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Abstract

We provide a Polynomial Time Approximation Scheme (PTAS)tfee Bayesian optimal multi-
item multi-bidder auction problem under two conditionstsEibidders are independent, have additive
valuations and are from the same population. Second, evédets value distributions of items are
independent but not necessarily identical monotone haaéed MHR) distributions. For non-i.i.d. bid-
ders, we also provide a PTAS when the number of bidders is . sRrabr to our work, even for a single
bidder, only constant factor approximations are known.

Another appealing feature of our mechanism is the simpéeation rule. Indeed, the mechanism we
use is either the second-price auction with reserve pricevery item individually, or VCG allocation
with a few outlying items that requires additional treattsetit is surprising that such simple allocation
rules suffice to obtain nearly optimal revenue.
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1 Introduction

The multi-dimensional mechanism design problem has bedelystudied in Economics, and recently in
the theory of computation community. Consider a seller wi®dnlimited supply of several distinguishable
items and many interested bidders. The goal for the seller design an auction that will incentivize
the bidders to truthfully report their private valuationsdanaximize her revenue. Unfortunately, optimal
mechanism is not even well-defined in the worst-case arsalgsino truthful mechanism can be universally
optimal for all possible valuation profiles. Economists énéaken the Bayesian approach to cope with this
impossibility, where the valuations of the bidders are as=ii to be drawn from some publicly known
distributions. Given such prior distributions, the optimaechanism is defined as the one that maximizes
the expected revenue among all (possibly randomized)ftiutind individual rational mechanisms. In this
paper, the notion of truthfulness we will focus on is Bayesiaentive compatibility (BIC), while we will
also consider other notions of truthfulness such as ingemimpatibility and deterministic truthfulness.
Informally, a mechanism is BIC if each bidder maximizes hepeeted utility by truth-telling assuming
other bidders are also truthful, where the expectation és the randomness of the mechanisms and random
realizations of other agents’ valuations.

When there is only a single item for sale, the structure obftienal mechanism is very well-understood.
Myerson [18] provides an elegant solution to the optimaisitem auction problem. However, Myerson’s
result does not extend to the more genenalti-itemsetting. Following Myerson’s work, a large body of
research in Economics has been devoted to extending hik reshe multi-item setting (see survey [17]
and the references therein).

The theory of computation community has also studied thiblem during the past decade, with an
eye on the computational efficiency of the mechanism. Thasdoeen lots of success in obtaining constant
factor approximations in various settings (e.g.,| [11,[12]& Lately, attention has been shifted to getting
nearly optimal revenue and such mechanisms have been pbfarsseveral cases (e.d., [13/ 8, 2]).

In a very recent papelr[9], Cai et al. consider a very genettihg. In their setting, bidders are additive
with arbitrary combinatorial feasibility constraints. dhshow how to design revenue-optimal auctions by
reducing the revenue optimization to welfare optimizatioler the same constraints. Their algorithm has
runtime polynomial in the total number of bidder ty{Be§his is the natural description size for the problem
if we allow items to have correlated values. However, whemg are independent, the natural description is
much more succinct. Making their algorithm inefficient (erpntial in the input size). Moreover, to handle
such a broad setting, their solution has to be relativelyplimated, which might sometimes makes it hard
to implement in reality. The above drawbacks motivate tlseaech in this paper, that idesigning simple,
computational efficient, and nearly optimal auctions

1.1 Main Results

In this paper, we will focus on a very important and fundarakease: Bidders have independent and
additive valuations, and items values are independent.gBalris to obtain an algorithm whose runtime is
polynomial in the succinct input-size and propose much Emmgvenue-optimal auctions.

More concretely, let there be bidderé and n heterogeneous items (unit-supply). Let there be no
feasibility constraints on the allocations. We will assutme bidders’ valuations are additive and the values
are drawn from independent but not necessarily identicgttidutions subject to the standard monotone
hazard rate (MHR) assumption. Roughly speaking, MHR thstions are those whose tails are “thinner”
than exponential distributions. The formal definition of Rl deferred to Sectidd 2. We want to efficiently
find a mechanism whose expected revenue is optimal relaiiamy (possibly randomized) truthful and

"More precisely, these algorithm is polynomialjn, |S;|, whereS; is the support of the joint value distribution for bidder
2We will sometimes usé to denote the number of bidders when this number is an alesotutstant.



individual rational mechanism. Prior to our work, even thse of a single bidder is elusive in the presence
of many independent but not necessarily identical items.
Our main results are the following two theorems.

