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Abstract

Daily deals platforms such as Amazon Local, Google Offers, GroupOn,
and LivingSocial have provided a new channel for merchants to directly
market to consumers. In order to maximize consumer acquisition and
retention, these platforms would like to offer deals that give good value
to users. Currently, selecting such deals is done manually; however, the
large number of submarkets and localities necessitates an automatic
approach to selecting good deals and determining merchant payments.

We approach this challenge as a market design problem. We postu-
late that merchants already have a good idea of the attractiveness of
their deal to consumers as well as the amount they are willing to pay
to offer their deal. The goal is to design an auction that maximizes
a combination of the revenue of the auctioneer (platform), welfare of
the bidders (merchants), and the positive externality on a third party
(the consumer), despite the asymmetry of information about this con-
sumer benefit. We design auctions that truthfully elicit this informa-
tion from the merchants and maximize the social welfare objective,
and we characterize the consumer welfare functions for which this ob-
jective is truthfully implementable. We generalize this characterization
to a very broad mechanism-design setting and give examples of other
applications.

1 Introduction

Daily deals websites such as Amazon Local, Google Offers, GroupOn, and
LivingSocial have provided a new channel of direct marketing for merchants.

*MIT, ycai@csail.mit.edu.

TGoogle, mahdian@google.com.
tGoogle, aranyak@google.com.
$Harvard, bwaggoner@fas.harvard.edu.


http://arxiv.org/abs/1310.0548v1

In contrast to standard models of advertising such as television ads and
web search results, the daily deals setting provides two new challenges to
platforms.

First, in models of advertising such as web search, the advertisement
is shown on the side of the main content; in contrast, daily deals websites
offer consumers web pages or emails that contain only advertisements (i.e.,
coupons). Therefore, for the long-term success of a platform, the decision
of which coupons to show to the user must depend heavily on the benefit
these coupons provide to consumers.

Second, the merchant often has significantly more information than the
advertising platform about this consumer benefit. This benefit depends on
many things: how much discount the coupon is offering, how the undis-
counted price compares with the price of similar goods at the competitors,
the price elasticity of demand for the good, the fine prints of the coupon,
and so on. These parameters are known to the merchants, who routinely use
such information to optimize their pricing and their inventory, but not to
the platform provider who cannot be expected to be familiar with all mar-
kets and would need to invest significant resources to learn these parameters.
Furthermore, unlike standard advertising models where an ad is displayed
over a time period to a number of users and its value to the user (often
measured using proxies like click-through rate or conversion rate) can be
estimated over time, the structure of the daily deals market does not permit
much experimentation: A number of deals must be selected at the beginning
of each day to be sent to the subscribers all at once, and the performance
of previous coupons, if any, by the same advertiser is not a good predictor
of the performance of the current coupon, as changing any of the terms of
the coupons can significantly affect its value.

These challenges pose a novel market design problem: How can we se-
lect deals with good benefit to the consumer in the presence of strongly
asymmetric information about this benefit? This is precisely our goal in
this paper. We postulate that merchants hold, as private information, two
parameters: A wvaluation equalling the overall utility the merchant gains
from being selected (as in a standard auction); and a quality that represents
the attractiveness of their deal to a user. The task is to design an auction
mechanism that incentivizes the merchants to reveal their private informa-
tion about both their valuation and quality, then picks deals that maximize
a combination of platform, merchant, and consumer values. We show that,
if consumer welfare is a convex function of quality, then we can design a
truthful auction that maximizes total social welfare; furthermore, we show
that the convexity condition is necessary. We give negative results for an-



other natural goal, achieving a constant-fraction welfare objective subject
to a quality threshold guarantee. The main idea behind our positive results
is to design a mechanism where bidders’ total payment is contingent (in
a carefully chosen way) upon whether the consumer purchases the coupon.
Not surprisingly, the theory of proper scoring rules comes in handy here.

We then extend these results to characterize incentive-compatible mech-
anisms for social welfare maximization in a very general auction setting,
where the type of each bidder has both a valuation and a quality compo-
nent. Quality is modeled as a distribution over possible states of the world;
a consumer welfare function maps these distributions to the welfare of some
non-bidding party. We design truthful welfare-maximizing mechanisms for
this setting and characterize implementable consumer welfare functions with
a convexity condition that captures expected welfare and, intuitively, risk-
averse preferences. We give a number of example applications demonstrating
that our framework can be applied in a broad range of mechanism design
settings, from network design to principal agent problems.

The rest of this paper is organized as follows: In the next section, we for-
mally define the setting and the problem. In Section Bl we give a mechanism
for maximizing social welfare when consumer welfare is a convex function
the quality. In Section [d] we show that no truthful mechanism even approxi-
mates the objective of maximizing the winner’s value subject to a minimum
quality; we also show that the convexity assumption in Section [Blis necessary.
Finally, in Section [B, we extend our mechanisms and characterization to a
much more general setting.

