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Abstract

We provide a constructive proof of Border’s theorem [Bor91, HR15a] and its gener-

alization to reduced-form auctions with asymmetric bidders [Bor07, MV10, CKM13].

Given a reduced form, we identify a subset of Border constraints that are necessary

and sufficient to determine its feasibility. Importantly, the number of these constraints

is linear in the total number of bidder types. In addition, we provide a characterization

result showing that every feasible reduced form can be induced by an ex-post allocation

rule that is a distribution over ironings of the same total ordering of the union of all

bidders’ types.

We show how to leverage our results for single-item reduced forms to design auctions

with heterogeneous items and asymmetric bidders with valuations that are additive over
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items. Appealing to our constructive Border’s theorem, we obtain polynomial-time al-

gorithms for computing the revenue-optimal auction. Appealing to our characterization

of feasible reduced forms, we characterize feasible multi-item allocation rules.

Keywords: Reduced forms, multi-dimensional mechanism design, revenue maximization

1 Introduction

Consider a mechanism design setting with n bidders whose types lie in some finite set T

and one copy of a single indivisible item. In this setting, explicitly describing an ex-post

allocation rule requires |T |n probability distributions. In particular, for every type profile

one needs to specify the probability that the item is allocated to each bidder. In applications

where a succinct characterization of optimal mechanisms is lacking1 (c.f. revenue optimal

auctions with independent quasi-linear and risk-neutral bidders [Mye81]), it is desirable to

take as a first step an optimization approach. However, optimizing over ex-post allocation

rules is too expensive computationally and provides little structural insight into the optimal

mechanism.

The above considerations motivate the study of interim allocation rules, also called

reduced-form auctions, or simply reduced forms. Formally, suppose that bidder i’s type is dis-

tributed according to some distribution Di over T , and that bidders’ types are independent.

The reduced form of an allocation rule is a collection of functions R := {πi : T → [0, 1]}i∈[n].

For all bidders i and types τ ∈ T , πi(τ) is the probability that the item is allocated to bidder

i conditioning on her report being τ . The conditional probability is defined with respect to

the reports of the other bidders, assumed to be drawn from the product distribution ×j 6=iDj,

and any randomization used by the allocation rule itself.

A key question surrounding reduced forms is: under what conditions is a reduced form

feasible? More specifically, given a reduced form does there exist an ex-post allocation rule

inducing it? This question was studied by Matthews [Mat84] and Maskin and Riley [MR84],

and Border [Bor91] provided a collection of linear inequalities that are necessary and sufficient

for the feasibility of a symmetric reduced form, namely when Di = Dj and πi(·) = πj(·) for

all bidders i and j. In more recent work, Border [Bor07], Manelli and Vincent [MV10], and

Che et al. [CKM13] extend Border’s conditions to the general (asymmetric) case. It follows

1Such applications include, for example, settings where bidders are risk-averse [MR84], budget-
constrained [LR96], or have multi-dimensional preferences [RC98].
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from these works that a reduced form R is feasible if and only if

∀x1, . . . , xn :
∑

i

∑

τi:πi(τi)≥xi

πi(τi) Pr
ti∼Di

[ti = τi] ≤ 1−
∏

i

(

1− Pr
ti∼Di

[πi(ti) ≥ xi]

)

. (1)

Intuitively, the left hand side of (1) represents the probability that the item is allocated to

some bidder i whose realized type τi satisfies πi(τi) ≥ xi, as computed by the reduced form

R. The right hand side represents the probability that there exists some bidder i whose

realized type τi satisfies πi(τi) ≥ xi. Clearly, if R is feasible, it outght to satisfy (1) for any

choice of thresholds x1, . . . , xn. What is less clear is that if the inequality is satisfied for all

thresholds, then R is feasible (but indeed this is the case).

From an optimization standpoint, one drawback of the afore-described conditions is that

there are about |T |n inequalities that one needs to verify. Our first main result is that in

fact it suffices to only check a subset of n|T | constraints to verify the feasibility of a given

reduced form.

Theorem 1. A reduced form R is feasible if and only if

∀x :
∑

i

∑

τi∈S
(i)
x

πi(τi) Pr
ti∼Di

[ti = τi] ≤ 1−
∏

i

(

1− Pr
ti∼Di

[

ti ∈ S(i)
x

]

)

, (2)

where S
(i)
x = {τi ∈ T | πi(τi) · Prti∼Di

[πi(τi) ≥ πi(ti)] > x}. In particular, one can test the

feasibility of a reduced form or obtain a hyperplane separating R from the set of feasible

reduced forms in time O(|T |n · log(|T |n)).

Note that the collection of inequalities (2) are a subset of inequalities (1). In particular, we

have only kept n|T | out of about |T |n inequalities. One way to interpret our theorem is that

it coordinates which combinations of thresholds x1, . . . , xn it suffices to check simultaneously

in (1). A priori, the simplest approach that could conceivably work would be to set all the

xi’s equal, but we show that this does not suffice; see Example Three in Section 4.1.1. Instead

of comparing different bidders’ interim probabilities of allocation at face value, our theorem

describes a way to shade these probabilities depending on each bidder’s type distribution.

The resulting “shaded interim probabilities” can be compared at face value. We provide

several examples showing how Theorem 1 can be used to turn the task of verifying the

feasibility of interim allocation rules analytically tractable in Section 4.1.1.

In addition to determining the feasibility of reduced forms, it is also important to un-

derstand the structure of ex-post allocation rules that induce them. To this end, Manelli

and Vincent [MV10] provide an interesting characterization result, using the notion of a
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hierarchical allocation rule [Bor91]. A hierarchical allocation rule maintains a weak total

ordering � over the elements of [n]×T ∪{(0,⊥ = τ0)}. On input (τ1, . . . , τn), the allocation

rule computes the subset of indices W = {i | (i, τi) � (j, τj), ∀j}, then selects a uniformly

random index i in W. If i > 0, the item is allocated to bidder i. If i = 0, the item is

not allocated. Manelli and Vincent show that, if a reduced form R is feasible, then there

exists a distribution over hierarchical allocation rules inducing it. Moreover, each hierarchi-

cal allocation rule in the support of the distribution uses a weak total ordering � satisfying

πi(τ
′
i) ≥ πi(τi) =⇒ (i, τ ′i) � (i, τi), i.e. “stronger types” of bidder i are ranked higher than

“weaker types” of bidder i in every hierarchical allocation rule in the support. We strengthen

this characterization as follows.

Theorem 2. If a reduced form R is feasible then there exists a strict total ordering ≻ over

the elements of [n]×T∪{(0,⊥)} such that R can be induced by a distribution over hierarchical

allocation rules, each using a weak ordering that irons ≻.2

In addition to the per-bidder notion of “strength” of types guaranteed by Manelli and

Vincent’s characterization, Theorem 2 guarantees the existence of a global notion of strength

of types in the sense that for every profile (τ1, . . . , τn) with τi1 ≻ τi2 ≻ . . . ≻ τin , the ex-post

allocation probabilities p1, . . . , pn of the item to the bidders satisfy pi1 ≥ pi2 ≥ . . . ≥ pin.

1.1 Multi-Dimensional Mechanism Design

Designing revenue-optimal auctions in multi-item settings has been a challenging application

domain in mechanism design. A characterization theorem à la Myerson [Mye81] is unknown,

and it is well-understood that optimal multi-item mechanisms exhibit much richer structure

compared to optimal single-item auctions, involving bundling and randomization even in the

case of a single additive bidder;3 see discussion in Section 1.2. In light of this, it is valuable

to develop optimization tools to compute optimal multi-item mechanisms.

Towards this end we adopt a linear programming approach. It is easy to write a linear

program optimizing expected revenue over ex-post allocation and price rules of feasible,

Bayesian incentive compatible mechanisms. However, this approach has two drawbacks.

First, describing ex-post allocation and price rules requires (m+ 1)n|T |n numbers (for each

of |T |n type profiles, and each of n bidders, one must list an allocation probability for each

of m items along with a price paid). The exponential dependence on n makes this approach

2We say that a weak ordering � over some set S “irons” a strict ordering ≻′ over the same set S iff, for
all i, j ∈ S, i ≻′ j =⇒ i � j.

3A bidder is additive if her valuation for a set of items is equal to the sum of her values for each item in
that set.
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computationally intractable. And, even if we could solve this linear program, it would be

hard to discern useful structural insights from a “laundry list” of allocation probabilities and

prices for every type profile.

The afore-described difficulties motivate a linear programming formulation with respect

to the interim description of a mechanism instead. To write such a linear program, we need

to identify linear constraints guaranteeing that an interim allocation/price rule pair is both

feasible and Bayesian Incentive Compatible. When bidders are additive, Bayesian Incentive

Compatibility is easy to express directly in terms of the interim allocation and price rule

with a short list of n|T |2 linear constraints. What is not clear is how to concisely express

the feasibility of a multi-item interim allocation rule.

Our key observation is the following: a multi-item interim allocation rule is feasible if and

only if the single-item interim rules that it projects onto each item are all feasible. Therefore,

it suffices to invoke our single-item results above to resolve this problem. To be absolutely

clear, even when the bidders are additive, it is folklore knowledge and well-understood that

in the revenue-optimal auction the interim probability that a bidder receives some

item must in principle depend on her values for the other items. It is exactly this

property that makes multi-dimensional mechanism design notoriously difficult and not just

a product of tractable single-item problems, and we are not claiming otherwise. However,

the very specific subproblem of determining whether a multi-item interim allocation

rule is feasible can be solved separately across items. Making use of Theorem 1 as a

subroutine inside a linear program solver, we obtain the following computational result:

Theorem 3. There is a polynomial-time algorithm that finds a revenue-optimal, BIC mech-

anism in multi-item settings with additive bidders. The algorithm takes as input the type

distributions D1, . . . ,Dn of the bidders, and outputs a concise description of an optimal

mechanism in time polynomial in the number of bidders n, the number of items m and the

size of the type-space, |T |. The bidders are assumed independent, but each Di may be an

arbitrarily correlated distribution over item values.

Besides Theorem 3, our key observation stated above, combined with Theorem 2, directly

implies a characterization of feasible multi-item interim allocation rules, as follows.
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Characterization of Feasible Multi-Item Interim Allocation Rules

Every feasible multi-item interim allocation rule can be implemented as follows:

• Every item is allocated independently of the other items.

• The allocation rule of every item ℓ maintains:

– a strict ordering ≻ℓ over the elements of [n]× T ∪ {(0,⊥= τ0)}; and

– a distribution over ironings of ≻ℓ.

• Each item is then allocated as follows. First, a random ironing �′
ℓ is sampled. On an

input of reported types (τ1, . . . , τn), the allocation rule computes the subset of indices

Wℓ = {i | (i, τi) �
′
ℓ (j, τj), ∀j}, then selects a uniformly random index iℓ in Wℓ. If

iℓ > 0, item ℓ is allocated to bidder iℓ. If iℓ = 0, item ℓ is not allocated.

Recall that the set T in the characterization above is the set of types a bidder may have.

In particular, each element τ ∈ T determines the values of a bidder of type τ for each bundle

of items. Hence, the content of the first bullet is that while the ex-post allocation rule

for item ℓ indeed must depend on bidders’ values for items 6= ℓ, it need not

depend on how items 6= ℓ are themselves allocated.

1.2 Related Work

Reduced Forms. A necessary and sufficient condition for the feasibility of a bidder-

symmetric reduced form was provided by Border [Bor91], building on prior work by Maskin

and Riley [MR84] and Matthews [Mat84]. A simpler proof of Border’s theorem and alter-

native criteria for feasibility were also provided by Hart and Reny [HR15a]. For all these

works, the necessary and sufficient conditions take the form of |T | linear inequalities. Bor-

der’s conditions for the symmetric setting were generalized to the asymmetric setting by

Border [Bor07], Manelli and Vincent [MV10], and Che et al. [CKM13]. For these works, the

necessary and sufficient conditions take the form of |T |n linear inequalities.4 In comparison,

Theorem 1 shows that |T |n linear inequalities suffice.

Let us review in more detail some of the most related works on reduced forms. Manelli

and Vincent characterize the extreme points of the space of feasible, monotone reduced

forms as monotone hierarchical allocation rules in both the bidder-symmeteric and asym-

metric case when bidders have continuous type spaces. This implies that every monotone

reduced form has an ex-post allocation rule inducing it that is also ex-post monotone. In

4To be more precise, Border’s [Bor07] conditions took the form of 2|T |n linear inequalities, and Che et
al. [CKM13] identified a necessary and sufficient subset of |T |n linear inequalities.
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this work, we offer alternative proofs of these results (Theorems 5 and 6) when type spaces

are finite. Owing to the simpler nature of finite versus infinite dimensional geometry (in

particular that counting arguments over finite sets are considerably simpler than counting

arguments over infinite sets), our proofs more clearly isolate the key insights and are con-

siderably shorter. Therefore, we include these proofs both for the sake of completeness and

intuition. As detailed previously, in comparison to these characterization results, Theorem 2

provides a stronger characterization of reduced forms as implementable via randomizations

over hierarchical allocation rules that iron the same global total ordering of all bidders’ types.