Theorem 1.1. Let there ben heterogeneous items; additive bidders, and 7} } j¢[, be a collection of
independent but not necessarily identical MHR distribugioSuppose for each bidderher value for item
Jj is drawn independently fronk;. Then, there is a Polynomial Time Approximation Scl&(ﬁﬁAS) for
computing the revenue-optimal truthful mechanism.

In the above theorem, we consider the case when the biddefsoan the same population. So any
two bidders have the same value distributions for any pdaticitem. This is a realistic assumption, as
to tell which demographic group the bidder is from, the selkeeds to collect lots of information, e.g., her
occupation, income, marital status etc. which is usuafigdnible in practice, especially when the number of
bidders is huge. When there are only a handful of bidderseliewythe seller might have enough knowledge
to distinguish different bidders. We develop the followihgorem to address this case.

Theorem 1.2. Let there ben heterogeneous itemk,additive bidders (considet as an absolute constant),
and {Fi; }ic[x],je[n) Pe @ collection of independent but not necessarily idehtitdlR Distributions. For
any bidder: and itemyj, her value for the item is drawn fro;;. There is a PTAS for computing the
revenue-optimal BIC mechanism.

Although the above theorems are stated only for BIC mechah&re, our techniques can be extended to
other solution concepts as well, such as IC and determanistinfulness. We will elaborate these theorems
in the corresponding sections and explain the results fdows solution concepts.

Besides achieving nearly optimal revenue, our mechanisni$ieéoreni 1]J1 and Theordm 1.2 have an
additional appealing feature of using very simple allaatiules. In fact, all of our mechanisms essentially
has one of the two following simple forms: 1) Run a secondepdaction with reserve price on every
item individually. 2) Use the VCG allocation with a thresthatelfare whose role is similar to the reserve
price, except for a few outlying items which we need to harsglgarately. It is surprising that such simple
allocation rules can actually obtain nearly optimal revenu

1.2 Overview of Techniques

First let us explain by example why the obvious attempt ohimg Myerson’s auction on every item indi-
vidually fails. Consider a single bidder andtems whose values are i.i.d. and uniformly drawn fron].

On the one hand, Myerson’s optimal auction only @t&venue per item. On the other handrils large,

the total value of the grand-bundle concentrate§.abo a simple grand-bundle-reserve-price auction (e.g.,
[3]) can get almost; revenue.

One might also argue that when the bidders’ values are addihe overall values will be concentrated
and thus it is easy to find the optimal. But as items are nasidve may not have such a concentration
phenomena in some cadks.

Instead, our first technical contribution is by understagdhe probabilistic structure to prove the fol-
lowing structural lemma which we will use heavily:

®Recall that &Polynomial Time Approximation ScherfiRTAS) is a family of algorithmg.A. }., indexed by a parameter> 0,
such that for every fixed > 0, A. runs in poly-time. In particular, for any constant- 0, the PTAS constructs an auction whose
expected revenue is(@ + ¢) factor approximation to the optimal, in time polynomiakirandm.

“For instance, consider an item whose value is uniformly drésom [1/2, 1] andn — 1 items whose values are i.i.d. and
uniformly drawn from[0, -5 ].



Partitioning Lemma (Informal). Assuming MHR distributions, then we can partition the itéms two
sets, where the first set contains only a constant numbegmkitand the second set has many items but the
social welfare of which highly concentrates.

Based on this lemma, we manage to reduce the problem of fimeiaudy-optimal mechanisms for many
independent items into two simpler sub-problems: Desmymaarly-optimal mechanisms for a constant
number of independent items, and designing nearly-optimethanisms when the total value of the items
concentrates. The formal statement of the partition lemndaita proof will be given in Section 3.

Constant Number of Bidders In this case, designing nearly-optimal mechanisms for themgoblem
with only a constant number of items is almost folklore andsketch these mechanisms in Secfiod 3.1.
In order to handle the second sub-problem, we propose a nmehanism that falls into the VCG family,
which we shall introduce as threserve welfare mechanism Sectior 3.2. The reserve welfare mechanism
allocates items to the bidders only if the social welfareeexts a certain reserve welfare, in which case
it will use the welfare-maximizing allocation. We show tivaith the proper pricing scheme, the reserve
welfare mechanism is deterministically truthful and seltlee welfare-concentrated case nearly optimally.
The proof of Theorern 112 follows by combining these techrimgredients.