Related work. To the best of our knowledge, our work is the first to
address mechanism design in a market for daily deals. There has been
unrelated work on other aspects of daily deals (e.g. impact on reputation) M,
B, @] A related, but different line of work deals with mechanism design
for pay-per-click (PPC) advertising. In that setting, as in ours, each ad has
a value and a quality (representing click-through rate for PPC ads and the
probability of purchasing the deal in our setting). The objective is often to
maximize the combined utility of the advertisers and the auctioneer HE, ],
but variants where the utility of the user is also taken into account have
also been studied @] The crucial difference is that in PPC advertising,
the auctioneer holds the quality parameter, whereas in our setting, this
parameter is only known to the merchant and truthful extraction of the
parameter is an important part of the problem. Other work on auctions
with a quality component ﬂa,b] assume that a quality level may be assigned



by the mechanism to the bidder (who always complies), in contrast to our
setting where quality is fixed and private information.

We make use of proper scoring rules, an overview of which appears in ﬂﬂ],
to our knowledge, proper scoring rules have been used in auctions only to
incentivize agents to guess others’ valuations E] Our general setting is re-
lated to an extension of proper scoring rules, decision rules and decision
markets , ] There, a mechanism designer elicits agents’ predictions of
an event conditional on which choice she makes. She then selects an out-
come, observes the event, and pays the agents according to the accuracy of
their predictions. Unlike our setting, agents are assumed not to have pref-
erences over the designer’s choice, except in [3], which (unlike us) assumes
that the mechanism has partial knowledge of these preferences and does not
attempt to elicit preferences. Our general model may be interpreted as a
fully general extension to the decision-rule setting in which we introduce
the novel challenge of truthfully eliciting these preferences and incorporate
them into the objective. However, we focus on deterministic mechanisms,
while randomized mechanisms have been shown to have nice properties in a
decision-rule setting ﬂ]

Another related line of work examines examines when a proper scor-
ing rule might incentivize an agent to take undesirable actions in order to
improve his prediction’s accuracy. When the mechanism designer has pref-
erences over different states, scoring rules that incentivize beneficial actions
are termed principal-aligned scoring rules ﬂﬁ] A major difference is that
the mechanism designer in the principal-aligned setting, unlike in ours, does
not select between outcomes of any mechanism, but merely observes a state
of the world and makes payments.

2 The Model

In this section, we formulate the problem in its simplest form: when an
auctioneer has to select just one of the interested merchants to display her
coupon to a single consumerEl In Section Bl our model and results will be
generalized to a much broader setting.

There are m bidders, each with a single coupon. We also refer to the
bidders as merchants and to coupons as deals. An auctioneer selects at most
one of these coupons to display. For each bidder ¢, there is a probability
pi € [0,1] that if i’s coupon is displayed to a consumer, it will be purchased

1Our mechanisms for this model can be immediately extended to the case of many
consumers by scaling.



by the consumer. We refer to p; as the quality of coupon ¢. Furthermore,
for each bidder %, there is a value v; € R that represents the expected value
that i gets if her coupon is chosen to be displayed to the advertiser. Both
v; and p; are private information of the bidder i, and are unknown to the
auctioneerq We refer to (v;,p;) as bidder i’s type. We assume that the
bidders are expected utility maximizers and their utility is quasilinear in
payment.

Note that v; is i’s total expected valuation for being selected; in particu-
lar, it is not a value-per-purchase (as in e.g. search advertisement). Rather,
v; is the maximum amount ¢ would be willing to pay to be selected (before
observing the consumer’s purchasing decision). Also, we allow v; and p; to
be related in an arbitrary manner. If, for instance, ¢ derives value a; from
displaying the coupon plus an additional ¢; if the consumer purchases the
coupon, then ¢ would compute v; = a;+p;c; and submit her true type (v, p;).
For our results, we do not need to assume any particular model of how v; is
computed or of how it relates to p;.

An auction mechanism functions as follows. It asks each bidder i to
reveal her private type (v;,p;). Let (9;,p;) denote the type reported by
bidder i. Based on these reports, the mechanism chooses one bidder i* as
the winner of the auction, i.e., the merchant whose deal is shown. Then,
a consumer arrives; with probability p;+, she decides to purchase the deal.
Let w € {0, 1} denote the consumer’s decision (where 1 is a purchase). The
mechanism observes the consumer’s decision and then charges the bidders
according to a payment rule, which may depend on w.

We require the mechanism to be truthful, which means that it is, first,
incentive compatible: for every merchant ¢ and every set of types reported
by the other merchants, i’s expected utility is maximized if she reports her
true type (v;, p;); and second, interim individually rational: each merchant
receives a non-negative utility in expectation (over the randomization in-
volved in the consumer’s purchasing decision) if she reports her true type.

The goal of the auctioneer is to increase some combination of the welfare
of all the parties involved. If we ignore the consumer, this can be modeled by
the sum of the utilities of the merchants and the auctioneer, which, by quasi-
linearity of the utilities, is precisely v;+. To capture the welfare of the user,
we suppose that a reasonable proxy is the quality p;+ of the selected deal. We
study two natural ways to combine the merchant/auctioneer welfare v« with
the consumer welfare p;«. One is to maximize v;+ subject to the deal quality

2In Section [5.4] we will briefly discuss extensions in which both parties have quality
information.



pi meeting a minimum threshold «. Another is to model the consumer’s
welfare as a function g(p;«) of quality and seek to maximize total welfare
vi= + g(pi=). In the latter case, when ¢ is a convex function, we construct
in the next section a truthful mechanism that maximizes this social welfare
function (and we show in Section M that, when g is not convex, there is no
such mechanism). For the former case, in Section M, we prove that it is not
possible to achieve the objective, even approximately.