Che et al. provide a clean network-flow interpretation of Border’s theorem for asymmet-

ric bidders, and show how to also accommodate bidders’ capacity constraints in multi-unit

generalizations (for example, that the set G of bidders must never receive more than C(G)

units or less than L(G) units on any profiles). Their necessary and sufficient conditions

remain in the form of |T |n linear inequalities (same as for a single item with asymmetric bid-

ders) despite the significant increase in generality where their results apply. Independently

from our work, Alaei et al. [AFH+12] also provide a computationally efficient algorithm to

determine the feasibility of reduced forms via a “token-passing game.” Their work shows

in fact that there exists a collection of roughly (n|T |)2 inequalities that define the space of

feasible reduced forms. Their characterization is what is called an “extended formulation” -

they introduce an additional (n|T |)2 variables and their inequalities are not of the form (1).

The results of Alaei et al. further extend to settings where the allocation is subject to ma-

troid constraints. We address neither capacity constraints nor matroid constraints in this

work. One high-level distinction between the main contributions of these works and our

Theorems 1 and 2 is that their results extend Border’s theorem to more general settings,

whereas our work provides deeper insight into the core single-item setting (and by extension,

as observed earlier, the multi-item setting where each item can be feasibly allocated to any

bidder, regardless of other items she is allocated).

Finally, several recent papers have provided polynomial-time algorithms for determining

whether a reduced form is approximately feasible in multi-item settings with more complex

allocation constraints [CDW12b, CDW13a, CDW13b]. On the other hand, Gopalan et al.

show essentially that approximation is the best one can hope for: their work identifies a

formal barrier to the existence of exact and “computationally useful” Border-like theorems

beyond single-item settings [GNR15].

Multi-Item Auctions. Prior work on multi-dimensional mechanism design is extensive

(see e.g. survey [MV07]), driven by the scarcity of settings where the optimal mecha-

nism has a clean allocation rule (such as Myerson’s revenue-optimal auction for single-
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dimensional settings [Mye81], or the welfare-optimal VCG auction in quite general set-

tings [Vic61, Cla71, Gro73]). Indeed, numerous formal barriers have been identified to the ex-

istence of clean, revenue-optimal multi-item mechanisms, such as the necessity of randomiza-

tion [RC98, Tha04, Pav11], large menu complexity [BCKW15, HN13, DDT13, DDT17], large

description complexity [DDT14], and revenue non-monotonicity [HR15b, RW15]. Daskalakis

et al. [DDT17] have recently provided a characterization of single-bidder revenue-optimal

mechanisms using optimal transport theory. Older work of Rochet and Choné [RC98] had

provided a characterization of optimal single-bidder mechanisms in the related setting where

there is no bound on the number of units per item but the seller has a strictly convex pro-

duction cost for generating more units. Finally, the problem has recently entered the Theory

of Computation, where the emphasis has mostly been in deriving computationally efficient

algorithms for computing optimal mechanisms. A number of results have emerged obtain-

ing constant-factor approximations in polynomial time [CD11, Ala11, BGGM10, CHMS10,

CMS15, KW12, CH13, BILW14, Yao15, CM16, CZ17].

In comparison to these works, ours is the first to provide a poly-time algorithm and corre-

sponding characterization of revenue-optimal multi-item auctions without any distributional

assumptions (such as a hazard rate condition or item-value independence). Indeed, following

the announcement of portions of this work [CDW12a], several works (including some by the

authors) provided computationally efficient algorithms to find approximately-optimal mech-

anisms in increasingly general multi-item settings [CDW12b, CDW13a, CDW13b, BGM13,

DDW15, CDW16]. In comparison to these works, the present paper remains unique in

containing a computationally efficient algorithm to find the exact optimal mechanism in a

multi-item setting without any approximation error.

1.3 Roadmap of Remaining Sections

Section 2 below makes clear the notation we use and formal questions we study with respect

to reduced forms. Section 3 studies bidder-symmetric reduced forms as a warm-up for

Section 4, which studies asymmetric reduced forms. Section 5 provides our results on multi-

item auctions. Appendix A contains some omitted proofs.

2 Preliminaries and notation

Throughout the paper, we denote the number of bidders by n. We also use T to denote

the possible types of a bidder. In order to obtain computationally meaningful results, we

assume that T is finite and use c as shorthand for |T |, but make no other assumptions on
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T . In particular, it is not necessary to assume that T is a subset of R.

We use τ to denote the type of a bidder, without emphasizing whether it is a vector or

a scalar (or otherwise). The elements of T n are called type profiles, and specify a type for

every bidder. We assume type profiles are sampled from a distribution D =
∏n

i=1Di over

T n, where Di the marginal of this distribution on bidder i’s type, and use D−i to denote

the marginal distribution over the types of all bidders, except bidder i. We use ti for the

random variable representing the type of bidder i. So when we write Pr[ti = τ ], we mean

the probability that bidder i’s type is τ . If bidders are i.i.d., because Pr[ti = τ ] is the same

for all i, we will just write Pr[τ ].

The reduced formR of an allocation rule specifies a vector function π(·), specifying values

πi(τ), for all bidders i and types τ ∈ T . πi(τ) is the probability that bidder i receives the item

when reporting type τ , where the probability is over the randomness of all other bidders’

types and the internal randomness of the allocation rule, assuming that the other bidders

report their true types. We may think of R as a vector in [0, 1]nc, by simply listing πi(τ) for

all i, τ , and will sometimes write ~π to emphasize this view.

In Section 3, we consider settings where the bidders are i.i.d., i.e. Di = Dj for all i, j,

and the reduced forms are bidder-symmetric, which satisfy πi(τ) = πj(τ), for all i, j, τ . In

such cases, we will drop the subscript i, writing just π(τ), for the probability that a bidder

of type τ ∈ T receives the item, over the randomness of the allocation rule and the types of

the other bidders, assuming that the other bidders report their true types. Given a reduced

form R, we will be interested in whether it is “feasible.” By this, we mean “does there exist

an ex-post allocation rule that never over-allocates the item whose reduced form is R?” If

the answer to this question is “yes” then we will also say that the ex-post allocation rule

whose reduced form is R, “induces R” or “implements R.” Note that there is some subtlety

in defining feasibility of a reduced form if Pr[ti = τ ] = 0 for some i ∈ [n], τ ∈ T . There are

a couple reasonable choices that are qualitatively the same - we choose to define a reduced

form to be feasible only if Pr[ti = τ ] = 0⇒ πi(τ) = 0.

We also note that the running times of the algorithms obtained in Sections 3 and 4 are

quoted without accounting for the bit complexity of numbers involved. The bit complexity

of a rational number x is the number of bits b required so that x can be expressed as the

ratio of two binary numbers with b bits of precision. If b upper bounds the bit complexity

of Pr[ti = τ ] for all i, τ , and all coordinates of the input reduced form ~π, then it suffices to

multiply all quoted running times by a factor that is polynomial in b.

Order Notation. Throughout the text we use the O(·) notation. Let f(x), g(x) be two

positive functions defined on some infinite subset of R+. Then we write f(x) = O(g(x)) iff
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there exist some positive reals α and x0 such that f(x) ≤ αg(x), for all x > x0. We also write

f(x) = poly(x) iff there exist positive reals α and x0 such that f(x) ≤ xα, for all x > x0.

Finally, we provide some brief geometric preliminaries.

Definition 1. (Corner) Let P be a closed, convex subset of Euclidean space defined as the

intersection of finitely many halfspaces. Namely, P = ∩i∈I{~x|~ai · ~x ≤ bi}, for some finite

index set I. We say that ~x∗ is a corner of P if ~x∗ ∈ P , and the set of equations {~ai ·~x = bi}i∈S

has as a unique solution the point ~x∗, where S = {i ∈ I|~ai · ~x
∗ = bi}.

Definition 2. (Separation Oracle) Let P be a closed, convex subset of Euclidean space.

Then a Separation Oracle for P is an algorithm that takes as input a point ~x and outputs

“Yes” if ~x ∈ P , or a hyperplane (~w, c) such that ~y · ~w ≤ c for all ~y ∈ P , but ~x · ~w > c. Note

that because P is closed and convex, such a hyperplane always exists whenever ~x /∈ P .

A separation oracle is poly-time if on inputs of bit complexity b, it terminates in time

poly(b, x), where x is the maximum bit complexity of any coordinate in any halfspace defining

P .

We will also make use of the following theorem, reworded from [Kha79, GLS81, KP82].

Theorem 4. ([Kha79, GLS81, KP82]) Let P be a d-dimensional closed, convex subset of

Rd defined as the intersection of finitely many halfspaces, and SO be a poly-time separation

oracle for P . Then it is possible to do the following:

• Find an element in argmax~x∈P{~c · ~x} for any ~c ∈ Qd (i.e. solve linear programs) in

time polynomial in d, and b, where b upper bounds the bit complexity of all coordinates

of the vector ~c, and all coordinates of the halfspaces defining P .

• Decompose any ~x ∈ P into a convex combination of at most d+1 corners of P in time

polynomial in d, and b, where b upper bounds the bit complexity of all coordinates of

the vector ~x, and all coordinates of the halfspaces defining P .

3 Warm-Up: Bidder-Symmetric Reduced Forms

This section serves as a warm-up for our main results by viewing bidder-symmetric reduced

forms through a computational lens. Some of the key ideas for our main results in Section 4

can be more cleanly illustrated for symmetric bidders below.

Let us begin by reviewing Border’s theorem [Bor91], which specializes (1) to the case

of i.i.d. bidders and bidder-symmetric reduced forms. A bidder-symmetric reduced form is

10



feasible if and only if:

∀x : n ·
∑

τ :π(τ)≥x

π(τ) Pr[τ ] ≤ 1−

(

1− Pr
t∼D1

[π(t) ≥ x]

)n

. (3)

The semantic meaning of the above equations are the same as those in Equation (1):

the left-hand side denotes the probability that some bidder whose type τ satisfies π(τ) ≥ x

receives the item, as promised by the reduced form, and the right-hand side denotes the

probability that some bidder i has π(ti) ≥ x as computed by the probability distribution.

Note that there are drastically fewer inequalities to check of form (3): only |T | instead of

|T |n. This is essentially because if there exist thresholds x1, . . . , xn for which an equation

of form (1) is violated, there is also a single x such that Equation (3) is violated at x. As

there are only |T | inequalities to check, Equation (3) directly implies Corollary 1 below:

one can determine the feasibility of a reduced form in time O(c(log c+ logn)) via a routine

computation. A proof is included in Appendix A.

Corollary 1 (of [Bor91]). The feasibility of a given bidder-symmetric reduced form can be

determined in time O(c(log c + logn)). If it is infeasible, a violated inequality of form (3)

can be determined in the same time.

Now that it is easy to determine the feasibility of a reduced form, we wish to understand

how to find an ex-post allocation rule inducing a given feasible reduced form in poly-time.

To this end, let us formally define hierarchical allocation rules, again specialized to the

bidder-symmetric case.

Definition 3. ([Bor91]) A hierarchical allocation rule consists of a weak total ordering

� over T ∪ {⊥}. On reports (τ1, . . . , τn), the allocation rule computes the subset of indices

W = {i ≥ 1 | τi � ⊥ and τi � τj , ∀j}, then selects a uniformly random bidder i in W, if W

is non-empty. If W is empty, the item is unallocated.

We say that a hierarchical allocation rule induced by � is well-ordered with respect to a

reduced form R if π(τ) ≥ π(τ ′)⇒ τ � τ ′.

For every feasible reduced formR, Theorem 5 below characterizes the corners of a convex

region containing it - which is intimately connected to ex-post allocation rules inducing R.

Theorem 5. (implied by [MV10]) Every feasible reduced form R lies inside a c-dimensional

polytope P whose corners are all reduced forms of hierarchical allocation rules that are well-

ordered w.r.t. R. Furthermore, there is a distribution over at most c+1 hierarchical alloca-

tion rules, all well-ordered w.r.t. R, that induces R.
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Proof. For ease of notation, first relabel all types in T so that π(τ1) ≥ π(τ2) . . . ≥ π(τc). Let

S = {i|π(τi) = π(τi+1)} (for notational convenience, denote by π(τc+1) = 0). Consider the

convex polytope P ⊆ [0, 1]c specified by the following constraints.

π̃(τi) = π̃(τi+1) ∀i ∈ S; (4)

π̃(τi) ≥ π̃(τi+1) ∀i ∈ [c]− S; (5)

∑

j≤i

n · Pr[tj ]π̃(τj) ≤ 1−

(

1−
∑

j≤i

Pr[tj ]

)n

∀i ∈ [c]; (6)

where for notational convenience we denote π̃(τc+1) = 0 (so in particular π̃(τ1), · · · , π̃(τc) are

the free variables and π̃(τc+1) is not, and the afore-desribed polytope is a subset of [0, 1]c).

By (3), R is feasible if and only if π ∈ P . Consider the corners of this polytope. As there

are c variables, every corner must satisfy at least c of the above inequalities with equality.

Refer to the constraint π̃(τi) ≥ π̃(τi+1) or π̃(τi) = π̃(τi+1) (whichever is included in the

definition of P ) as the ith monotonicity constraint, and the constraint
∑

j≤i n ·Pr[tj ]π̃(τj) ≤

1−
(

1−
∑

j≤i Pr[tj ]
)n

as the ith Border constraint.