Many I.I.D. Bidders The key observation in this case is that when the number aeogdis sufficiently
large, simply running second price auction with a propeHgsen reserve price for each item suffices to
guarantee nearly optimal revenue. More concretely, irddly Theorem 7 iri[7], we can argue that for any
constani > 0, if the number of bidders is larger than an absolute constetitonly depends of then for
every item there is a second price auction with reserve piaeachieves revenue at leagtla- ¢) fraction

of the social welfare. In[5], Bhalgat and Khanna have inaejgatly provided similar insights when there
are sufficiently many i.i.d. bidders. On the other hand, & tlumber of bidders is smaller than this absolute
constant, then we can reduce the problem to Theérem 1.2.

1.3 Related Work

The theory of computation community has contributed mampmatational efficient solutions to various
special cases of the multi-dimensional mechanism desighlggm. Chawla et.al [11] consider the case
of a single unit-demand bidder, and propose an item pricieghanism that achieves a constant factor
approximation of the optimal. Their result is based on agaiéreduction to Myerson’s optimal auction in
the single-dimensional setting. For the same problem, Gdilaskalakis [[7] propose a PTAS for optimal
item-pricing, thus close the constant approximation gap.

In the multi-bidder setting| [12, 6] 1] provide efficient ataint factor approximations for cases when the
bidders are additive or unit-demand. More recently, ngdirtal solutions have been obtained for several
cases. Daskalakis and Weinbergl[13] solve the case wher dhe few bidders with symmeﬁdiems or
symmetric bidders with few items.

For asymmetric distributions, Cai et all [8] give the optirsalution to the many-bidder and many-item
setting. Alaei et al.[[2] consider serving many copies of tamiwith a matroid feasibility constraint on
which bidders can be served an item simultaneously, andnotbta optimal solution. In[9], Cai et al. pro-
vide the optimal solution for a much more general settingrehmdders are additive, and with (possibly)
arbitrary feasibility constraints, by reducing the revemptimization to welfare optimization. Their reduc-
tion provides a poly-time solution to the optimal mechanidesign problem in all auction settings where

®See [13] for a formal definition of symmetric distributionk.g., i.i.d. distributions is symmetric, but general indegent
distributions are not.



welfare optimization can be solved efficiently. Howevelsifragile to approximation, as the reduction re-
quires an exact solution for the welfare optimization peotol In [10], the same group of authors show that
even when the welfare optimization problem is only appratety solvable, they can still carry over the
reduction while preserving the approximation factor. Altteese algorithms allow correlation among items,
so the total number of bidder types is the natural input dit@wever, for independent but not necessarily
identical items, even when support size of every valueilligion is only2 and bidders are i.i.d., the total
number of bidder types could still be as large2&smaking their algorithm highly inefficient in our setting.
Nonetheless, for symmetric items, Cai et al. [8] show howetduce the “effective number” of types by
utilizing the symmetric structure of the items, yielding ¢chanisms that are polynomial in bathandm.
But designing nearly optimal auctions for asymmetric itearaains open prior to our work even for a single
bidder.

Our result can be viewed as an improvement of [13] and a camgaiéto [8]. Although the results are
related, the techniques are orthogonal. The approaché8jiafd [8] are LP-based, and they use symmetry
to reduce the size of the LP. We take a different path. By wtdeding the probabilistic structure, we argue
that the social welfare of most of the items are highly cotre¢ead, and can be easily extracted by the seller
using a modified VCG mechanism. Further, for the other comstamber of items, as there are only a small
number of possible types, they can be easily handled byquevisults (e.g., [13]).

2 Preliminaries

2.1 Model

Formally, in anmulti-item auction a seller has heterogeneous items that she wants to auction tuasi-
linear risk-neutral bidders. Each biddenas a private valuation profilg = (v;1,...,vin) € R™, wherev;;
is bidderi’s value for itemj. v; is sometimes referred to as the type of the biddee will assume the
valuation function to be additive, that is,(S) = > . ¢ v;; for anyS C [n]. We will let v_; denote the type
profile of every bidder except

A mechanism\/ consists of two parts: An allocation rul€-) and a payment rulg(-).