3 A Truthful Mechanism via Proper Scoring Rules

In this section, we show that for every convez function g, there is an incentive-
compatible mechanism that maximizes the social welfare function v;«+g(p;+).
A convex consumer welfare g function may be natural in many settings. Most
importantly, it includes the natural special case of a linear function; and it
also intuitively models risk aversion, because (by definition of convexity) the
average welfare of taking a guaranteed outcome, which is pg(1)+ (1— p@(O),
is larger than the welfare g(p) of facing a lottery over those outcomes
We will make use of binary scoring rules, which are defined as follows.

Definition 1. A binary scoring rule S : [0,1] x {0,1} — R is a function
that assigns a real number S(p,w) to each probability report p € [0,1] and
state w € {0,1}. The expected value of S(p,w), when w is drawn from a
Bernoulli distribution with probability p, is denoted by S(p;p). A scoring
rule S is (strictly) proper if, for every p, S(p;p) is (uniquely) maximized at
p=p.

Traditionally, proper binary scoring rules are used to truthfully extract
the probability of an observable binary event from an agent who knows this
probability: It is enough to pay the agent S(p,w) when the agent reports
the probability p and the state turns out to be w. In our setting, obtaining
truthful reports is not so straightforward: A bidder’s report affects whether

3 To see this, suppose 100 consumers arrive, and the welfare of each is the convex
function g(p) = p2. If 50 consumers see a deal with p = 0 and 50 see a deal with p = 1,
the total welfare is 50(0)+50(1) = 50. If all 100 see a deal with p = 0.5, the total welfare is
100 (0.52) = 25. Under this welfare function, the “sure bet” of 50 purchases is preferable
to the lottery of 100 coin flips.

4 Note that risk aversion is often associated with concave functions. These are unrelated
as they do mot map probability distributions to welfare; they are functions v : R — R
that map wealth to welfare. Concavity represents risk aversion in that setting because the
welfare of a guaranteed payoff x, which is u(x), is larger than the welfare of facing a draw
from a distribution with probability z, which is zu(1) + (1 — z)u(0).



or not they win the auction as well as any scoring rule payment. However,
the following theorem shows that, when the consumer welfare function g is
convex, then a careful use of proper binary scoring rules yields an incentive-
compatible auction mechanism.

Theorem 1. Let g : R — R be a conver function. Then there is a truthful
auction that picks the bidder i* that maximizes v + g(pi+) as the winner.

The proof of this theorem relies on the following lemma about proper
binary scoring rules, which is well known and given, for example, in ]
For the sake of completeness, we include a proof here.

Lemma 1. Let g : [0,1] — R be a (strictly) convex function. Then there is a
(strictly) proper binary scoring rule Sy such that for every p, Sq(p;p) = g(p).

Proof. Let ¢'(p) be a subgradient of g at point p, i.e., a value such that for
all ¢ € [0,1], g(q) > g(p) + ¢ (p)(q — p)ﬁ Now define:

Sy(p,1) = g(p) + (1 —p)g'(p)
Sq(p,0) = g(p) — g’ (p) -

We have that Sy(p;p) = pSg(p,1) + (1 — p)Sy(p,0) = g(p). We now prove
that Sy is a (strictly) proper binary scoring rule. We have

Se(p;p) = p(9(®)+ 1 —=p)g () + (1 —p) (9(p) —pg (D))
= g(p)+ (p—p)g ().

By definition of ¢’, the above value is never greater than g(p), and is equal
to g(p) at p = p. Therefore, the maximum of S, (p,p) is achieved at p = p.
If g is strictly convex, the inequality is strict whenever p # p. O

Proof of Theorem[1. Let h be the following “adjusted value” function: h(v,p) =
0+ g(p). For convenience, rename the bidders so that bidder 1 has the high-
est adjusted value, bidder 2 the next highest, and so on. The mechanism
deterministically gives the slot to bidder 1 = ¢*. All bidders except bidder

1 pay zero. Bidder 1 pays h(v2,p2) — Sq(p1,w), where Sy is a proper binary
scoring rule satisfying S;(p; p) = g(p) and w is 1 if the customer purchases
the coupon and 0 otherwise. The existence of this binary scoring rule is
guaranteed by Lemma [I

5If ¢ is differentiable, ¢’ must be the derivative of g. Even if g is not differentiable,
convexity of g implies that a subgradient ¢’ always exists.



We now show that the auction is truthful. If ¢ bids truthfully and does
not win, ¢’s utility is zero. If ¢ bids truthfully and wins, i’s expected utility
is

v; — h(2, p2) + Sq(pi; pi)
= h(vi,p;) — h(V2, p2).

This expected utility is always at least 0 because i is selected as winner only
if h(vi,p;) > h(ve,p2). This shows that the auction is interim individually
rational.