We first show that no feasible reduced form satisfies both the ith monotonicity constraint

and the ith Border constraint with equality. Consider then a feasible reduced form π̃, and

an ex-post allocation rule M̃ inducing π̃. Recall that if the ith Border constraint is tight,

then the probability that a type in {τ1, . . . , τi} receives the item is exactly the probability

that such a type is reported to M̃ . Therefore, whenever one or more types from this set are

reported to M̃ , a bidder with a type from this set necessarily wins the item. In particular, this

means that we must have π̃(τi) ≥ (1 −
∑

j≤i Pr[tj ])
n−1, as τi must certainly win whenever

all other reported types have index strictly larger than i. In fact, we must have π̃(τi) >

(1 −
∑

j≤i Pr[tj ])
n−1, as τi must also win with non-zero probability in the disjoint event

that there is at least one other reported type equal to τi, and the remaining types have

indicies strictly larger than i (because R is bidder-symmetric). Similarly, we necessarily

have π̃(τi+1) ≤ (1 −
∑

j≤i Pr[tj ])
n−1, as τi+1 can only win in the event that all other types

have index strictly larger than i. Therefore, if the ith Border constraint is tight, the ith

monotonicity constraint is not.

Now let us consider a corner π̃ of P . Since P lies in Rc, there must be at least c constraints

that π̃ satisfies with equality. As there are 2c constraints in total, and no feasible reduced

form can satisfy both the ith Border constraint and the ith monotonicity constraint, we

see that every corner must satisfy either the ith Border constraint or the ith monotonicity

constraint with equality. Such a reduced form corresponds to a hierarchical allocation rule

with τi � τj for all i < j, and τj � τi for some i < j if and only if the kth monotonicity
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constraints are tight for all k ∈ {i, . . . , j − 1}. Additionally, if π̃(τi) = 0, then ⊥ � τi and

τi 6� ⊥. If π̃(τi) > 0, then τi � ⊥ and ⊥ 6� τi. It is easy to see that this hierarchical allocation

rule has a feasible reduced form that satisfies the desired equalities (hence it equals π̃) and

is well-ordered w.r.t. R.

By Carathéodory’s theorem, we can write any feasible reduced form π as π =
∑c+1

j=1wjπ̃j ,

where
∑c+1

j=1wj = 1, and for all j, wj ≥ 0 and π̃j is a corner of P . The last step of the proof

is an immediate consequence of the following observation.

Observation 1. If a reduced form R can be written as π =
∑

j wjπ̃j , where each wj ≥ 0 and
∑

j wj = 1, and each π̃j is induced by the ex-post allocation rule Mj , then R is induced by

the ex-post allocation rule
∑

j wjMj (sample j with probability wj, then use Mj).

Corollary 2. Given a bidder-symmetric reduced form R we can determine if it is feasible,

or find a hyperplane separating it from the set of feasible bidder-symmetric reduced forms

in time O (c(log c+ log n)). If R is feasible, we provide a succinct description of an ex-post

allocation rule inducing it, in time polynomial in c and logn. In particular, the allocation

rule is a distribution of at most c+ 1 hierarchical allocation rules, all well-ordered w.r.t. R.

Proof. The first sentence immediately follows from Corollary 1, and the observation that any

violated Border inequality is exactly a hyperplane separating R from the space of feasible

bidder-symmetric reduced forms.

We now need to describe how to computationally efficiently find an ex-post allocation rule

implementing a reduced form π that is feasible. By Theorem 5, any feasible R lies inside a

c-dimensional polytope P whose corners are all reduced forms of hierarchical allocation rules

that are well-ordered w.r.t. R. We now observe that we have defined a separation oracle for

P in the first paragraph that runs in time O(c(log c + log n)). So Theorem 4 implies that

we may decompose R into a convex combination of corners of P in time polynomial in c

and c(log c + logn) (resulting in a runtime polynomial in both c and log n). Observation 1

completes the proof.

Notice in particular that in the proof of Theorem 5, we described an easy procedure

to define a hierarchical allocation rule that implements any corner π̃ of P in terms of the

inequalities of the polytope P that are tight at π̃.

4 Asymmetric Reduced Forms

Let’s begin this section by recapping the major components leading to Corollary 2 for sym-

metric reduced forms:
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1. First, we need a computationally-efficient algorithm that takes as input a prospective

reduced form and finds a violated Border constraint, if it exists (and otherwise claims

that all Border constraints are satisfied). For symmetric reduced forms, Border’s The-

orem [Bor91] gives us this for free as there are only |T | constraints to check. For

asymmetric reduced forms, it will take exponential time to check all |T |n constraints of

form (1), so we show in Section 4.1 that in fact it suffices to check only n|T | constraints

by properly shading the interim probabilities.

2. Next, to implement feasible reduced forms, we need to understand the corners of a

convex region containing all feasible reduced forms. Work of Manelli and Vincent

accomplishes this for the symmetric case (Theorem 5) and the asymmetric case (The-

orem 6) for continuous type spaces. Again, we include a proof for the asymmetric case

in Section 4.2 for finite type spaces that follows the same intuitive approach as our

proof of Theorem 5.

3. Finally, we want to gain more insights into the structure of the space of feasible reduced

forms than only understanding the corners of the feasible region. In the symmetric

case, it is unclear what one might hope for beyond Theorem 5. In the asymmetric case,

however, Theorem 6 doesn’t tell the whole story. More specifically, Theorem 6 proves

that every feasible reduced form can be induced by a distribution over hierarchical

allocation rules all of which respect the same partial ordering within a single bidder’s

types, but may not respect any global ordering across all bidders’ types.

Indeed, a stronger charcaterization is possible in the form of Theorem 2: for every

feasible reduced form R there exists a global total ordering of (bidder, type) pairs ≻,

such that R can be induced by a distribution of hierarchical allocation rules that all

respect ≻. We prove Theorem 2 in Section 4.3 using a combinatorial approach, and

also show that the algebraic approach of Sections 4.1 and 4.2 cannot possibly yield

such a theorem.

Let us now proceed by first recalling Equation (1), which states that a reduced form R

is feasible if and only if for all thresholds x1, . . . , xn, the probability that R awards the item

to a bidder i whose reported type τi satisfies πi(τi) ≥ xi is at most the probability that

such a type is reported. When (1) is violated at some choice of thresholds ~x, we call these

thresholds constricting. Unfortunately, there are roughly cn relevant ~x to test, so testing

each of them separately is computationally/analytically intractable.

What we would really like is a more structured subset of Border constraints that are suf-

ficient to check. To this end, we show that properly shading interim allocation probabilities
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according to a bidder’s type distribution allows interim probabilities to be compared across

bidders at face value.

4.1 The Shaded Reduced Form

In this section, we define our notion of a shaded reduced form. We first provide the defini-

tion and main proposition, followed by some illustrative examples where analysis is greatly

simplified by our approach.

Definition 4. For any si(·) such that si(τ) ∈ [Pr[πi(ti) < πi(τ)],Pr[πi(ti) ≤ πi(τ)]] for all

i, τ , and any reduced form π, we define the corresponding shaded reduced form π̂ as follows:

for all i and types τ ∈ T , π̂i(τ) := si(τ) · πi(τ).

Observation 2. For all bidders i and any types τ, τ ′ ∈ T , π̂i(τ) ≥ π̂i(τ
′) =⇒ πi(τ) ≥ πi(τ

′).

Proof. If π̂i(τ) ≥ π̂i(τ
′) but πi(τ) < πi(τ

′), clearly si(τ) > si(τ
′). On the other hand,

si(τ) ≤ Pr [πi(ti) ≤ πi(τ)] ≤ Pr [πi(ti) < πi(τ
′)] ≤ si(τ

′). Contradiction.

Proposition 1. Let π be an infeasible reduced form, and si(·) be any shading satisfying

si(τ) ∈ [Pr[πi(ti) < πi(τ)],Pr[πi(ti) ≤ πi(τ)]] for all i, τ . Then there exists a single threshold

x such that:
∑

i

∑

τi|π̂i(τi)≥x πi(τi) · Pr[ti = τi] > 1−
∏

i (1− Pr[π̂i(ti) ≥ x]).

In other words, for any valid shading of the reduced form, one can determine feasibility

of a reduced form by checking Border’s constraints where the threshold for the shaded reduced

form is constant across all bidders.

Proof. If a reduced form R is infeasible, consider any maximal choice of constricting thresh-

olds x1, . . . , xn, i.e. a choice of x1, . . . , xn such that (xi + δ, x−i) is not constricting for any

i, δ > 0. Now let (i, τ) ∈ argminj,µ:πj(µ)≥xj
{π̂j(µ)}. Then by the maximality of x1, . . . , xn,

it must be the case that decreasing from xi + δ to xi causes us to go from satisfying (1)

to violating it, and therefore xi = πi(τ) and this change must increase the LHS by more

than it increases the RHS. The change in the LHS is easy to compute: Observation 2 implies

that we are simply including additional (bidder, type) pairs in our calculations, namely (i, τ)

(and all (i, τ ′) with πi(τ
′) = πi(τ)). The change in the RHS is also easy to compute: we

have increased the probability that some bidder k exists with πk(tk) ≥ xk by exactly the

probability that all bidders j 6= i have πj(tj) < xj and πi(ti) = πi(τ). This therefore implies:

Pr[πi(ti) = πi(τ)]πi(τ) > Pr[πi(ti) = πi(τ)]
∏

j 6=i

Pr[πj(tj) < xj ] ⇐⇒
πi(τ)

∏

j 6=i Pr[πj(tj) < xj ]
> 1.
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Now consider any other τ ′, k, πk(τ
′) < xk and π̂k(τ

′) ≥ π̂i(τ). Observe first that we must

have k 6= i, as Observation 2 would otherwise imply πi(τ
′) ≥ xi. So we must have:

πk(τ
′) · Pr[πk(tk) ≤ πk(τ

′)] ≥ π̂k(τ
′) ≥ π̂i(τ) ≥ πi(τ) · Pr[πi(ti) < πi(τ)] (valid shading)

=⇒πk(τ
′) · Pr[πk(tk) < xk] ≥ πi(τ) · Pr[πi(ti) < πi(τ)] (because πk(τ

′) < xk)

⇐⇒πk(τ
′) · Pr[πk(tk) < xk] ≥ πi(τ) · Pr[πi(ti) < xi] (because πi(τ) = xi)

⇐⇒
πk(τ

′)
∏

j 6=k Pr[πj(tj) < xj ]
≥

πi(τ)
∏

j 6=i Pr[πj(tj) < xj ]
.

So by our choice of (i, τ) and the work above, we obtain:

πk(τ
′)

∏

j 6=k Pr[πj(tj) < xj ]
> 1 ⇐⇒ Pr[tk = τ ′]πk(τ

′) > Pr[tk = τ ′]
∏

j 6=k

Pr[πj(tj) < xj ].

This inequality (combined with Observation 2) tells us that we could lower xk to πk(τ
′)

and still have constricting thresholds. In fact, it tells us something even stronger. If y1, . . . , yn

are constricting thresholds with yj ≤ xj for all j, then we could decrease yk to πk(τ
′) and still

have constricting thresholds. This is because lowering yk to πk(τ
′), causes the LHS of (1)

to increase by
∑

τk :πk(τk)∈[πk(τ ′),yk)
Pr[tk = τk]πk(τk) ≥ Pr[πk(tk) ∈ [πk(τ

′), yk)] πk(τ
′). And

the RHS increases by exactly Pr [πk(tk) ∈ [πk(τ
′), yk)] times the probability that πj(tj) < xj

(respectively, yj) for all j 6= k. As we decrease from xj to yj, this probability will clearly

never increase.

So starting from any constricting thresholds x1, . . . , xn and a bidder type pair (i, τ) as

above, we can lower each bidder k’s threshold xk to the lowest πk(τ
′) such that πk(τ

′) ≥ π̂i(τ).

The resulting thresholds remain constricting and have the desired form.

The proof of Theorem 1 now readily follows from Proposition 1 and similar routine

computation to Corollary 1. A complete proof of Theorem 1 appears in Appendix A. We now

proceed with a few examples to clearly illustrate the benefits of an improved characterization.

4.1.1 Some Illustrative Examples

Example One: Monomials. Consider a reduced form where T = [0, 1] and each Di =

U(T ) (the uniform distribution on [0, 1]). Moreover, for all i let πi(τ) = ταi , for some

constants (but not necessarily identical) αi. Using prior work, one could check all constraints

of the form (1), which is a multi-variate optimization problem: maximize
∑n

i=1

∫ 1

yi
ταidτ −

(1 −
∏n

i=1 yi), over all ~y ∈ [0, 1]n (to map onto the variables used in Equation (1), set
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xi = yαi
i ). If the maximum happens to yield a value ≤ 0, then all constraints are satisfied.

If the maximum yields a value > 0, then we have explicitly found a violated constraint.

In turn, identifying the maximum requires considering second-order conditions at all local

optima in addition to all points on the boundary, and is tedious.5

With Theorem 1 in hand, we observe that we need not optimize over all settings of thresh-

olds ~y ∈ [0, 1]n. Rather, it suffices to only consider thresholds that are jointly parametrized

via a single threshold x ∈ [0, 1] on the shaded reduced form. For all x ∈ [0, 1], the correspond-

ing cutoffs ~y satisfy yαi+1
i = x, for all i: This is because for any τ ∈ [0, 1], Pr[πi(ti) ≤ πi(τ)] =

τ , and πi(τ) = ταi , so Pr[πi(ti) ≤ πi(τ)] · πi(τ) = ταi+1. So we see that our problem now

reduces to a single-variate optimization: maximize
∑n

i=1

∫ 1

x1/(αi+1) ταidτ−(1−
∏n

i=1 x
1/(αi+1)),

over all x ∈ [0, 1].