The allocation rule z(-) maps a type profile to a feasible allocationr(v) = {2(v)i;}icm),jeln]:
wherez(v);; is the probability for biddei to receive item; when the type profile i®. For deterministic
mechanisms, we will let:(v);; to be either0 or 1. We will let z(v); denote then dimensional vector
((V)i1y -y 2(V)in).

The payment rulemaps a type profile to am-dimensional real vectap(v) = (p1(v),...,pm(v)),
wherep; (v) is the price charged to bidder

Since the valuations are private information of the biddéms mechanism needs to retrieve these infor-
mation from the bidders, who may or may not manipulate thermétion. We will letb = (by,...,by,)
denote thebids of the bidders. Given the bids, the allocatio(b), and the payments(b), we will assume
the bidders are utility maximizers w.r.t. the standard erotf quasi-linear utility.

jeS

ui(vi, z(b), p(b)) = v; - x;(b) — pi(b) .

We will consider theBayesian setting Namely, we will assume that the valuationg, i € [m] and
J € [n], are drawn from some publicly known independent (but noessarily identical) distributiong;;.
When bidders are from the same population, we will #Z$¢o denote the value distribution for itejnand
omit subscripti. We will let F;;(x) and f;;(«) denote the cumulative distribution function and probapili
density function ofF;; respectively.

Next, we formally define how the distributions;; are specified to the mechanism. We shall consider
two different models. The first one is titiscrete explicit accessiodel, where the support of eadh;



is discrete and explicitly given, and so is the probabilifyeach value in the support being chosen. The
second one is theontinuous oracle accessodel, where the support df;; could be continuous and even
unbounded. In the latter, we will assume there is an oradigpka such that each access to the oracle
returns a random value drawn fra#);. In the former case, the running time of our mechanisms sieall
polynomial in the sum of the support sizes®f; for all i € [m] andj € [n]. In the latter case, both the
running time and the number of accesses to the oracle of ocinanésms shall be polynomial in andn.

2.2 Solution Concepts
We will consider the following standard game-theoreticugoh concepts:

Definition 1. A deterministic mechanism is deterministically truthful DT), if truth-telling is a utility-
maximizing strategy, i.e.,

Vb_;: v € arg Iﬂbﬁ_lX{Uz' ~xi(bs, b_;) — p(bi, b_4)} .
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Definition 2. A randomized mechanisd/ is truthful-in-expectatioror incentive compatibl€lC) if truth-
telling maximizes the expected utility, i.e.,

Vb_;: v € arg Iﬂbﬁ_lX{E[Uz' “xi(bi, b_;) — p(bi, b_3)]} .

where expectation is over random coin-flips of the mechanism

Definition 3. A (randomized) mechanisi/ is Bayesian-incentive-compatib{8IC) if truth-telling maxi-
mizes the expected utility, i.e.,

Vb_;: w; € arg n%ax{ E]E [v; + (b, b—i) — p(bi, b_4)]}

(3 —1 —1

where expectation is over random coin-flips of the mecharisthrandom realization of the valuations of
other bidders.

We will also consider the following relaxed notions of detéristic truthfulness.
Definition 4. A deterministic mechanismy/ is e-deterministically truthfue-DT), if
Vbi by i v @by, b—i) — p(bi,b—i) < v; - wi(vi, b—;) — p(vi,b_;) + € .
The notions o-IC ande-BIC are defined similarly.
Further, it is very important not to overcharge the biddespecially when we are aiming for revenue.

Definition 5. A mechanism)/ is individually rational (IR) if the utility of any bidder in any outcome is
always non-negative, i.e.,
Vo_i: i xi(vi, b)) — p(vi,b—g) >0 .

The following taxation principleis a well known characterization for truthful mechanismgj.(esee
[14],[16]) which will be useful for our discussion.

Theorem 2.1(Taxation Principle) A mechanism is DT/IC if and only if each biddes presented a menu
of bundles/lotteries of items such that the prices of thallesdlotteries only depends on the other bidders’
valuationsv_;, and bidder: always gets one of the utility maximizing bundles/lotterie

In particular, if there is only one bidder, then such menesfixed regardless of the reported value. So
any DT/IC mechanism can be viewed as a bundle-pricingfiptpeicing of the items.