Now suppose that ¢ reports (9;,p;). If ¢ does not win the auction with
this report, then i’s utility is zero, but a truthful report always gives at least
zero. So we need only consider the case where ¢ wins the auction with this
report. Then, i’s expected utility is

v; — h(02, p2) + Sy(Dis i)
< v — W02, p2) + Sq(pis i)
= h(vi,pi) — h(02,p2).

using the properness of S, and the definition of h(v;,p;). There are two
cases. First, if h(v;,p;) < h(0g,p2), then U(0;,p;) < 0. But, if ¢ had re-
ported truthfully, ¢« would have gotten a utility of zero (having not have
been selected as the winner). Second, if h(v;, p;) > h(v2,p2), then U(v;, p;) <
h(vi, p;) — h(v2,p2). But, if i had reported truthfully, i would have gotten
an expected utility of h(v;, p;) — h(02, p2). This shows incentive compatibil-
ity. ]

4 Impossibility Results

An alternative way to combine consumer welfare with the advertiser /auctioneer
welfare is to ask for an outcome that maximizes the advertiser/auctioneer
welfare subject to the winner’s quality parameter meeting a minimum thresh-
old «. It is not hard to show that achieving such “discontinuous” objective
functions is impossibleﬁ A more reasonable goal is to obtain an incentive-
compatible mechanism with the following property: for two given thresholds
«a and 8 with a < 3, the mechanism always selects a winner ¢* with quality
pi+ at least a, and with a value v;« that is at least v* := max;.,,>s{v;} (or

SIntuitively, the reason is that it is impossible to distinguish between a coin whose
probability of heads is a@ and one whose probability is a — €, when € can be arbitrarily
small, by the result of a single flip.



an approximation of v*).

One approach to solving this problem is to use the result of the previous
section (Theorem [I]) with an appropriate choice of the function g. Indeed, if
we assume the values are from a bounded range [0, Vi,ax) and use the auction
mechanism from Theorem [I] with a function ¢ defined as follows,

(p) = 0 if p<a
M 2 Vi P2

then if there is at least one bidder with quality parameter at least [, then
the mechanism is guaranteed to pick a winner with quality at least «.. This
is easy to see: the adjusted bid of the bidder with quality at least 3 is at least
Vinax, while the adjusted bid of any bidder with quality less than « is less
than Viax. In terms of the value, however, this mechanism cannot provide
any multiplicative approximation guarantee, as it can select a bidder with
quality 1 and value 0 over a bidder with quality § and any value less than
572 Vinase-

Unfortunately, as we show in Theorem [}, this is unavoidable: unless
B =1 (that is, unless welfare is compared only against bidders of “perfect”
quality), there is no deterministic, truthful mechanism that can guarantee
a bounded multiplicative approximation guarantee in the above setting.

Theorem 2. For a given 0 < a < f < 1 and X\ > 1, suppose that a
deterministic truthful mechanism satisfies that, if there is some bidder i
with p; > B:

1. The winner has p; > «;

2. The winner has value vy > v* /X, where v* := max;.p,>3{v;}.

Then B = 1. This holds even if valuations are upper-bounded by a constant
Vma:r: .

Proof. Fix all reports ¥_; and p_;. Let t,(0;,p;) be the net transfer to
bidder i in state w when ¢ reports (9;,p;) and wins the auction (¢, (0;,p;)
will be negative if the mechanism charges bidder 7). Then we can denote i’s
expected utility for winning with report (0;,p;) given true type (v;, p;) by

U (03, Pis vis pi) = vi + pit1 (04, 05) + (1 — pi)to(0s, ps) -

Since ¢ will always report so as to maximize this value given that i prefers
to win, we can define

h(p;) = (Am%xw{pitl(ﬁiaﬁi) + (1 — pi)to(0s, ps) }

V;,Di) €



where W is the set of winning bids (0;, p;), and write i’s expected utility for
winning simply as U (v, p;) = max g, 5,)ew U (i, pi; vi, pi) = vi + h(p;). We
note that h is a convex function of p since, for any pricing scheme t,(0;, p;),
h(p) is the point-wise maximum over a family of linear functions.

Fix some choices of 0 < a < § < 1. To guarantee that 7 does not win
if p; < «, we must have that, whenever p; < «a, every winning bid gives ¢
negative expected utility. Therefore, ¢ will not bid so as to win in this case.
Thus,

U(vi,pi) <0 (Vvi, ps < a)
= h(a) < —Viae -

Now, suppose there is a v; with the property that 7 is never selected as
winner when v; < v1. Then we must have

U(vi,pi) <0 (Vi < wv1,pi)
= h(p;) < —u1 (Vpi) -

Conversely, suppose that there is a vy with the property that i is always
selected as the winner when p; > 8 and v; > v9. Then we must have

U(vi,pi) >0 (Yv; > v2,p; > )
— h(ﬁ) > —vg .