This integral happens to be extremely simple to evaluate, and our objective function is

just
∑n

i=1
1−x
αi+1
−
(

1− x(
∑n

i=1 1/(αi+1))
)

. We can then take a derivative with respect to x, which

is
(

∑n
i=1

1
αi+1

)

·
(

x(
∑n

i=1 1/(αi+1)−1) − 1
)

. At this point, we can observe that if
∑n

i=1 1/(αi+1) >

1, then the derivative is negative on the entire interval [0, 1), and therefore the maximum

occurs at x = 0. At x = 0, the objective function evaluates to
∑

i 1/(αi + 1) − 1 > 0, and

therefore such reduced forms are infeasible. If instead,
∑

i 1/(αi+1) ≤ 1, then the derivative

is non-negative on the entire interval [0, 1), and therefore a maximum occurs at x = 1. At

x = 1, the objective function evaluates to 0, and therefore such reduced forms are feasible.

In conclusion, Theorem 1 combined with the single-variable optimization above provides

a complete proof that reduced forms of the above form are feasible if and only if they promise

at most one item in expectation ex ante, which occurs if and only if
∑n

i=1 1/(αi + 1) ≤ 1.

Example Two: Uniform Distributions of Support Two. Now, consider a reduced

form where T = {H,L}, and each Di = U({H,L}). Then if πi(H) ≥ πj(H)/2 for all i, j,

a valid shading sets π̂i(H) = minj{πj(H)}, and π̂i(L) = 0 for all i. Proposition 1 then

guarantees that we only need to check two constraints:
∑n

i=1 πi(H)/2 ≤ 1 − 1/2n, and
∑n

i=1 πi(H)/2+πi(L)/2 ≤ 1. On the other hand, using prior work would require checking 2n

equations of the form (1) (with some extra thought, this can be reduced to n by appealing

to the fact that the type distributions are iid. But getting all the way down to 2 requires

reasoning à la Proposition 1).

Similarly, if each Di assigns probability pi to L, and πi(H) ≥ pjπj(H) for all i, j, a

valid shading sets π̂i(H) = minj{πj(H)}, and π̂i(L) = 0 for all i. Proposition 1 again

5Note that Che et al. extend Border’s Theorem to continuous type spaces (the theorem statement is
identical to that for discrete type spaces) [CKM13]. Given this, it is easy to see that our proof of Proposition 1
extends to continuous type spaces as well as-is (subject to some change in notation).
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guarantees that we only need to check two constraints:
∑n

i=1(1 − pi) · πi(H) ≤ 1 −
∏n

i=1 pi,

and
∑n

i=1(1− pi) · πi(H) + pi · πi(L) ≤ 1. On the other hand, using prior work would again

require checking 2n equations of the form (1) (and this time it is not obvious how to check

any fewer).

Example Three: A Correct Ordering is Necessary. The above two examples clearly

illustrate why a tighter characterization is helpful, but it is not a priori clear that the even

simpler approach of just considering thresholds where xi = xj for all i, j fails. To see that

indeed this approach fails, consider the following example with two bidders, and two types

per bidder, H and L. For bidder 1, we set Pr[t1 = H ] = 1/8, Pr[t1 = L] = 7/8, π1(H) = 5/8,

π1(L) = 0. For bidder 2, we set Pr[t2 = H ] = 1/2, Pr[t2 = L] = 1/2, π2(H) = 1, π2(L) = 3/4.

This reduced form is infeasible. Indeed, observe that bidder 2 must always receive the

item whenever τ2 = H , which happens with probability 1/2. So if we have π2(H) = 1, we

cannot also have π1(H) > 1/2. So (1) is violated when x1 = 5/8 and x2 = 1.

However, one can check that Border’s conditions are satisfied whenever x1 = x2.
6 Essen-

tially the problem is that to find constricting thresholds, we need x1 to be small enough to

include (1, H), yet x2 big enough to exclude (2, L), which is not possible when x1 = x2.

Examples: Summary. Examples One and Two demonstrate the usefulness of a tighter

characterization. On the other hand, Example Three shows that such a tighter character-

ization must be constructed carefully. Indeed, the shaded reduced form is exactly what is

necessary to determine whether a reduced form is feasible or not.

4.2 Asymmetric Hierarchical Allocation Rules

Theorem 1 tightens the necessary and sufficient conditions of Border’s theorem in a way

that allows for computationally efficient determination of the feasibility of reduced forms.

We proceed by examining which ex-post allocation rules are neccessary to induce all feasible

reduced forms, similar to Theorem 5, first formally stating the definition of a hierarchical

allocation rule in asymmetric settings.

Definition 5. A hierarchical allocation rule consists of a weak total ordering � on

T × [n] ∪ {(0,⊥)}. On reported types (τ1, . . . , τn), the allocation rule computes the subset of

6There are four inequalities of this form: Pr[t2 = H ]·π2(H) = 1/2 ≤ 1−π2(L), Pr[t2 = H ]·π2(H)+Pr[t2 =
L] · π2(L) = 7/8 ≤ 1, Pr[t2 = H ] · π2(H) + Pr[t2 = L] · π2(L) + Pr[t1 = H ] · π1(H) = 61/64 ≤ 1, and
Pr[t2 = H ] · π2(H) + Pr[t2 = L] · π2(L) + Pr[t1 = H ] · π1(H) + Pr[t1 = L] · π1(L) = 61/64 ≤ 1, all of which
are satisfied.
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indices {i|(i, τi) � (j, τj), ∀j}, then selects a uniformly random index i ∈ W. If i > 0, the

item is allocated to bidder i. If i = 0, the item is not allocated.

We say that a hierarchical allocation rule � for non-identical bidders is partially-ordered

with respect to R if for all i and τ, τ ′ ∈ T , πi(τ) ≥ πi(τ
′) ⇒ (i, τ) � (i, τ ′). We say

that a hierarchical allocation rule is strict if for all bidders i 6= j and types τ, τ ′ ∈ T :

(i, τ) � (j, τ ′) ∧ (i, τ)�(0,⊥) ⇒ (j, τ ′) 6� (i, τ), and (i, τ) � (0,⊥) ⇒ (0,⊥) 6� (i, τ) (i.e.

|W| = 1 on all inputs).

Similar to the symmetric case, a simple counting argument shows that every feasible

reduced form can be implemented as a distribution over strict, partially-ordered hierarchical

allocation rules. The proof for the asymmetric case follows the same outline, but requires

one additional technical lemma whose proof is deferred to the Appendix A.

Theorem 6. (implied by [MV10]) Every feasible reduced form R lies in a cn-dimensional

polytope whose corners are all strict, partially-ordered w.r.t. R hierarchical allocation rules.

Furthermore, there is a distribution over at most cn+1 hierarchical allocation rules, all strict

and partially-ordered w.r.t. R, that induces R.

Proof. For ease of notation, relabel all types in T (differently for each bidder) so that

πi(τi,1) ≥ . . . ≥ πi(τi,c) for all i, and so that Pr[ti = τi,j ] = 0 ⇒ Pr[ti = τi,k] = 0 for

all k > j (i.e. since πi(τ) = 0 for all τ such that Pr[ti = τ ] = 0, we are free to put them at

the end of the list). Let ci ≤ c denote the number of types τ ∈ T such that Pr[ti = τ ] > 0.

Again for notational convenience, denote by πi(τi,c+1) = 0. Let Si denote the set of j such

that πi(τi,j) = πi(τi,j+1). Consider the closed, convex polytope P ⊆ [0, 1]cn specified by the

following constraints.

π̃i(τi,j) = π̃i(τi,j+1) ∀i ∈ [n], j ∈ Si (7)

π̃i(τi,j) ≥ π̃i(τi,j+1) ∀i ∈ [n], j ∈ [c]− Si (8)

∑

i

∑

j<zi

Pr[ti = τi,j ]π̃i(τi,j) ≤ 1−
∏

i

(

1−
∑

j<zi

Pr[ti = τi,j ]

)

∀z1, . . . , zn ∈ [c+ 1] (9)

where for notational convenience we denote π̃i(τi,c+1) = 0 (again, π̃i(τi,c+1) is not a free

19



variable). In fact, we can also replace (9) with:

∑

i

∑

j<zi

Pr[ti = τi,j]π̃i(τi,j) ≤1−
∏

i

(

1−
∑

j<zi

Pr[ti = τi,j ]

)

∀z1 ∈ [c1], . . . , zn ∈ [cn] (10)

∑

i

∑

j<ci+1

Pr[ti = τi,j]π̃i(τi,j) ≤ 1 (11)

π̃i(τi,j) = 0 ∀i ∈ [n], j > ci (12)

In the above replacement, we are observing that if (11) holds, then so does (9) for any

case where at least one i has zi = ci + 1, as the left-hand side of all such inequalities is

upper bounded by the left-hand side of Equation (11), and the right-hand side of all such

inequalities is also 1. In addition, (10) covers all other cases, and Equation (12) just states

that π̃i(τ) = 0 whenever Pr[ti = τ ] = 0. We know from [Bor07, CKM13] that R is feasible

if and only if π ∈ P .

We proceed to show that any corner of this polytope is the reduced form of a strict

hierarchical allocation rule. Note that any corner corresponds to a set of at least cn tight

inequalities from (7), (8), (10), (11), or (12) whose tightness determine a unique solution.

Similarly to Theorem 5, we examine the structure of what constraints can be simultaneously

tight. We again refer to the inequalities in (7)/(8)/(12) as the (i, j)th monotonicity con-

straints, and those in (10)/(11) as the ~z Border constraints (where ~z indexes the constraint

as above).

We first argue that the tight Border constraints must be nested. That is, if the Border

constraint is tight for both ~z and ~w, then we must either have zi ≤ wi for all i, or wi ≤ zi for

all i. Assume for contradiction that this is not the case. Then there exists some bidders j, k

such that wj > zj and zk > wk. Clearly, we have zi < ci+1 (respectively, wi < ci+1) for all

i, because otherwise we would necessarily have zi = ci + 1 for all i (respectively, wi = ci + 1

for all i) - the only such constraint with any zi = ci+1 is (11). Consider now the type profile

where bidder j has type τj,zj , bidder k has type τk,wk
, and every other bidder i has type τi,ci

(note that this profile indeed arises with non-zero probability by definition of ci). Now, any

ex-post allocation rule that induces a feasible reduced form whose Border constraint at ~w

is tight must award the item to bidder j on this profile, as every other bidder i’s type has

index at least wi. Similarly, any ex-post allocation rule that induces a feasible reduced form

whose Border constraint at ~z is tight must award the item to bidder k on this same profile,

as every other bidder i’s type has index at least zi. Clearly, no feasible ex-post allocation

rule can award the item to both bidders, so no feasible reduced form can have both Border

constraints be tight.
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Now that we know that for any corner π̃ of P the tight Border constraints are nested,

we (suggestively) define the relation:

(i, τi,j) � (k, τk,ℓ)⇔ |{~z |zi > j ∧ Border(~z) is tight}| ≥ |{~z |zk > ℓ ∧ Border(~z) is tight}| ,

(i, τi,j) � (0,⊥)⇔ π̃i(τi,j) > 0, (0,⊥) � (i, τi,j)⇔ π̃i(τi,j) = 0.

Next, we reason about what monotonicity constraints can possibly be tight simultane-

ously with a nested set of Border constraints that define � with the following lemma (whose

proof appears in Appendix A).

Lemma 1. For � defined as above for some π̃ ∈ P , the (i, j)th monotonicity constraint can

be tight and linearly independent of the tight Border constraints only if (i, τi,j+1) � (i, τi,j).

The remainder of the proof is just a counting argument. Define an equivalence relation

(i, τ) ∼ (j, τ ′) ⇔ (i, τ) � (j, τ ′) � (i, τ). Then because the tight Border constraints are

nested, the number of tight Border constraints is exactly the number of equivalence classes

under ∼ among (type, bidder) pairs � (0,⊥). It is also now clear, from Lemma 1, that a

monotonicity constraint can be tight and linearly independent of the tight Border constraints

only if it is between two types (i, τi,j) and (i, τi,j+1) of the same bidder i and (i, τi,j) ∼

(i, τi,j+1). Therefore, there are no tight monotonicity constraints across equivalence classes,

and the number of tight monotonicity constraints in each equivalence class is at most the

number of types in that class minus one. Moreover, the number of tight monotonicity

constraints in each equivalence class can only be equal to the number of types in that class

minus one if all types in that class are from the same bidder. We simply observe that if

(i, τ) ∼ (j, τ ′) � (0,⊥) for any i 6= j, that the above counting shows we can’t possibly have

cn tight linearly independent constraints. So we may conclude that (i, τ) 6∼ (j, τ ′) for any

(i, τ), (j, τ ′) � (0,⊥).

Finally, we now want to conclude that the hierarchical allocation rule defined by � induces

the proposed corner π̃. We make one slight modification to � to fit exactly Definition 5,

and merge adjacent equivalence classes that contain types from the same bidder. More

formally, if there exist two types (i, τi,j), (i, τi,j+1) � (0,⊥) that do not lie in the same

equivalence class and no bidder k 6= i has a type τ with (i, τi,j) � (k, τ) � (i, τi,j+1), we

merge the two equivalence classes by modifying � so that (i, τi,j+1) � (i, τi,j) (but keeping �

otherwise the same).7 Now, it is clear that � is a weak total-ordering that is strict (because

(i, τ) 6∼ (j, τ ′) for any (i, τ), (j, τ ′) � (0,⊥)) and partially-ordered w.r.t. to π̃, and the

7This adjustment is technically necessary to claim that when π̃i(τi,j) = π̃i(τi,j+1), we have τi,j+1 � τi,j .
This adjustment doesn’t affect the implementation of the hierarchical allocation rule according to � at all,
since there is only ever one type per bidder present at the auction.
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hierarchical allocation rule corresponding to � uniquely implements the corner π̃ (because

the tight Border constraints uniquely determine a winner on every possible type profile,

exactly the strongest type according to �).