5



2.3 Extreme Value Theorem

Throughout this paper, we will consider distributions thatemonotone hazard rattMHR):

Definition 6. A distribution / hasmonotone hazard ratié 1f§i”()x) is non-decreasing in the support&f

The MHR distributions is a commonly studied family of dibtriions in Economics and recently in the
algorithmic game theory community. It includes familiastributions such as the Normal, Exponential, and
Uniform distributions. Intuitively, a distribution has motone hazard rate if its tail is at most as large as
that of an Exponential distribution. We note that in our fssthe MHR assumption can be replaced by the
following assumption: There exists a constahsuch that the for each biddéland item;j the support of
Fi; is an interval whose upper and lower bounds differs by at mo5multiplicative factor. In other words,
our algorithms work well as long as we have a rough idea on baltteri’s value on each itemnj. In fact,
this is the alternative assumption we will use for the ditcexplicit access model.

We will use the followingextreme value theorefor MHR distributions developed in[7] as an important
technical tool in our proofs. Readers are referred to [7}Herproof of the theorem.

Theorem 2.2(Extreme Value Theorem [7])SupposeX;, ..., X, are a collection of independent (but not
necessarily identically distributed) random variablesosb distributions are MHR, anf,,..,(x,} is the
probability density function of the random variahieax; X;. Then, for alle € (0, 1), there exists some

>
anchoring point3 such thatPr[max; X; > 5] > 1 — % and

+o00 1
/ t- fmaxi{Xi}(t)dt < 360¢ log < )
2

Blog(+) €
Moreover,S is efficiently computable from the distributions of tkigs.

Based on the above extreme value theorem and an additiootzdlgtistic argument, we will show in
Sectior B that the social welfare of some carefully chosésestuof items highly concentrates. In particular,
we will consider the followings notion of concentration.

Definition 7. A random variableX is (e, 0)-concentratedf X € (1 — €,1 + ¢) E[X] with probability at
leastl — 4.

3 Nearly Optimal Mechanism for Constant Number of Bidders

In this section, we will consider the case when there are bhliglders, wheré: is an absolute consta{ﬂt\Ne
will prove that for various solution concepts, the probleftimding revenue-optimal truthful mechanisms
can be solved under a unified framework. Formally, our residlh be summarized as the following theorem.

®We note that our mechanisms can be extended to the ca@élaf° ) bidders for sufficiently small constantvia almost
identical proofs, where depends on the solution concept. However, we feel such ggieis not very insightful. So we will only
present the case for a constant number of bidders in this@eteabstract for the sake of presentation.



Theorem 3.1(Thm.[1.2 elaborated)Suppose the number of bidders is a constant. Then, there TAS P
(polynomial inn) for finding revenue-optimal mechanisms among (all sedtieguire IR):

¢ IC/BIC mechanisms with discrete explicit access.

e DT mechanisms with discrete explicit accéss.

e DT/IC mechanisms with continuous oracle access for a sibigléer.

e BIC mechanisms with continuous oracle access.

e DT/IC mechanisms with continuous oracle access.

1

Our mechanisms in these cases are ertgterministically truthful and-I1C.

The general proof strategy of Theorém|3.1 is to reduce thiel@mof designing almost optimal mech-
anisms for the multi-item auction problem into two easiéb-pwoblems (assuming MHR distributions).
More precisely, we will prove that if there are PTAS for thesial cases in the next two lemmas, then it is
possible to combine the nearly optimal mechanisms for ttveseases to derive the PTAS in Theorem 3.1.

Lemma 3.2(Few-Item Case)Theoreni 3.1 holds if both the number of items and the numtieddérs are
constants.

Lemma 3.3(Concentrated Casepuppose the optimal social welfareisd)-concentrated, and the number
of bidders is a constant. Then, there is a polynomial-time @eterministically truthful mechanism whose
expected revenue is at ledst— f (e, d)) fraction of the expected optimal social welfare, whéfe, §) goes
to zero as andé goes to zero.

At this point, we will focus on how to combine the mechanisr$amed from the above lemmas to
derive the proof of Theorem 3.1. The proofs of Lenima 3.2 andrbal3.3 are deferred to Sectionl3.1 and
Sectior 3.2 respectively.