Since h is convex,

(B2 o+ (2= (2120
= h(B)

The above inequalities thus imply that

v2 > Vinaz <%> + v1 </f:z> . (1)

Now suppose that our mechanism guarantees a welfare approximation factor
of \. Let v* be the highest value of any bidder other than ¢ having p >
(supposing such a bidder exists). Then i loses if v; < v*/\ = v; and wins
whenever p; > § and v; > A\v* = v9. But v; and v satisfy the properties
given above, so they satisfy Inequality [l Now take v* arbitrarily small, so
that v1, vy < Vinas, and Inequality [0 can only hold if 8 = 1. O

The techniques used in the above proof can be used to show that the
convexity assumption in Theorem [ is indeed necessary:

10



Theorem 3. Assume g : R — R is a function for which there exists a
deterministic truthful auction that always picks the bidder i* that mazrimizes
vi= + g(pi=) as the winner. Then g is a convex function.

Proof. As in the proof of Theorem ] fix all reports v_; and p__;, and define
tw(0i, p;) and U(0;, pi; vi, p;) as before. By the incentive compatibility and
individual rationality of the mechanism, bidder ¢ must win the auction if

max U (0;, pi; vi, pi) >0
(0s,D4)
and lose if

max U (0;, pi; vi, pi) < 0.
(0s,P4)

Equivalently, bidder ¢ must win if
v; > — (Ipf{%{pitl(@iaﬁi) + (1 = pi)to(®i, i)}
;i
and lose if the opposite inequality holds. On the other hand, since the
mechanism always picks the bidder that maximizes v; + g(p;), bidder ¢ must
win if
vi > max{v; +9(p;)} — 9(pi)

and lose if the opposite inequality holds. Thus, we must have:

max{v; +g(p;)} — 9(pi) =
JFi
— max {p;t1 (05, p;) + (1 — pi)to(0i, Pi) },
Vi,Pi
or
9(pi) = g_l%}_‘:){pitl({)i,ﬁi) + (1 = pi)to(0s,05) } + %,12@?({% +9(p;)}-

The right-hand side of the above equation is the maximum of a number
of terms, each of which is a linear function of p;. Therefore, g(p;) is a convex
function of p;. O

5 A General Framework

Daily deals websites generally offer many deals simultaneously, and to many
consumers. A more realistic model of this scenario must take into account
complex valuation functions as well as general quality reports. Merchants’

11



valuations may depend on which slot (top versus bottom, large versus small)
or even subset of slots they win; they may also change depending on which
competitors are placed in the other slots. Meanwhile, merchants might like
to report quality in different units than purchase probability, such as (for
example) total number of coupon sales in a day, coupon sales relative to
those of competitors, or so on.

In this section, we develop a general model that can cover these cases
and considerably more. As in a standard multidimensional auction, bidders
have a valuation for each outcome of the mechanism (for instance, each as-
signment of slots to bidders). For quality reports, our key insight is that
they may be modeled by a belief or prediction over possible states of the
world, where each state has some verifiable quality. This naturally models
many scenarios where the designer would like to make a social choice (such
as allocating goods) based not only on the valuations of the agents involved,
but also on the likely externality on some non-bidding party; however, this
externality can be best estimated by the bidders. We model this externality
by a function, which we call the consumer welfare function, that maps prob-
ability distributions to a welfare value. A natural consumer welfare function
is the expected value of a distribution.

When this consumer welfare satisfies a convexity condition, we construct
truthful mechanisms for welfare maximization in this general setting; we
also prove matching negative results. This allows us to characterize im-
plementable welfare functions in terms of component-wise convexity, which
includes the special case of expected value and can also capture intuitively
risk-averse preferences.

We start with a definition of the model in Section 5.l and then give
a truthful mechanism as well as a matching necessary condition for imple-
mentability in this model in Section In Section (E.4l we give a number of
applications and extensions of our general framework.

5.1 Model

We now define the general model, using the multi-slot daily deals problem
as a running example to illustrate the definition.

There are m bidders (also called merchants) indexed 1 through m, and
a finite set O of possible outcomes of the mechanism. Each bidder has as
private information a valuation function v; : © — R that assigns a value
v;(0) to each outcome o. For instance, each outcome o could correspond to
an assignment of merchants to the available slots, and v;(0) is i’s expected
value for this assignment, taking into account the slot(s) assigned to i as

12



well as the coupons in the other slots.

For each o € O and each bidder 7, there is a finite set of observable
disjoint states of interest €2; , representing different events that could occur
when the mechanism’s choice is 0. For example, if merchant 7 is awarded a
slot under outcome o, then €2; , could be the possible total numbers of sales
of ©’s coupon when the assignment is o, e.g. Q; , = {fewer than 1000, 1000
to 5000, more than 5000}.

Given an outcome o chosen by the mechanism, nature will select at
random one of the states w in €); , for each bidder i[l In the running example,
some number of consumers choose to purchase i’s coupon, so perhaps w =
“1000 to 50007.

We let Ag, , denote the probability simplex over the set 2; 5, i.e., Aq, , =
{p €[0,1] % : > weq, , Pw = 1}. Each bidder 7 holds as private information
a set of beliefs (or predictions) p; : © — Ag, . For each outcome o, p;(0) €
Aqg, , is a probability distribution over states w € €2; ,. Thus, under outcome
o where i is assigned a slot, p;(0) would give the probability that i sells
fewer than 1000 coupons, that ¢ sells between 1000 and 5000 coupons, and
that 4 sells more than 5000 coupons. We denote the vector of predictions
(p1(0), ... ,pm(0)) at outcome o by plo) € xJ2; Aq, ,.

