direction c 2 R
d (For formal details on exactly

what constitutes a proof, we refer the reader to [6, 7, 9]. Roughly speaking, x is written as a
convex combination of points known to be in P .).
GOAL: If x 2 ˛P , output “yes” and a proof that x 2 P . If x … P , output a direction c such that
c � x > ˛ maxy2P fc � yg. If x 2 P n˛P , either is acceptable.

Theorem 9 (Approximate Equivalence of Separation and Optimization). For all ˛ � 1, the
problems ˛-Optimize(P) and ˛-Separate(P) are computationally equivalent. That is, if one can
solve one in time poly.d/, one can solve the other in time poly.d/ as well.

We also extend these results to accommodate bi-criterion approximation, via the problems below,
further parameterized by some ˇ > 1 and subset S � Œd � of coordinates (Below, when we write
.ˇxS ; x�S/, we mean to take x and multiply each xi ; i 2 S by ˇ.).
.˛; ˇ; S/-Optimize(P):

INPUT: A direction c 2 R
d .

OUTPUT: A point x 2 P .
GOAL: Find x satisfying c � .ˇxS ; x�S/ � ˛ maxy2P fc � yg.

.˛; ˇ; S/-Separate(P):

INPUT: A point x 2 R
d .

OUTPUT: “Yes” and a proof that x 2 P , or a direction c 2 R
d .

GOAL: If .ˇxS ; x�S/ 2 ˛P , output “yes” and a proof that x 2 P . If x … P , output a direction c
such that c � .ˇxS ; x�S/ > ˛ maxy2P fc � yg. If .ˇxS ; x�S/ … ˛P and x 2 P , either is acceptable
(An astute reader might worry that for some ˛; ˇ; S; P , the problem .˛; ˇ; S/-Separate(P) is
impossible, due to the existence of an x … P such that .ˇxS ; x�S/ 2 ˛P . For some ˛; ˇ; S; P ,
this is indeed the case, but we show that .˛; ˇ; S/-Optimize(P) is impossible in these cases as
well.).

Theorem 10 (Bi-Criterion Approximate Equivalence of Separation and Optimization). For
all ˛ � 1; ˇ � 1; S � Œd �, the problems .˛; ˇ; S/-Optimize(P) and .˛; ˇ; S/-Separate(P) are
computationally equivalent. That is, if one can solve one in time poly.d/, one can solve the other
in time poly.d/ as well.

More formal statements and how we apply these theorems to yield our main result can be found
in [9]. Finally, the theorems hold for minimization as well as maximization and without the
restriction that P contains the origin (but the theorem statements are more technical).

Open Problems

Our work provides a novel computational framework for solving Bayesian mechanism design
problems. We have applied our framework to solve several specific important problems, such

Page 8 of 9

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_787-1
© Springer Science+Business Media New York 2015

as computing revenue-optimal auctions in multi-item settings and approximately optimal BIC
mechanisms for job scheduling, but numerous important settings and objectives remain unre-
solved. Theorem 1 provides a concrete approach for tackling such problems, via the design of
.˛; ˇ/-approximations for the purely algorithmic Generalized Objective Optimization Problem.
Therefore, one important direction following our work is to apply our framework to novel settings
and design algorithms for the resulting GOOP instances.

Recommended Reading

1. Asadpour A, Saberi A (2007) An approximation algorithm for max-min fair allocation of
indivisible goods. In: The 39th annual ACM symposium on theory of computing (STOC), San
Diego

2. Bezáková I, Dani V (2005) Allocating indivisible goods. SIGecom Exch 5(3):11–18
3. Cai Y, Daskalakis C (2011) Extreme-value theorems for optimal multidimensional pricing. In:

The 52nd annual IEEE symposium on foundations of computer science (FOCS), Palm Springs
4. Cai Y, Daskalakis C, Matthew Weinberg S (2012) An algorithmic characterization of multi-

dimensional mechanisms. In: The 44th annual ACM symposium on theory of computing
(STOC), New York

5. Cai Y, Daskalakis C, Matthew Weinberg S (2012) Optimal multi-dimensional mechanism
design: reducing revenue to welfare maximization. In: The 53rd annual IEEE symposium on
foundations of computer science (FOCS), New Brunswick

6. Cai Y, Daskalakis C, Matthew Weinberg S (2013) Reducing revenue to welfare maximization:
approximation algorithms and other generalizations. In: The 24th annual ACM-SIAM
symposium on discrete algorithms (SODA), New Orleans

7. Cai Y, Daskalakis C, Matthew Weinberg S (2013) Understanding incentives: mechanism design
becomes algorithm design. In: The 54th annual IEEE symposium on foundations of computer
science (FOCS), Berkeley

8. Daskalakis C, Matthew Weinberg S (2012) Symmetries and optimal multi-dimensional
mechanism design. In: The 13th ACM conference on electronic commerce (EC), Valencia

9. Daskalakis C, Matthew Weinberg S (2015) Bayesian truthful mechanisms for job scheduling
from bi-criterion approximation algorithms. In: The 26th annual ACM-SIAM symposium on
discrete algorithms (SODA), San Diego

10. Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1(2):169–197

11. Karp RM, Papadimitriou CH (1980) On linear characterizations of combinatorial optimization
problems. In: The 21st annual symposium on foundations of computer science (FOCS),
Syracuse

12. Khachiyan LG (1979) A polynomial algorithm in linear programming. Sov Math Dokl
20(1):191–194

13. Lenstra JK, Shmoys DB, Tardos É (1990) Approximation algorithms for scheduling unrelated
parallel machines. Math Program 46(1–3):259–271

14. Myerson RB (1981) Optimal auction design. Math Oper Res 6(1):58–73
15. Shmoys DB, Tardos É (1993) Scheduling unrelated machines with costs. In: The 4th

symposium on discrete algorithms (SODA), Austin

Page 9 of 9

	Reducing Bayesian Mechanism Design to Algorithm Design
	Years and Authors of Summarized Original Work
	Problem Definition
	Model
	Environment
	Strategic Agents
	Designer
	Game Theoretic Definitions

	Bayesian Mechanism Design (BMeD)
	Generalized Objective Optimization Problem (GOOP)

	Key Results
	Applications
	Tools for Convex Optimization
	Open Problems
	Recommended Reading