Proof Outline of Theorem[3.1 Before getting into the technical details, let us first skdtwe road-map
of our proof. First of all, we notice that under the MHR asstion it is easy to achieve expected revenue
that is at least a constant fraction of the expected socidlmee This follows easily from previous work
(e.g. seel[4]) and we will formally state it as Lemmal 3.4. Big ttesult, we know that we can throw away
items whose contribution to the expected social welfarénis without overhurting the optimal revenue.
Next, we proceeds by proving a structural result saying Weatan partition the items into three groups:
a small group of items with large variance, which we shalldiarwith the mechanism from Lemnha B.2
(Sectior3.11)] a group of items whose contribution to the social welfarecemrates, which we will handle
with the mechanism from Lemnia 8.3 (Sectionl 3.2); and finallyaup of items whose total contributions
to the expected social welfare is tiny, which we will simpiyore (never allocate them to any bidder). This
result is formally stated and proved in Lemmal 3.5. At lastnder to show this approach is a PTAS for the
multi-item auction problem, we need to show that the optireaénue of the problem is upper bounded by
the optimal revenue when only a subset of items present tghesiwith large variance) plus the expected
social welfare of the remaining items (the concentratedigaf items). Indeed, we will prove this claim as
Lemmd 3.6. The complete proof of Theorem] 3.1 is given in Apipel

"The philosophy of selecting a few distinguished items taicedthe size of the problem and solve it nearly optimally may
looks similar to that of thé&-lookahead auction (e.g. see [19] 15]), where we choose difgimguished bidders and design nearly
optimal mechanism for them (based on the bids of the othateng). However, there are a few crucial differences. Finsbur
approach the small set of items are chosen without knowiadpiths while in thek-lookahead auction the set of bidders are chosen
based on the bids. Further, in our approach we also derivé gn@nue from the rest of the items while thdookahead auction
never derive revenue directly from the rest of the biddeiigalfy, as a result of the previous point, our approach asiméarly
optimal revenue while thg-lookahead auction only guarantees constant-factor appadion so far.



Next, let us formally state and prove the technical lemmastimeed in the proof sketch. The following
lemma is folklore from previous work.

Lemma 3.4(E.g., Corollary 3.7 of [5]) For any multi-item auction with MHR bidders, the optimal egfed
revenue is at least a constant fraction of the expected boeHare.

Now let us consider the partition lemma. For presentatiapgae, we will only show a weaker version
of the partition lemma, under the additional assumption ttr@ upper and lower bounds of the value range
of X; = max; v;; only differ by at most a constant factoffor every itemj;. Note that Lemm& 2|2 implies
that at least — O(elog %) fraction of the contribution td&[.X ;] comes from a range whose upper and lower
bounds differ by at most a@ (2 log(2)) factor. It is easy to see that by choosing= ©(2 log(2)) and
taking into account the fact that the contribution outsttke iange is tiny, we can prove the partition lemma
without the additional assumption. We omit the details here

Lemma 3.5. SupposeX, . .., X,, aren non-negative independent random variables, where;] is the
range ofX;, 1 < j < n, such thate = max; 7 BJ is a constant. Suppose> 0 and% > > 0 are small
constants. Then, we can partitioty, ..., X, into three groupsk, S, andT in polynomial time, such that:

1. The size oR is small: |R| < 1§g2 In (2).
2. The sumirt, >~y g Xj., is (¢, 6)-concentrated.
3. The contribution from grouff’ is tiny: ZX,GT E[X;] < e>77_ BIXj).

Proof. Let s = Z ', E[X;] be the sum of the expectation of these random variables. tRate can be
estimated up to a constant factor in polynomial time and sstimated value is sufficient for our purpose.
For the sake of presentation, we will assume that we knowrahe ofs.

We will first partition the random variables int®(log n) bucketsBy, By, . .. » Blogntog(2)

to their expectations. [E[X;] € [57, 5] for 1 < £ <logn + log(2), then we putX; into bucketB,. If
E[X;] < &%, then its contribution to the social welfare is negligibtedave will put X; into 7'.

Briefly speaking, we will proceed as follows. First pick a $inttareshold index/* (the value of?* will
be defined later); then for each buck@t such that? < ¢*, we put all random variables i, into R; for
each buckef3, such that’ > ¢*, we will show that eithelzxjeB[ X, concentrates with high probability,
or the contribution o ., E[X;] is tiny. In the former case, we will put the variablesf# into S; in
the latter case, we will put the variableshi into 7.