The goal of the mechanism designer is to pick an outcome that maximizes
a notion of welfare. The combined welfare of the bidders and the auctioneer
can be represented by > ", v;(0). If thls was the goal, then the problem
could have been solved by ignorin the )’s and using the well-known
Vickrey-Clarke-Groves mechanism In our setting, however, there
is another component in the welfare functlon, which for continuity with the
daily deals setting we call the consumer welfare. This component, which
depends on the probabilities p;(0), represents the welfare of a non-bidding
party that the auctioneer wants to keep happy (which could even be the
auctioneer herself!). The consumer welfare when the mechanism chooses
outcome o is given by an arbitrary function g, : xj2; Ag, , — R which de-
pends on the bidders’ predictions p(0). The goal of the mechanism designer
is then to pick an outcome o that maximizes

(Z w(o)) + 9o(3(0)).
=1

For example, in the multi-slot problem, consumer welfare at the outcome

"These choices do not have to be independent across bidders; indeed, all bidders could
be predicting the same event, in which case €;, = Qs , for all 4,4’ and nature selects the
same state for each 1.
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o could be defined as the sum of the expected number of clicks of the deals
that are allocated a slot in o.

A mechanism in this model elicits bids (9;,p;) from each bidder i and
picks an outcome o based on these bids. Then, for each 4, the mechanism
observes the state w; picked by nature from €); , and charges i an amount
that can depend on the bids as well as the realized state w;. This mechanism
is truthful (incentive compatible and individually rational) if, for each bidder
i, and for any set of reports of other bidders (0_;, p—;), bidder 7 can maximize
her utility by bidding her true type (v;, p;), and this utility is non-negative.

5.2 A Class of Truthful Mechanisms

In this section, we give a truthful mechanism for the general setting, assum-
ing that the consumer welfare function g, satisfies the following convexity

property.

Definition 2. A function f : Aq — R is convex if and only if for each
x,y € Aq and each o € [0, 1],

flox+ (1 —a)y) <af(x)+(1—a)f(y).

We call a function go : X7 Agq, , — R component-wise convex if for each
i and for each vector p_i(0) € Xj.jx; Aq,, of predictions of bidders other
than i, go(pi(0),p—i(0)) is a convex function of p;(o).

Component-wise convexity includes the important special case of ex-
pected value, and can also capture an intuitive notion of risk aversion with
respect to each bidder’s prediction, as it requires that the value of taking a
draw from some distribution gives lower utility than the expected value of
that draw (see footnotes Bland []). It includes all convex functions, but there
are also functions such as g(p1,p2) = (pl — %) . (pg — %) that are component-
wise convex but not convex.

We can now state our result.

Theorem 4. If for any outcome o, the consumer welfare function g, is
component-wise convez, then there is a truthful mechanism that selects an
outcome o that mazimizes (3 ;- vi(0)) + go(p(0)).

As in the simple model, our mechanism uses proper scoring rules. The
definition of scoring rules can be adapted to the general setting as follows.

Definition 3. A scoring rule S : Ag X = R is a function that assigns
a real number S(p,w) to each probability report p € Aq and state w € ).
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The ezpected value of S(p,w) when w is drawn according to the distribution
p € Aq is denoted by S(p;p). A scoring rule S is proper if, for every p,
S(p;p) is maximized at p = p.

We also need a generalization of Lemma[Il This fact about scoring rules
is proven in more generality in ﬂﬂ] and is originally due to Savage Nﬁ]

Lemma 2 (ﬂﬂ, @]) For every convex function g : Aq — R there is a
proper scoring rule Sy such that for every p, Sq(p;p) = g(p)-

Proof of Theorem [ Using Lemmal2land the assumption that g, is component-

wise convex, for any outcome o, bidder i, and set of reports of other bidders

p—i(0), we can construct a proper scoring rule Sy ; 5 (o) With S, ; 5 () (pi(0); pi(0)) =
9o(pi(0),p—i(0)). The function S, ) scores prediction p;(0) on states

w e Qi,o-

Next, we use a Vickrey-Clark-Groves-like mechanism and show that
truthfulness is a dominant strategy. Let W° = """, v;(0) + go(p(0)), where
(vi, pi) is the bid of bidder i. Our mechanism selects outcome o* that maxi-
mizes WO . Let W_; be the value of the selection made by our mechanism
on the set of bids excluding ¢. Each bidder 7, when state w € ; ,« occurs,
pays

i?ﬁ*i(o

Woi =Y v(0%) = S i i(or) (Pil07), ).
il i
Therefore, under outcome o*, bidder i’s expected utility for reporting truth-

fully is

U(vi,pi) = vi(0") = W_; + Z 07 (0°) + So i 500y (Pi(07); Pi(0"))
i i

= (") = Wi + goe (5(0"))
i'=1

= WO* - W—’L (2)

The above value is clearly non-negative. Now, consider a scenario where
i changes her bid to (0;,p;), when her type is still given by (v;,p;). Let o
denote the outcome selected in that scenario. The utility of bidder ¢ in this
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scenario can be written as:

U(0i,pi) = vi(0') — W_; + Z 01 (0") + Sor i 5 s(0) (i (0'); pi(0"))
i
<> (o) = Wi + g (§(0))

= WO/ - W—’ia (3)

where the first inequality follows from the fact that Sy ;5 () is a proper
scoring rule with Sy ; 5 (o) (Pi(0"); pi(0')) = g (p(0")).