The final sentence of the theorem statement is again a consequence of Carathéodory’s

Theorem and Observation 1.

Now that we know that every corner of the polytope can be implemented as a strict,

partially-ordered w.r.t. R hierarchical allocation rule, we want to ensure that the hierarchy

� can be found computationally efficiently.

Lemma 2. Let π̃ be any corner of P and � be the strict and partially-ordered w.r.t. R

hierarchical allocation rule that implements π̃. Then the shaded reduced form defined as

ˆ̃πi(τ) = π̃i(τ) · Pr [π̃i(ti) ≤ π̃i(τ)] respects �. Specifically, for any two types (i, τ) and (j, τ ′),

(i, τ) � (j, τ ′) ⇐⇒ π̂i(τ) ≥ π̂j(τ
′). Therefore, given π̃ we can construct the ordering � in

time O(cn log(cn)).

Proof. First, observe that for any type (i, τ), π̃i(τ) =
∏

k 6=i Pr[(i, τ) � (k, tk)] and Pr [π̃i(ti) ≤ π̃i(τ)] =

Pr[(i, τ) � (i, ti)]. Therefore, ˆ̃πi(τ) =
∏n

k=1Pr[(i, τ) � (k, tk)]. We may therefore immedi-

ately conclude that (i, τ) � (j, τ ′) ⇔ ˆ̃πi(τ) ≥ ˆ̃πj(τ
′). So in order to find the ordering �, we

only need to compute the shaded reduced form and sort its components, which can clearly

be done in time O(cn log(cn)).

And now, we can draw the main conclusion of this section: given as input any reduced

form, we can computationally efficiently determine whether or not it is feasible. If it is

feasible, we can computationally efficiently output an implementation.

Corollary 3. Given an asymmetric reduced form R, one can determine if it is feasible or

find a hyperplane separating it from the set of feasible reduced forms, in time O(cn log(cn)).

If R is feasible, a succinct description of an allocation rule implementing R can be found in

time polynomial in c and n. The output allocation rule is a distribution over at most cn+ 1

hierarchical allocation rules, all strict and partially-ordered w.r.t. R.

Proof. We first observe that Theorem 1 provides an algorithm that determines if R is fea-

sible, or provides a hyperplane separating it from the space of feasible reduced forms (the

violated Border constraint) that runs in time O(cn log(cn)). We now have to describe how

to efficiently find an ex-post allocation rule implementing a reduced form R that is feasible.

Theorem 6 implies that π lies inside a cn-dimensional polytope, P , whose corners are the

reduced forms of the strict, partially-ordered w.r.t. R hierarchical allocation rules. Theo-

rem 1 provides a separation oracle for P , so Theorem 4 implies that we can decompose π
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into a convex combination of corners of P in time polynomial in cn and cn log(cn) (resulting

in a runtime polynomial in both c and n). Lemma 2 shows how to implement a hierarchical

allocation rule in time O(cn log(cn)) given a corner. Observation 1 completes the proof.

4.3 A Tighter Characterization Result

Let’s first briefly recall the goal of this section. Theorem 6 provides a nice characterization

result: every feasible reduced form can be induced by a distribution over hierarchical alloca-

tion rules, all of which respect the same partial ordering within a single bidder’s types, but

may not respect any global ordering across all bidders’ types. The purpose of this section is

to prove Theorem 2 and show that in fact the distribution over hierarchical allocation rules

may be taken to respect the same global ordering over all bidders’ types.

At this point, we note that it would be great if the shaded reduced form provided an

easy way to extend Theorem 5 to the asymmetric setting. Specifically, we can say that

a hierarchical allocation rule � is shaded-ordered if π̂i(τ) ≥ π̂j(τ
′) ⇒ (i, τ) � (j, τ ′), and

hope it is the case that every feasible reduced form can be induced by a distribution over

shaded-ordered hierarchical allocation rules. Unfortunately, although the shaded reduced

form provides a nice structural theorem about feasible reduced forms and a near-linear time

algorithm for determining feasibility, the following example shows that distributions over

shaded-ordered hierarchical allocation rules are not sufficient to implement every feasible

reduced form when the bidders are non-i.i.d. For completeness, we rule out all possible

shadings.

Proposition 2. There exist feasible reduced forms that cannot be induced by distributions

over shaded-ordered hierarchical allocation rules.

Proof. Consider the following example with two bidders and two types, with ǫ < 1/4. Bidder

one has Pr[t1 = H ] = 1 − ǫ2,Pr[t1 = L] = ǫ2, π1(H) = 1 − ǫ2 and π1(L) = 1 − 2ǫ2. Bidder

two has Pr[t2 = H ] = ǫ,Pr[t2 = L] = 1− ǫ, π2(H) = ǫ and π2(L) = 0.

Then for any shading, we have π̂1(H) ≥ (1−ǫ2)2 > ǫ ≥ π̂2(H) ≥ ǫ·(1−ǫ) > ǫ2 ·(1−2ǫ2) ≥

π̂1(L). So any shaded-ordered reduced form necessarily has (2, H) � (1, L), and therefore

cannot possibly have π1(L) > 1− ǫ/2 ≥ 1− 2ǫ2.

Observe also that this reduced form is clearly feasible: consider the allocation rule that

awards the item to bidder one whenever t2 = L, awards the item to bidder one with prob-

ability 1 − ǫ when t1 = t2 = H (and bidder two otherwise), and awards the item to bidder

one with probability 1 − 2ǫ, to bidder two with probability ǫ when t1 = L, t2 = H (and

throws the item away otherwise). Then bidder one receives the item with probability 1− ǫ2
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when t1 = H , with probability 1 − 2ǫ2 when t1 = L, and bidder two receives the item with

probability ǫ when her type is H , and 0 otherwise.

In light of Proposition 2, it seems that geometric techniques will not get us all the way to

a proof of Theorem 2 (which provides a global ordering instead of just a partial ordering as

in Theorem 6), so our proof below appeals more to analytical tools. Throughout the proof,

we will use the term ≻-ordered hierarchical allocation rule to denote a hierarchical allocation

rule corresponding to some weak total ordering � that irons the strict total ordering ≻.

Proof of Theorem 2: The high-level approach is to find a strict total ordering, ≻, and

an allocation rule that is a distribution over ≻-ordered hierarchical allocation rules, M , that

is “closest” to inducing R by some measure (over all ≻,M). We will then argue that if M

does not already induce R, then the fact that we cannot improve M witnesses a violated

Border constraint.

We first formally introduce a dummy bidder 0 with Pr[t0 = ⊥] = 1 and π0(⊥) = 1 −
∑

i>0

∑

τi
Pr[ti = τi]πi(τi). With this addition, we now have

∑

i≥0

∑

τi
Pr[ti = τi]πi(τi) = 1.

So if we find a feasible allocation rule M whose reduced form πM satisfies πM
i (τ) ≥ πi(τ) for

all i ≥ 0, τ , then we must have πM = π, and M induces R.

Let ≻ be a strict total ordering over all possible types that respects all the per-bidder

partial orderings induced by π. Namely, for all i, if (i, τ) ≻ (i, τ ′), then πi(τ) ≥ πi(τ
′).

Define the unhappiness F≻(M) of a distribution over ≻-ordered hierarchical allocation rules,

M (with reduced form πM), as follows:

F≻(M) = max
i≥0,τ∈T

(πi(τ)− πM
i (τ)).

F≻ can be viewed as a continuous function over a compact set: There are finitely many

≻-ordered hierarchical allocation rules, so their convex hull is a compact set (and ex-

actly the space of distributions over ≻-ordered hierarchical allocation rules). Each func-

tion πi(τ) − πM
i (τ) is linear in this space (and therefore continuous), and the maximum

of continuous functions is continuous. Hence, F≻ achieves its infimum. Let then M≻ ∈

argminM F≻(M) (where the minimization is over all distributions over ≻-ordered hierarchi-

cal allocation rules) and define the set S≻ to be the set of maximally unhappy types under

M≻; formally, S≻ = argmaxi,τ{πi(τ)− πM≻

i (τ)}. If for some ≻ there are several minimizers

M≻, choose one that minimizes |S≻|. Now, let MO (stands for Minimal Orderings) be the

set of the orderings ≻ that minimize F≻(M
≻), further refined to only contain ≻∈ MO that

also minimizing |S≻|. Formally, first set MO = argmin≻{F≻(M
≻)} and then refine MO as

MOnew = argmin≻∈MO{|S≻|}. We drop the subscript “new” for the rest of the proof.

From now on, we call a (bidder, type) pair (i, τ) happy if πM
i (τ) ≥ πi(τ), otherwise we

24



call (i, τ) unhappy. Intuitively, here is what we have already done: For every ordering ≻, we

have found a distribution over ≻-ordered hierarchical allocation rules M≻ that minimizes

the maximal unhappiness and subject to this, the number of maximally unhappy types. We

then choose from these (≻,M≻) pairs those that minimize the maximal unhappiness, and

subject to this, the number of maximally unhappy types. We have made these definitions

because we want to eventually show that there is an ordering ≻, such that F≻(M
≻) = 0,

and it is natural to start with the ordering that is “closest” to satisfying this property.

What we will show next is that, if ∃ ≻∈MO that does not make every (bidder, type) pair

happy, then there also exists some ≻′∈ MO, such that F≻′(M≻′

) = F≻(M
≻), |S≻′| = |S≻|,

and (i, τ) ≻′ (j, τ ′) for all (i, τ) ∈ S≻′, (j, τ ′) /∈ S≻′. In other words, only the top |S≻′| types

in ≻′ are maximally unhappy. From here, we will show that because ≻′∈ MO, that S≻′ is

a constricting set for R, contradicting its feasibility. We begin by showing the existence of

≻′, beginning with an arbitrary ≻∈MO.

Before we begin, we introduce some terminology. We say that two (bidder, type) pairs

(i, τ), (j, τ ′) are adjacent if (i, τ) ≻ (k, τ ′′)⇔ (j, τ ′) ≻ (k, τ ′′) for all (k, τ ′′) /∈ {(i, τ), (j, τ ′)}.

For any �, we also define an equivalence relation ∼� with (i, τ) ∼� (j, τ ′) ⇔ (i, τ) �

(j, τ ′) ∧ (j, τ ′) � (i, τ). Finally, we say that there is a cut between two adjacent types (i, τ)

and (j, τ ′) in � if (i, τ) ≻ (j, τ ′) and (j, τ ′) 6� (i, τ). When we talk about adding a cut

below (i, τ), we mean modifying � so that (j, τ ′) 6� (i, τ) for all (i, τ) ≻ (j, τ ′) (but otherwise

keeping � the same). When we talk about removing a cut between two equivalence classes

A and B, we mean modifying � so that (i, τ) ∼� (j, τ ′) for all (i, τ), (j, τ ′) ∈ A ∪ B (but

otherwise keeping � the same).

Now, if S≻ is not the highest |S≻| (bidder, type) pairs, let (i, τ) be the maximal element

under ≻ in S≻ such that there exists some (k, τ ′′) /∈ S≻ with (k, τ ′′) ≻ (i, τ). Then the

adjacent (bidder, type) pair (j, τ ′) with (j, τ ′) ≻ (i, τ) is necessarily /∈ S≻. We proceed to

show that we can change ≻ to swap (i, τ) ≻ (j, τ ′) (keeping M , S≻ and F≻(M) as-is). We

can repeat these swaps iteratively and they will terminate in the ≻′ we want (with S≻′ equal

to the first |S≻′| (bidder, type) pairs).

We now proceed with a case analysis, for fixed (j, τ ′) /∈ S≻, (i, τ) ∈ S≻, (j, τ
′) ≻ (i, τ)

and (j, τ ′), (i, τ) adjacent.

• Case 1: i = j.

Since ≻ is a linear extension of the bidder’s own ordering, we must have πi(τ
′) ≥ πi(τ),

but we know that

πi(τ
′)− πM≻

i (τ ′) < πi(τ)− πM≻

i (τ),

thus πM≻

i (τ ′) > πM≻

i (τ) ≥ 0. In any hierarchical mechanism �, if there is no cut
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between (i, τ ′) and (i, τ), then they would receive the item with the same probability.

Therefore, there must exist some � in the support of M≻ with a cut below (i, τ ′), and

in which (i, τ ′) gets the item with non-zero probability. We modify M≻ by modifying

the hierarchical allocation rules � in its support as follows.

Let � be a hierarchical allocation rule in the support of M≻. If there is no cut

below (i, τ ′), we do nothing. If all (bidder, type) pairs equivalent to (i, τ ′) and those

equivalent to (i, τ) are of bidder i, we remove the cut below (i, τ ′). This does not affect

the allocation probabilities at all, because it was impossible for two types equivalent

to either (i, τ ′) or (i, τ) to show up together anyway. So after this “modification,” we

haven’t changedM≻ at all, meaning that there must still exist some � in the support of

M≻ with a cut below (i, τ ′), and in which (i, τ ′) gets the item with non-zero probability,

and clearly it is not one of the allocation rules we just modified by removing the cut

below (i, τ ′). For such an �, there is at least one (bidder, type) pair with bidder 6= i

equivalent to (i, τ ′) or (i, τ). We distinguish two sub-cases:

– Every bidder k 6= i has at least one type τk such that (i, τ) � (k, τk) (in other

words, every (bidder, type) pair equivalent to (i, τ) wins the item with non-zero

probability). Consider now moving the cut from below (i, τ ′) to right above (i, τ ′).