Finally, note that by the definition of o*, we have W° > W . This in-
equality, together with (2)) and (B]) implies that U(0;,p;) < U(v;,p;). There-
fore, i cannot gain by misreporting her type. O

5.3 Characterization of Implementable Consumer Welfare
Functions

In this section, we show that the component-wise convexity assumption that
we imposed on the consumer welfare function in the last section to derive a
truthful mechanism is indeed necessary. In other words, in our general set-
ting, the consumer welfare functions that are implementable using dominant-
strategy truthful mechanisms are precisely those that are component-wise
convex.

Theorem 5. Suppose g is a consumer welfare function and there exists
a deterministic truthful mechanism that always selects the outcome o that
mazimizes Y v, vi(0) + go(P(0)). Then g, is component-wise convex for
every o.

Proof. Fix a bidder ¢ and bids (v_;, p—;) of all the other bidders. We prove
that for every outcome o, the function g,(p(0)) as a function of p;(o) is
convex. This shows that g, is component-wise convex for every o.

For any bid (9;, p;) for bidder i, the mechanism selects an outcome o, and
charges 7 an amount depending on the realized state w € ; ,. This payment
can be represented by a vector in R%we (a negative value in this vector
indicates a value that the bidder pays the auctioneer, and a positive value
indicates a reverse transfer). Let Ay, ,p . C R denote the collection
of payment vectors corresponding to all bids (9;, p;) for bidder i that (along
with the bids (v_;, p—;) for others) result in the mechanism picking outcome

0. Since we have fixed i and v_;,p_;, we simply denote this collection by
A,.
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The utility of ¢ when she submits a bid that results in outcome o and
payment ¢t € A, can be written as v;(0) +t.p;(0) (the latter term is the inner
product of t € R%: and p;(0) € Aqg,,). By truthfulness of the mechanism,
1’s utility from truthful bidding must be

max max{v;(0) +¢.pi(0)},

and the outcome selected by the mechanism must be the o that maximizes
the above expression. Denoting

fo(pi(0)) = gel%{t-pi(O)}, (4)
this means that the mechanism selects the outcome o if

vi(0) + fo(pi(0)) > g}gg{vi(d) + for(pi(0'))}

and does not select this outcome if the reverse inequality holds. This means
that holding everything other than v;(0) constant, the threshold for v;(0)
after which the mechanism selects the outcome o is precisely

f}if{vi(d) + for(pi(0)} = fo(pi(0)). (5)

On the other hand, the mechanism always picks an outcome o that max-
imizes 3 7" v;(0) + go(P(0)). Therefore, holding everything except v;(o)
constant, the threshold for v;(0) after which the outcome o is selected is
precisely

max 5 05(6) + 870N~ 3 05(0) — o). (6)
j=1 jF#i

Therefore, the thresholds (@) and (@) must be equal. Writing this equal-
ity, and moving g,(p(0)) to the left-hand side of the equality and everything
else to the right-hand side, we obtain:

90(P(0)) = — max{vi(0') + for(pi(0)} + fo(pi(0)

+ max ZU? +go Zv]

J#i

Now, observe that the only term on the right-hand side of the above
equation that depends on p;(0) is f,(p;i(0)). Furthermore, f,(p;(0)) (as de-
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fined in Equation () is the maximum over a family of linear functions of
pi(0), and therefore is a convex function of p;(0). This means that fixing
any set of values for p__;(0), g,(p(0)) is a convex function of p;(0). Therefore
Jo 18 component-wise convex. ]

5.4 Applications

In this section, we present a few sample applications and extensions of our
general framework. This demonstrates that the results of Section can
be used to characterize achievable objective functions and design truthful
mechanisms in a very diverse range of settings.

Daily Deals with Both Merchant and Platform Information. In
some cases, it might be reasonable in a daily deals setting to suppose that
the platform, as well as the merchant, has some relevant private informa-
tion about deal quality. For example, perhaps the merchant has specific
information about his particular deal, while the auctioneer has specific in-
formation about typical consumers under particular circumstances (days of
the week, localities, and so on). Many such extensions are quite straightfor-
ward; intuitively, this is because we solve the difficult problem: incentivizing
merchants to truthfully reveal quality information.

To illustrate, consider a simple model where merchant 7 gets utility a;
from displaying a deal to a consumer and an additional ¢; if the user pur-
chases it. For every assignment of slots o containing the merchant’s deal, its
quality (probability of purchase) is a function f,; of two pieces of private
information: x;, held by the merchant, and y;, held by the platform. Each
merchant is asked to submit (a;,c;,x;). The platform computes, for each
slot assignment o, p;(0) = fo.i(zs,yi), then sets v;(0) = a; + p;(0)c; for all o
that include ¢’s coupon (v;(0) = 0 otherwise). Then, the platform runs the
auction defined in Theorem M setting i’s bid equal to (v, p;). By Theorem
[, bidder ¢ maximizes expected utility when v; is her true valuation for win-
ning and p; is her true deal quality; therefore, she can maximize expected
utility by truthfully submitting (a;, ¢;, z;), as this allows the mechanism to
correctly compute v; and p;.