Clearly, (i, τ ′) will be less happy if we do this. Every (bidder, type) pair with

bidder 6= i that was formerly equivalent to (i, τ ′) will be strictly happier, as now

they do not have to share the item with (i, τ ′), whereas previously they did with

positive probability. Every (bidder, type) pair with bidder 6= i that is equivalent

to (i, τ) will be strictly happier, as they now get to share the item with (i, τ ′),

whereas previously they always lost to (i, τ ′). It is also clear to see that all (i, τ ′′),

for τ ′′ 6= τ ′ are unaffected by this change. So in particular (i, τ) is unaffected.

Consider instead moving the cut from below (i, τ ′) to right below (i, τ). Then

(i, τ) is clearly strictly happier, every (bidder, type) pair with bidder 6= i that was

formerly equivalent to (i, τ) is less happy than before (as they now don’t get to

share with (i, τ)), every (bidder, type) pair with bidder 6= i that is equivalent to

(i, τ ′) is also less happy than before (because now they have to share with (i, τ ′)),

and all (i, τ ′′), for τ ′′ 6= τ are not affected by the change.

To summarize, we have argued that when we move the cut from below (i, τ ′) to

just below (i, τ), (i, τ) becomes strictly happier, and every (bidder, type) pair

that becomes less happy by this change becomes strictly happier if we instead

move the cut to just above (i, τ ′) instead. Also, (i, τ) is unaffected by moving the

cut to just above (i, τ). So with a tiny probability ǫ, move the cut from below
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(i, τ ′) to just above (i, τ ′), whenever � is sampled from M≻. This makes all of

the (bidder, type) pairs with bidder 6= i that were equivalent to either (i, τ ′) or

(i, τ) strictly happier. With a tinier probability δ, move the cut from below (i, τ ′)

to below (i, τ), whenever � is sampled from M≻. Choose ǫ to be small enough

that we don’t make (i, τ ′) maximally unhappy, and choose δ to be small enough

so that we don’t make any (type, bidder) pairs besides (i, τ ′) less happy than they

were in �. Then we have strictly increased the happiness of (i, τ) without making

(i, τ ′) maximally unhappy, or decreasing the happiness of any other (bidder, type)

pairs. Therefore, we have reduced |S≻|, contradicting the choice of M≻.

– If there is a bidder k such that (i, τ) 6� (k, τk) for all τk, (call such bidders high),

then no (bidder, type) pair equivalent to (i, τ) can possibly win the item. We also

know that every high bidder k has at least one type τk such that (k, τk) ∼� (i, τ ′)

by our choice of � (otherwise (i, τ ′) would get the item with probability 0). Now

we can basically use the same argument as above. The only difference is that

when we move the cut to just above (i, τ ′) or just below (i, τ), (bidder, type)

pairs formerly equivalent to (i, τ) (other than (i, τ) itself) will remain unaffected.

But since every high bidder k has a type τk with (k, τk) ∼� (i, τ ′), (i, τ) will be

strictly happier if we move the cut to just below (i, τ). Therefore, it is still the

case that every (bidder, type) pair who is made unhappier by moving the cut to

just below (i, τ) is made strictly happier by moving the cut to just above (i, τ ′).

So we can carry over the same reasoning as above (choosing ǫ, δ sufficiently small),

and again contradict the choice of M≻.

Therefore, it can not be the case that i = j.

• Case 2: i 6= j and there is never a cut below (j, τ ′).

This case is easy. If we switch (j, τ ′) and (i, τ) in ≻, then the set S≻ is exactly the

same, and the distribution M≻ is exactly the same. However, we have now relabeled

the types in S≻ to get closer to the top |S≻| elements being in S≻. Note that all � with

no cut below (j, τ ′) are all ≻-ordered for the new ≻ as well, so this is a valid swap.

• Case 3: i 6= j and there is sometimes a cut below (j, τ ′).

Pick a � in the support of M≻ that has a cut between (j, τ ′) and (i, τ) and in which

(j, τ ′) gets the item with positive probability. Note that if such a � doesn’t exist, we

can remove the cut below (j, τ ′) in all � in the support of M≻ without changing the

allocation probabilities and return to Case 2. From here, there are again two subcases:
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– (k, τ ′′) /∈ S≻ for all (k, τ ′′) ∼� (j, τ ′). This means that all (bidder, type) pairs

equivalent to (j, τ ′) are not maximally unhappy. Therefore, if we pick a tiny ǫ

and remove the cut below (j, τ ′) with probability ǫ, only the types equivalent to

(j, τ ′) will become unhappier. So there is a sufficiently small ǫ > 0 for which this

operation does not create any new maximally unhappy types. At the same time,

because i 6= j and (j, τ ′) receives the item with non-zero probability under �,

this operation makes (i, τ) strictly happier, as she now sometimes shares the item

with (j, τ ′) (whereas previously she always lost). So this operation will create no

new maximally unhappy (bidder, type) pairs, while making (i, τ) strictly happier,

decreasing the size of |S≻| and contradicting the choice of M≻.

– There exists a (k, τ ′′) ∈ S≻ with (k, τ ′′) ∼� (j, τ ′) (and (k, τ ′′) 6= (j, τ ′)). Let

(k, τ ′′) be the minimal such (bidder, type) pair under ≻. Note that by our choice

of (i, τ), that all (ℓ, τ ′′′) ≻ (k, τ ′′) are also in S≻ (maximally unhappy). Now

consider introducing a cut below (k, τ ′′) with some tiny probability ǫ. Then the

only (bidder, type) pairs who may become unhappier with this change are those

that are still equivalent to (j, τ ′), and all such types are not maximally unhappy.

The only (bidder, type) pairs who may become happier with this change are those

that are (k, τ ′′) or those that are ≻ (k, τ ′′), all of which are in S≻. So if any of

these types become happier at all with this change, there is a sufficiently small

probability ǫ with which we can make this change without introducing any new

maximally unhappy types and therefore decreasing |S≻|, a contradiction. So we

must not make any (bidder, type) pairs happier with this change, and therefore we

must also not make any (bidder, type) pairs unhappier (note that it is impossible

to make any (bidder, type) pair unhappier without making some other (bidder,

type) pair happier, since we are treating (0,⊥) as a regular type). So we may

in fact introduce a cut below (k, τ ′′) with probability 1 whenever M≻ samples

� without affecting πM≻

at all, but removing the original � from the support

of M≻, and replacing it with a � in which all (bidder, type) pairs equivalent to

(j, τ ′) are not maximally unhappy. After doing this for all such �, we must return

to the previous sub-case, after which we again obtain a contradiction.

Hence, it can not be the case that i 6= j with a cut sometimes below (j, τ ′).

At the end of all three cases, we see that if we ever have (j, τ ′) /∈ S≻ and (i, τ) ∈ S≻,

with (j, τ ′) ≻ (i, τ) and (j, τ ′), (i, τ ′) adjacent, then we must have i 6= j, and no � in the

support of M≻ ever places a cut directly below (j, τ ′). Hence, we can simply swap the order
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of these types in ≻ without affecting S≻ or F≻(M) (as we described in Case 2 above), and

we do that repeatedly until S≻ is equal to the top |S≻| (bidder, type) pairs according to ≻.

Now that we have shown the existence of such a ≻, we show that it implies a constricting

set. Label the elements in S≻ as (i1, τ1) ≻ . . . ≻ (ik, τk) (k = |S≻|). Now consider a � in the

support of M≻ that has no cut below (ik, τk), and consider putting a cut there with some

tiny probability ǫ whenever � is sampled. The only effect this might have is that when the

item is awarded to a (bidder, type) pair outside S≻, it is now awarded to a (bidder, type)

pair inside S≻ instead with some probability. Therefore, if anyone gets happier, it is someone

in S≻. However, if we make anyone in S≻ happier and choose ǫ small enough so that we

don’t make anyone outside of S≻ maximally unhappy, we decrease |S≻|, contradicting the

choice of M≻. Therefore, putting a cut below (ik, τk) cannot possibly make anyone happier,

and therefore cannot make anyone unhappier. So we may w.l.o.g. assume that there is a cut

below (ik, τk) in all � in the support of M≻. But now we get that the item always goes to

someone in S≻ whenever a (bidder, type) pair in S≻ is reported, yet all (bidder, type) pairs

in this set are unhappy. Therefore, S≻ is a constricting set, certifying that the given R is

infeasible.

Putting everything together, we have shown that if there is no ≻ with F≻(M
≻) = 0

then the reduced form is infeasible. So there must be some ≻ with F≻(M
≻) = 0, and such

an M≻ induces the reduced form by sampling only ≻-ordered hierarchical allocation rules,

completing the proof. �

5 Multi-Item Mechanism Design

In this section, we show how our results above on reduced forms can be useful for multi-

item mechanism design as well. Essentially, our key observation is that an m-item interim

allocation rule is feasible if and only if the m projected single-item reduced forms are feasible,

so the question is simply whether or not an m-item reduced form contains enough useful

information for mechanism design. When buyers are additive, this information indeed suffices

to guarantee that a mechanism inducing to this interim allocation rule is Bayesian Incentive

Compatible, which allows us to formulate and solve an optimization problem. We make

these statements more precise shortly, but first provide some notation specific to multi-item

mechanism design not covered in Section 2.

29



5.1 Notation

For Section 5, there are n bidders and m items. All bidders’ valuation functions are additive.

We write ~vi to denote the type of bidder i, with the convention that vij represents her value

for item j and that her value for a bundle S of items is simply
∑

j∈S vij. We still let T denote

the space of possible types, which is now a subset of Rn.

To fully specify a (direct-revelation) multi-item mechanism for additive bidders, we need

to describe, potentially succinctly, for all type profiles ~v ∈ T n, and for every bidder i, the

outcome Mi(~v) = (~φi(~v), pi(~v)) given by M to bidder i when the reported bidder types are

~v. Here, φij(~v) is the ex-post probability that item j is given to bidder i when the reported

types are ~v, and pi(~v) is the ex-post price that i pays. The value of bidder i for outcome

Mi(~w) is just her expected value ~vi · ~φi(~w), while her utility is quasi-linear, meaning that

bidder i’s utility for the same outcome is U(~vi,Mi(~w)) := ~vi · ~φi(~w) − pi(~w). The relation

between the ex-post probabilities φ and interim probabilities π is just the following: for all

i,j, ~vi ∈ T : πij(~vi) = E~v−i∼D−i
[φij(~vi ; ~v−i)]. We now formally define Bayesian Incentive

Compatibility (BIC):

Definition 6. (Bayesian Incentive Compatible Mechanism) A mechanism M is called BIC

iff the following inequality holds for all i ∈ [n], ~vi, ~wi ∈ T :

E~v−i∼D−i
[U(~vi,Mi(~v))] ≥ E~v−i∼D−i

[U(~vi,Mi(~wi ; ~v−i))] .

5.2 Optimal Multi-Item Mechanism Design

We begin this section with our key observation, essentially stating that some single-item

results (specifically, those in Section 4) can be extended for free to some multi-item settings.

Let us begin by being clear what we mean by an interim allocation rule projecting a reduced

form onto item j.

Definition 7. (Projected reduced form) Let there be m heterogeneous items, T be some arbi-

trary type space, and R = {πij(·)}i∈[n],j∈[m] be some interim allocation rule of a mechanism.

Then the projected reduced form of R onto item j, Rj, is just Rj = {πij(·)}i∈[n]. Note that

Rj still takes as input types in the original type space T .

Observation 3. An m-item interim allocation rule R is feasible if and only if for all j, the

projected reduced form Rj onto item j is feasible. Furthermore, if R is feasible, R is induced

by the ex-post allocation rule that allocates each item j according to Rj independently of

the others.
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Proof. First, assume that R is feasible, and let M be an ex-post allocation rule that induces

R. We wish to come up with an allocation rule for item j that induces Rj . Define Mj
8

to be the single-item allocation rule that runs M and awards the single item to whichever

bidder was awarded item j under M . Clearly, Mj implements Rj , so if R is feasible, so is

each projection Rj .

Next, assume that each Rj is feasible, and let Mj be an ex-post allocation rule that

induces Rj . Then let M be the allocation rule that on every input type profile, runs Mj

on that type profile for all j and awards item j to whoever receives the single item under

Mj . Clearly, the projection of the reduced form of M onto item j will be exactly Rj , so the

reduced form of M is exactly R. Therefore, M induces R, and R is feasible.

So R is feasible if and only if each projection Rj is feasible. Furthermore, the above

argument shows that when R is feasible, R can be induced by an ex-post allocation rule

that allocates each item separately.

Observation 3 combined with Theorem 2 immediately yields our characterization of fea-

sible multi-item interim allocation rules (from Section 1). Replacing Theorem 2 with Theo-

rem 5 provides a tighter characterization in the symmetric case. Note that at this point we

have absolutely not addressed the issue of when this characterization is useful for multi-item

mechanism design - all we have done is observed (somewhat trivially) that the structure of

reduced forms is preserved under concatenation.

So now, let’s address this issue and discuss the multi-item settings in which Observation 3

is useful for mechanism design. Essentially, we observe that the interim allocation rule as we

have defined it provides sufficient information to determine whether or not a mechanism is

BIC if and only if bidders’ valuations are additive. We first present an example illustrating

that this fails, for instance, when bidders are instead unit-demand.9

Example 1. Consider a setting with a single unit-demand bidder, two items, and one possible

type, (1, 1) (value one for each item). Consider the following two ex-post allocation rules:

• Pick j uniformly random from {1, 2} and award item j.

• Award the set of items {1, 2} with probability 1/2, and the set ∅ with probability 1/2.

Then these two ex-post allocation rules have the same interim allocation rule: π11(1, 1) =

π12(1, 1) = 1/2. But the bidder’s expected value under the first ex-post allocation rule is 1,

whereas under the second it is 1/2. Therefore, the interim allocation rule simply does not

8Note that Mj takes the whole type ~vi of each bidder i as input, and not just vij .
9A bidder is unit-demand if whenever they have value vj for item j, their value for set S is equal to

maxj∈S{vj}.
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contain enough information for the bidder to compute her expected value for reporting a given

type to an ex-post allocation rule inducing it - because it depends on which ex-post allocation

rule is chosen.

Note that if instead the bidder were additive, she would have expected value 1 under both

ex-post allocation rules, and this would not be an issue.

Observation 4. When bidders are additive, the per-item interim allocation rule R contains

enough information for a bidder to compute her expected value when reporting type ~wi to

any ex-post allocation rule inducing R. It is exactly
∑

j vij · πij(~wi).

Proof. LetM be any ex-post allocation rule with ex-post allocation probabilities φij(·). Then

we can write the expected value of a buyer with type ~vi for reporting ~wi to M as:

E~v−i∼D−i
[
∑

j

vij · φij(~wi ; ~v−i)] =
∑

j

E~v−i∼D−i
[vij · φij(~wi ; ~v−i)]

=
∑

j

vij · E~v−i∼D−i
[φij(~wi ; ~v−i)] =

∑

j

vij · πij(~wi).

Essentially what makes additive buyers unique in comparison to other multi-dimensional

valuation functions is that the marginal value for item j is completely independent of the set

it is being added to. Let us again emphasize that an ex-post allocation rule M implementing

an interim allocation rule R absolutely takes into consideration the value of bidders for items

ℓ 6= j when determining how to allocate item j, as this information is stored in their types.

However, Observations 3 shows that it need not consider how items ℓ 6= j are themselves

allocated when determining how to allocate item j. It is well-known that even when there is

just a single additive bidder and two items, and even if the bidder’s values for these items

are distributed i.i.d., that the allocation rule of the revenue-optimal mechanism necessarily

considers values for items ℓ 6= j when deciding the allocation of item j. Below is a folklore

example (that appears concretely, for instance, in [DDT14]). This shows that even if we

are willing to restrict to a characterization only of interim allocation rules that are revenue-

optimal for simple multi-item instances, we should not hope for a stronger characterization

that (say) allocates each item j independent of bidders’ values for items ℓ 6= j.

Example 2. There is a single additive bidder and two items. Each vj is drawn independently

and uniformly from the set {1, 2}. Then the revenue optimal mechanism awards both items

to the bidder whenever v1 + v2 ≥ 3, and charges price 3.

Note that when v1 = 1, whether or not the bidder receives item 1 depends on v2 (namely,

she receives item 1 iff v2 = 2).
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With all this in mind, let us now formally state the multi-item auction problem we solve:

BIC Multi-item auction. Given as input n distributions D1, . . . ,Dn over valuation

vectors for m items, output a BIC mechanism M whose expected revenue is optimal

relative to any other, possibly randomized, BIC mechanism, when played by n additive

bidders whose valuation vectors are sampled independently from D1, . . . ,Dn. Note that

each Di need not be a product distribution, a single bidder’s values for different items may

be arbitrarily correlated.

Our approach to solving proving Theorem 3 is to use the separation oracle for checking the

feasibility of a reduced form developed in Corollary 3 inside a linear program that optimizes

over all feasible interim allocation rules and interim price rules. We begin with the LP

formulation in Figure 1 below, followed by a proof that the LP is correct.

Variables:

• πij(~vi), for all bidders i ∈ [n], items j ∈ [m], and ~vi ∈ T , the interim probability that
bidder i gets item j when reporting type ~vi (mnc variables).

• qi(~vi), for all bidders i ∈ [n], ~vi ∈ T , the interim expected price that bidder i pays
when reporting type ~vi (nc variables).

Constraints:

• 0 ≤ πij(~vi) ≤ 1, for all i ∈ [n], j ∈ [m], ~vi ∈ T , guaranteeing that each πij(~vi) is a
probability (mnc constraints).

•
∑

j∈[m] vijπij(~vi)− qi(~vi) ≥ 0, for all i ∈ [n], ~vi ∈ T , guaranteeing that the mechanism

is interim Individually Rational (interim IR) (nc constraints).

•
∑

j∈[m] vijπij(~vi) − qi(~vi) ≥
∑

j∈[m] vijπij(~v
′
i) − qi(~v

′
i), for all i ∈ [n], ~vi, ~v

′
i ∈ T , guaran-

teeing that the mechanism is Bayesian Incentive Compatible (BIC) (nc2 constraints).

• SO(~π,D) =“Yes”, guaranteeing that there is an ex-post allocation rule inducing π;

Maximizing:

•
∑

i∈[n],~vi∈T
qi(~vi) Pr[~vi ← Di], the expected revenue.

Figure 1: A folklore LP (that appears concretely, e.g., in [DW12]), where we use a separation
oracle to determine feasibility of the interim allocation rule. In parentheses at the end of
each line is the number of such variables/constraints .

Proposition 3. Provided that SO acts as a valid separation oracle for the space of feasible

interim allocation rules, the LP of Figure 1 outputs the revenue optimal interim allocation
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rule and interim price rule for BIC multi-item auction in time polynomial in n,m, c and the

runtime of SO.

Proof. First, it is clear that any output of the LP of Figure 1 (henceforth, just “the LP”) is

interim IR, BIC, and feasible, as long as SO is correct. This is because the constraints on an

interim allocation rule/price rule pair to be interim IR are linear and explicitly included in

the LP. The same holds for BIC. Therefore, as long as SO is correct, any interim allocation

rule/price rule pair accepted by the LP must be interim IR, BIC, and feasible. It is also

clear that the objective function correctly computes the expected revenue of any interim price

rule considered. So the LP outputs exactly the feasible, interim IR, BIC interim allocation

rule/price rule pair that maximizes expected revenue with respect to all feasible, interim IR,

BIC interim allocation rule/price rule pairs.

Second, it is clear that every feasible, IR, BIC mechanism has an interim allocation

rule/price rule pair, and that this pair is also interim IR, feasible, and BIC. So the revenue-

optimal interim allocation/price rule pair output by the LP is indeed optimal with respect

to all feasible, IR, BIC mechanisms.

Finally, it is clear that the number of variables and constraints (excluding SO) is polyno-

mial in nmc. Therefore, the LP can be solved in time polynomial in n,m, c and the runtime

of SO via a direct application of Theorem 4.

Proof of Theorem 3: Theorem 3 now follows immediately from Proposition 3, Obser-

vation 3, and Corollary 3. Corollary 3 combined with Observation 3 guarantees that we can

design the desired separation oracle, which terminates in time poly(n,m, c), and Proposi-

tion 3 guarantees that we can use this to solve the LP in time poly(n,m, c). After finding

the optimal interim allocation/price rule pair (~π∗, ~q∗), Corollary 3 shows how to find in time

poly(n,m, c) a succinct description of an ex-post allocation rule implementing ~π∗ (as a dis-

tribution over at most cn+ 1 strict hierarchical allocation rules). So one can implement the

optimal mechanism by using this ex-post allocation rule, and charging bidder i price q∗i (~vi)

when her bid is ~vi. �

We also note that the LP of Figure 1 only requires that the mechanism be interim

individually rational. A well-known simple trick (shown e.g. in [DW12]) converts any BIC,

interim IR mechanism into one that is BIC and ex-post IR with no loss in revenue, so this is

w.l.o.g. For completeness, we describe the trick below. Note that the trick does not require

any assumptions on the valuation functions of bidders except that they are quasi-linear and

risk-neutral.
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Proposition 4. Let M be any BIC and interim IR mechanism for quasi-linear and risk-

neutral bidders. There exists another mechanism M ′ that uses exactly the same ex-post

allocation rule and interim price rule as M that is also ex-post IR.

Proof. For any bidder i and valuation function/type vi(·) : 2[m] → R (vi takes as input a

set of items and outputs a value), let V M
i (vi) denote the expected value of bidder i when

truthfully reporting type vi to M (over any randomness in M , and the randomness in other

bidders’ types). Let also qMi (vi) denote the interim price paid by i when reporting type vi

to M (over the same randomness). As M is interim IR, we must have qMi (vi) ≤ V M
i (vi).

Now define the following ex-post price rule for M ′: whenever bidder i receives items S

after reporting type vi, charge her
qMi (vi)

V M
i (vi)

· vi(S). Observe that we have not changed the

ex-post allocation rule, so clearly M and M ′ have the same ex-post allocation rule. As
qMi (vi)

V M
i (vi)

≤ 1, M ′ is clearly ex-post IR. All that remains to verify is that M and M ′ have

the same interim price rule. But this is also clear: if we define φS(~v) to be the probability

that M allocates set S to bidder i on input ~v, then the interim price paid by bidder i when

reporting type vi to M ′ is exactly:

E~v−i∼D−i
[
∑

S⊆[m]

φS(~v) ·
qMi (vi)

V M
i (vi)

· vi(S)] =
qMi (vi)

V M
i (vi)

· E~v−i∼D−i
[
∑

S⊆[m]

φS(~v) · vi(S)]

=
qMi (vi)

V M
i (vi)

· V M
i (vi) = qMi (vi).

6 Conclusions and Discussion

Motivated by settings where an optimization approach is necessary to develop optimal auc-

tions, we study single-item reduced-form auctions for asymmetric bidders. We provide a

linear-sized subset of necessary and sufficient Border conditions (down from exponential-

sized of prior work) that can be checked in nearly-linear time, and also show that every

feasible reduced form can be implemented as a distribution of hierarchical allocation rules

that all respect the same total ordering over all bidders’ types. We further show that our re-

sults imply both polynomial-time algorithms and structural characterizations for multi-item

auctions with additive bidders.

Our work demonstrates how a better understanding of reduced-form auctions in the

core single-item setting can be utilized for much more general settings, and also that a

computational lens can lead not only to tractable optimization algorithms, but also improved
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structural understanding.

We conclude with a very brief discussion on how one could extend our approach for

multi-item auction design beyond additive buyers. Indeed, the core issue is that the interim

allocation probabilities no longer contain enough information to verify that a mechanism is

BIC (Example 1), so in order to get mileage out of our approach one first needs to come up

with a new interim description of auctions. It is not hard to come up with definitions that

work for, say, unit-demand buyers: first observe that it is w.l.o.g. to only consider auctions

which award each bidder at most one item.10 Then simply define πij(~vi) to be the interim

probablity that bidder i receives item j when submitting valuation vector ~vi, and exactly

the same LP as written in Figure 1 finds the revenue-optimal BIC mechanism, provided

we can design a computationally efficient separation oracle for this new space of feasible

interim allocation rules (which never allocate the same item to multiple bidders or the same

bidder multiple items). However, obtaining such a separation oracle is no longer simply

the product of n single-item problems, and in fact Gopalan et. al. prove that, under well-

believed complexity-theoretic assumptions, no computationally efficient separation oracle for

this space exists [GNR15].

Still, our approach has proven useful for the design of nearly-optimal multi-item auc-

tions in settings with unit-demand buyers (and in fact significantly more general settings as

well) in follow-up works by the authors and others [CDW12b, CDW13a, CDW13b, BGM13,

DDW15, CDW16], essentially by making use of computationally-efficient but approximate

characterization of the feasible interim allocation probabilities in these settings. The present

paper remains unique in this line of works for finding the optimal mechanism without ap-

proximation error.
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A Omitted Proofs

The first omitted proof is of Corollary 1, which simply claimed that we can find a violated

Border constraint in the symmetric case in time O(c(log c+ log n)).

Proof of Corollary 1. First, sort the types τ in T in decreasing order according to π(τ)

in time O(c log c), and label the distinct values of π(τ) as x1, . . . , xk (k ≤ c), and de-

fine Xi = {τ | π(τ) = xi}. Next, compute
∑

τ :π(τ)≥xi
π(τ) Pr[τ ] for all i in the follow-

ing way: First, compute
∑

τ∈Xi
π(τ) Pr[τ ] for all i. This can clearly be done in time

O(|Xi|) for all i, and therefore the total computation takes time O(c). Next, observe that
∑

τ :π(τ)≥xi+1
π(τ) Pr[τ ] =

∑

τ :π(τ)≥xi
π(τ) Pr[τ ] +

∑

τ∈Xi+1
π(τ) Pr[τ ]. So we can compute

∑

τ :π(τ)≥xi+1
π(τ) Pr[τ ] from

∑

τ :π(τ)≥xi
π(τ) Pr[τ ] using just O(1) additional computation.