Reliable Network Design. Consider a graph G, where each edge is
owned by a different agent. The auctioneer wants to buy a path from a
source node s to a destination node ¢t. Each edge has a cost for being used
in the path, and also a probability of failure. Both of these parameters are
private values of the edge. The goal of the mechanism designer is to buy a
path from s to ¢ that minimizes the total cost of the edges plus the cost of
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failure, which is a fixed constant times the probability that at least one of
the edges on the path fails.

It is easy to see that the above problem fits in our general framework:
each bidder’s value is the negative of the cost of the edge; each “outcome”
is a path from s to t; for each edge 7 on a path, the corresponding “states”
are fail and succeed; the consumer welfare function g, for an outcome o
is the negative of the failure cost of that path. For each edge, fixing all
other reports, g, is a linear function of failure probability. Therefore, g, is
component-wise convex, and Theorem [ gives a truthful mechanism for this
problem.

We can also model a scenario where each edge has a probabilistic delay
instead of a failure probability. When edge i is included in the path, the
possible states €2; , correspond to the possible delays experienced on that
edge. A natural objective function is to minimize the total cost of the path
from s to t plus its expected delay, which is a linear function of probability
distributions. We can also implement costs that are concave functions of
the delay on each edge (as welfare, the negative of cost, is then convex).
These model risk aversion, as, intuitively, the cost of a delay drawn from a
distribution is higher than the cost of the expected delay of that distribu-
tion. (Note that our results imply that a concave objective function is not
implementable!)

The exact same argument shows that other network design problems fit
in our framework. For example, the goal can be to pick a k-flow from s
to t, or a spanning tree in the graph. The “failure” function can also be
more complicated, although we need to make sure the convexity condition
is satisfied.

Principal-Agent Models with Probabilistic Signals.  Another ap-
plication of our mechanism is in a principal-agent setting, where a princi-
pal would like to incentivize agents to exert an optimal level of effort, but
can only observe a probabilistic signal of this effort. Suppose the principal
wishes to hire a set of agents to complete a project; the principal only ob-
serves whether each agent succeeds or fails at his task, but the probability
of each’s success is influenced by the amount of effort he puts in. More
precisely, let ¢;(e) denote the cost of exerting effort e for agent i and p;(e)
denote the probability of the agent’s success if this agent is hired and exerts
effort e. The welfare generated by the project is modeled by a component-
wise convex function of the agents’ probabilities of success (for instance, a
constant times the probability that all agents succeed).

At the first glance, it might seem that this problem does not fit within
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our framework, since each agent can affect its success probability by exerting
more or less effort. However, suppose we define an outcome of the mechanism
as selecting both a set of agents and an assignment of effort levels to these
agents. Each agent submits as his type the cost ¢;(e) and probability of
success p;(e) for each possible effort level e. Theorem [ then gives a welfare-
maximizing mechanism that truthfully elicits the ¢;(e) and p;(e) values from
each agent and selects the agents to hire, the effort levels they should exert,
and the payment each receives conditional on whether his component of the
project succeeds. Agents maximize expected utility by declaring their true
types and exerting the amount of effort they are asked to

6 Conclusion

Markets for daily deals present a challenging new mechanism-design setting,
in which a mechanism designer (the platform) wishes to pick an outcome
(merchant and coupon to display) that not only gives good bidder /auctioneer
welfare, but also good welfare for a third party (the consumer); however, this
likely consumer welfare is private information of the bidders.

Despite the asymmetry of information, we show that, when the consumer
welfare function is a convex function of bidders’ quality, we can design truth-
ful mechanisms for social welfare maximization in this setting. We give a
matching negative result showing that no truthful, deterministic mechanism
exists when consumer welfare is not convex. Another natural objective, ap-
proximating welfare subject to meeting a quality threshold, also cannot be
achieved in this setting.

Extending the daily deals setting to a more general domain yields a rich
setting with many potential applications. We model this setting as an ex-
tension to traditional mechanism design: Now, agents have both preferences
over outcomes and probabilistic beliefs conditional on those outcomes. The
goal is to maximize social welfare including the welfare of a non-bidding
party, modeled by a consumer welfare function taking probability distribu-
tions over states of the world to welfare.

A truthful mechanism must incentivize bidders to reveal their true pref-
erences and beliefs, even when these revealed beliefs influence the designer
to pick a less favorable outcome for the bidders. We demonstrate that this is

8The proof is the same as that of truthfulness: If the agent deviates and exerts some
other effort level, his expected utility will be bounded by if he had reported the truth
and the mechanism had assigned him that effort level; but by design, this is less than his
utility under the choice actually made by the mechanism.
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possible if and only if the consumer welfare function is component-wise con-

vex,

and when it is, we explicitly design mechanisms to achieve the welfare

objective. Component-wise convexity includes expected-welfare maximiza-
tion and intuitively can capture risk averse preferences. Finally, we demon-
strate the generality of our results with a number of example extensions and
applications.
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