Therefore, we can compute
∑

τ :π(τ)≥xi
π(τ) Pr[τ ] for all i in total time O(c). This imme-

diately gives us the LHS for all inequalities (3) in total time O(c log c). Similarly, we can

compute
∑

τ∈Xi
Pr[τ ] for all i in total time O(c), and use these in the same way to compute

Prt∼D1 [π(t) ≥ xi] =
∑

τ :π(τ)≥xi
Pr[τ ] for all i in total time O(c log c). With this, we can

then compute the RHS of each inequality (3) using repeated squaring in time O(logn) per

inequality.

So all together, we have a pre-processing stage which takes time O(c log c), and an addi-

tional O(c logn) to compute each RHS, resulting in a total runtime of O(c(log c+logn)).

The next omitted proof is of (the algorithmic portion of) Theorem 1, which claims that

we can find a violated Border constraint in the asymmetric case in time O(cn · log(cn)).

Proof of Theorem 1: Proposition 1 immediately yields the first part of Theorem 1 (that

a reduced form is feasible if and only if it satisfies Equation 2 for all x). The only remaining

detail to check is that a violated Border constraint (if it exists) can be found in the desired

runtime, which follows from a similar routine computation as in Corollary 1. For the sake

of completeness, we include with a full proof of this.

First, sort all (bidder, type) pairs (i, τ) ∈ [n]× T in decreasing order according to π̂i(τ)

in time O(nc log(nc)) (c = |T |), label the distinct values of π̂i(τ) as x1, . . . , xk (k ≤ nc),

and store Xj = {(i, τ) | π̂i(τ) = xj} (i.e. Xj is the set of (bidder, type) pairs for which

π̂i(τ) = xj). Next, to compute all left-hand sides of Equation (2), begin by computing
∑

(i,τ)∈Xj
Pr[ti = τ ] · πi(τ) for all j. This can clearly be done in time O(|Xj|) for all j, and

therefore the total computation takes time O(nc). Next, observe that
∑

(i,τ):π̂i(τ)≥xj+1
Pr[ti =

τ ] · πi(τ) =
∑

(i,τ):π̂i(τ)≥xj
Pr[ti = τ ] · πi(τ) +

∑

(i,τ)∈Xj+1
Pr[ti = τ ] · πi(τ). So we can compute

∑

(i,τ):π̂i(τ)≥xj+1
Pr[ti = τ ] · πi(τ) from

∑

(i,τ):π̂i(τ)≥xj
Pr[ti = τ ] · πi(τ) with O(1) additional

computation (by making use of our pre-processed values). So starting with x1, we can
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compute all left-hand sides of Equation (2) with O(1) additional computation per constraint,

for a total computation time of O(nc).

Computing all right-hand sides is a touch trickier, because we don’t actually want to

multiply n numbers together for each of nc inequalities. So we will make use of the fact

that most of the terms going into the product on the RHS don’t change between successive

inequalities. To compute all right-hand sides, additionally for all i, sort all types τ ∈ T

in decreasing order of π̂i(τ) in time O(c log c) per bidder, or O(nc log c) in total, label the

distinct values of π̂i(τ) as xi1, . . . , xiki (ki ≤ c), and store Xij = {τ | π̂i(τ) = xij}. Compute
∑

τ∈Xij
Pr[ti = τ ] for all i, j in total time O(nc). Recall S

(i)
x = {τ | π̂i(τ) ≥ x}, and observe

that Prti∼Di
[ti ∈ S

(i)
xij ] =

∑

τ :π̂i(τ)≥xij
Pr[ti = τ ] can be computed for fixed i and all j in

time O(c), and therefore for all i and all j in total time O(nc). With this, finally compute
1−Prti∼Di

[ti∈S
(i)
xi(j+1)

]

1−Prti∼Di
[ti∈S

(i)
xij

]
for all i and j ∈ {0, . . . , ki−1} (denoting S

(i)
xi0

= ∅), again in time O(c) per

bidder, or O(nc) in total (it is just at most one division per (i, τ) ∈ [n]× T ). Now, starting

from j = 1, we will inductively compute
∏

i(1 − Prti∼Di
[ti ∈ S

(i)
xj ]) for all j, using the result

for j−1 as well as our precomputed terms. Observe that
∏

i(1−Prti∼Di
[ti ∈ S

(i)
xj ]) =

∏

i(1−

Prti∼Di
[ti ∈ S

(i)
xj−1 ]) ·

∏

i

1−Prti∼Di
[ti∈S

(i)
xj

]

1−Prti∼Di
[ti∈S

(i)
xj−1

]
. For many i, it might be that

1−Prti∼Di
[ti∈S

(i)
xj

]

1−Prti∼Di
[ti∈S

(i)
xj−1

]
= 1

(namely, all i such that (i, τ) /∈ Xj for all τ ∈ T ). So to compute
∏

i

1−Prti∼Di
[ti∈S

(i)
xj

]

1−Prti∼Di
[ti∈S

(i)
xj−1

]
simply

multiply together for all i such that ∃τ ∈ T, (i, τ) ∈ Xj the corresponding
1−Prti∼Di

[ti∈S
(i)
xj

]

1−Prti∼Di
[ti∈S

(i)
xj−1

]
,

which we have precomputed. This can clearly be done in time O(|Xj|). So the total time

to compute
∏

i(1 − Prti∼Di
[ti ∈ S

(i)
xj ]) for all j is O(

∑

j |Xj|) = O(nc). From here, we just

take 1−
∏

i(1−Prti∼Di
[ti ∈ S

(i)
xj ]) to get the corresponding right-hand sides for all xj . So all

inequalities of the form (2) can be checked in total time O(nc log(nc)). �

The final omitted proof is a technical lemma used inside the proof of Theorem 6. The

lemma states that monotonicity constraints can be tight (and linearly independent) only if

they are between two types in the same equivalence class.

Proof of Lemma 1: There are six cases to consider. Below we are studying which

monotonicity constraints might potentially be tight in any possible ex-post allocation rule

that induces π̃.

• What if (i, τi,j+1) � (i, τi,j)? Then (i, j)th monotonicity constraint might be tight.

• What if (i, τi,j) � (0,⊥) � (i, τi,j+1)? Then by definition of �, π̃i(τi,j) > 0 = π̃i(τi,j+1),

so the (i, j)th monotonicity constraint can’t be tight.

• What if (0,⊥) 6� (i, τi,j+1) 6� (i, τi,j) and there exists a bidder k 6= i and type τ ′

with (i, τi,j+1) 6� (k, τ ′) 6� (i, τi,j)? First, it is clear that bidder i with type τi,j+1
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can only win when (τi,j+1) � (ℓ, tℓ) for all ℓ 6= i (because on any other profile, there

exists a (bidder, type) pair present in a tight Border constraint without (i, τi,j+1)), and

that bidder i with type τi,j must win in all these cases (exactly because on all such

profiles, (i, τi,j) is present in a tight Border constraint without (ℓ, tℓ) for all ℓ). So for

every opposing profile where τi,j+1 has a chance of winning, τi,j certainly wins. Now

we show that an opposing profile exists where bidder i loses with type τi,j+1 but wins

with type τi,j , meaning that the (i, j)th monotonicity constraint can’t be tight. Because

(i, τi,j+1) � (0,⊥), we necessarily have (i, τi,j+1) � (ℓ, τℓ,cℓ) for all bidders ℓ. So consider

the opposing profile where bidder k has type τ ′, and all other bidders ℓ /∈ {i, k} have

type τℓ,cℓ , which arises with non-zero probability by our choice of cℓ. Clearly, bidder

i with type τi,j must win the item against these opponents, while bidder i with type

τi,j+1 must lose. Therefore, the (i, j)th monotonicity constraint can’t be tight.

• What if (0,⊥) 6� (i, τi,j+1) 6� (i, τi,j) and there exists a bidder k 6= i and type τ ′

with (i, τi,j) � (k, τ ′) � (i, τi,j)? We know that bidder i with type τi,j+1 must lose

whenever there exists a bidder ℓ with (ℓ, τℓ) � (i, τi,j). However, if bidder i also loses

with type τi,j against all such profiles, then the Border constraint for the set of all

(type, bidder) pairs (ℓ, τ) 6= (i, τi,j) with (ℓ, τ) � (i, τi,j) would necessarily be tight as

well, meaning that the type (k, τ ′) is present in a tight Border constraint that (i, τi,j)

is not, contradicting (i, τi,j) � (k, τ ′).11 So bidder i with type τi,j must win with non-

zero probability against some such opposing profile, meaning again that the (i, j)th

monotonicity constraint can’t be tight.

• What if (0,⊥) 6� (i, τi,j+1) 6� (i, τi,j) and there exists a bidder k 6= i and type τ ′

with (i, τi,j+1) � (k, τ ′) � (i, τi,j+1)? The reasoning is symmetric to the above case.

We know that bidder i with type τi,j must win whenever all other bidders ℓ have

(i, τi,j+1) � (ℓ, tℓ). However, if bidder i also wins with type τi,j+1 against all such

profiles, then the Border constraint for the set (i, τi,j+1) and all (type, bidder) pairs

(ℓ, τ) with (i, τi,j+1) 6� (ℓ, τ) (i.e. the set {(ℓ, τ)|(i, τi,j+1) 6� (ℓ, τ)} ∪ {(i, τi,j+1)})

would necessarily be tight as well, meaning that the type (i, τi,j+1) is in a tight Border

constraint that (k, τ ′) is not, contradicting (k, τ ′) � (i, τi,j+1).
12 So bidder i with type

τi,j+1 must lose with non-zero probability against some such opposing profile, meaning

again that the (i, j)th monotonicity constraint can’t be tight.

11Observe that all (ℓ, τ) with (ℓ, τ) � (i, τi,j) are necessarily have τ 6= τℓ,c, as such types are present in at
most one tight Border constraint (namely (11)), in which (i, τi,j+1) is itself present. So the specified Border
constraint is indeed one that remains in Equation (10).

12Again, observe that the specified Border constraint is indeed one that remains in Equation (10), because
if j + 1 = c, then π̃k(τ

′) will be 0 contradicting the assumption that (k, τ ′) � (i, τi,j+1) � (0,⊥).
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• What if (0,⊥) 6� (i, τi,j+1) 6� (i, τi,j) and for all bidders k 6= i and types τ ′, (i, τi,j) 6�

(k, τ ′) or (k, τ ′) 6� (i, τi,j+1)? In this case, the (i, j)th monotonicity constraint is guar-

anteed to be tight, but linearly dependent on the set of tight Border constraints.

We first argue that the Border constraint is tight for the set A = {(k, τ ′)|(k, τ ′) �

(i, τi,j)} − (i, τi,j): on any profile (t1, . . . , tn) where ti 6= τi,j, but some (k, tk) � (i, τi,j)

(possibly k = i), clearly some bidder k with (k, tk) ∈ A must win (as the Border con-

straint for B = {(k, τ ′)|(k, τ ′) � (i, τi,j)} is tight, by definition of �). Moreover, when

ti = τi,j and the profile (t1, . . . , tn) has some type (k, tk) ∈ A then k 6= i, and we must

have (i, τi,j) 6� (k, tk) (by hypothesis defining this case). Therefore, the winner must

still be some (k, tk) ∈ A, and we conclude that the Border constraint for A must be

tight.

Similar reasoning implies that the Border constraint for set C = {(k, τ ′)|(k, τ ′) �

(i, τi,j)} ∪ {(i, τi,j+1)} is tight. Finally, one can take a linear combination of the tight

Border constraints for the three sets {(k, τ ′)|(k, τ ′) � (i, τi,j)}−(i, τi,j), {(k, τ
′)|(k, τ ′) �

(i, τi,j)} and {(k, τ
′)|(k, τ ′) � (i, τi,j)} ∪ {(i, τi,j+1)} to recover the (i, j)th monotonicity

constraint.13 To be thorough, we do the calculation below: we first list the three tight

Border’s constraints.

∑

k

∑

j|(k,τk,j)∈A

Pr[tk = τk,j]π̃k(τk,j) = 1−
∏

k



1−
∑

j|(k,τk,j)∈A

Pr[tk = τk,j]



 (13)

∑

k

∑

j|(k,τk,j)∈B

Pr[tk = τk,j]π̃k(τk,j) = 1−
∏

k



1−
∑

j|(k,τk,j)∈B

Pr[tk = τk,j]



 (14)

∑

k

∑

j|(k,τk,j)∈C

Pr[tk = τk,j]π̃k(τk,j) = 1−
∏

k



1−
∑

j|(k,τk,j)∈C

Pr[tk = τk,j]



 (15)

Clearly, Equation (13) and (14) imply that

Pr[ti = τi,j ] · π̃i(τi,j) =
∏

k 6=i



1−
∑

j|(k,τk,j)∈A

Pr[tk = τk,j]



 · Pr[ti = τi,j]. (16)

13Again, all three Border constraints remain in Equation (10).
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Also, Equation (14) and (15) imply that

Pr[ti = τi,j+1] · π̃i(τi,j+1) =
∏

k 6=i



1−
∑

j|(k,τk,j)∈B

Pr[tk = τk,j]



 · Pr[ti = τi,j+1]

=
∏

k 6=i



1−
∑

j|(k,τk,j)∈A

Pr[tk = τk,j]



 · Pr[ti = τi,j+1]. (17)

Hence,

π̃i,j(τi,j) = π̃i,j+1(τi,j+1) =
∏

k 6=i



1−
∑

j|(k,τk,j)∈A

Pr[tk = τk,j]



 .

From this case analysis, we now conclude that the (i, j)th monotonicity constraint can be

tight and linearly independent of the tight Border constraints only if (i, τi,j+1) � (i, τi,j). �
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