More precisely, for each buckd?, where? > ¢*, if |By| > %c;(ln(g) + ¢ — %), we will put these
random variables int&. Note that for everyX; € By, we have thap}; < ca; < cE[X;] < ;7% and
E[X;] > 5. By Chernoff-Hoeffding bound, we get that

Pr|| Y X;- ) E[Xj]|>¢ ) E[Xj]| <2exp <—ln (%) —£+£*> =6 exp(—(+ %) .

XjGB[ XjEB( XjGB[

according

Now consider all the buckets that we put irfo By union bound, the probability that the sum of the
random variables in any of these buckets does not concengrat mosd . ,. d exp(—¢ + ¢*) < 4. Thus,
we have proved th£ satisfies the desired property in the lemma.

(In(2)+¢—¢*), we shall putall variables i, into 7'. In this case, we ha\IEX en, EIX;] <

E

1% ( (2) + ¢ — ¢*). Therefore, the sum of the expected values of the randorables in” is at most

s 2(: €S 5 2c2 2 s 2c2 €S
% - < «
= ( <>+€ e) 2. o = Xia ln<5>+22“ =y

X;:E[X;]< >0+ o>0*

_ S 2621 2 5 22 es
= i M) T Ty

£5
2n



In order to guarantee that y ., E[X;] < es, it suffices to choosé" such that

1 2c2 2 1 2% e
a5 term =g

Note thats < 51, implies that

1 22 (2 1 2¢ 1 22 (2
a5 tra g Smraahi;
We shall lett* = log <1S§2 In (%)) and conclude thdf satisfies the claimed property.
Finally, we note that for an); € R, we haveE[X;] > 5. So by} . E[X;] < s we get that the

size of R is at most2!” = 1§§2 In (2). O

At last, we will show that by decomposing the problem into sub-problems we do not hurt the optimal
revenue by too much. Concretely, for afyC [n], we letoptPT(S), opt'®(S), andoptB!©(S) denote the
optimal revenue by deterministically truthful/IC/BIC nfemisms respectively when only the itemsSiare
available on the market (value distributions are the sakve)have

Lemma 3.6. For any S C [n], we have
Opttruthful([n]) < opttruthful(S) + ZE[maX Uz‘j] ’
Jgs
where truthful can be instantiated with deterministicatythful (DT), or IC, or BIC.

Proof. SupposeV! is the truthful (under the instantiated solution conceptthanism that achieves optimal
revenue. Let us construct a truthful mechanidfg for the market when only the items #iis presented.
The revenue of the mechanism shall be at least""™!([1]) — 3° . ¢ E[max; vi;]:

1. Let bidders submit their bids g, ..., b, s.

2. Sample values; _s ~ Fi,_g,..., V5 -5 ~ Fj,—g for items not inS.
3. RunM on bids(by 5,v1,—5), - - -, (bg,s,vk,—s). Let.S andp denote the allocation and prices.
4. Give bidderi the items inS; N S and charge hey; — ZjeSi\S Vi

First, let us analyze the revenue achievedMy assuming the bidders bid truthfull; s = v; g for
1 <4 < k. The revenue by/s is Ele E [pi — X jesi\s vij]. By linerity of expectation, this can be
divided into two parts:3>7_, Elp;] — Y0 B[ jcq. s vig]- The first party";, E[pi] is the expected
revenueopt™fu([n]) achieved byM The second paif"_, E [Zje 508 vij} is social welfare from items

outsideS, which is upper bounded by the optimal social welfare . Nb&d the latter part is upper bounded
by the}_ . s E [max; v;;]. Therefore, the revenue biys is at least

Opttruthful([n]) _ ngzs E [max; v;;]

Now let us explain why mechanisi/g is indeed truthful with respect to the corresponding sohuti
concepts. Note that biddés utility is

Z vij — (pi — Z Vi) = sz’j—pz’ )
JeSNS JES\S JES:
which is exactly the utility of a virtual bidder whose value®v; and bids(b; s, v; —g). Soif M is IC/BIC,
then Mg is also IC/BIC. Finally, if M is a deterministically truthful mechanism thédg is uniformly

truthful. We further note that there is no performance gaben optimal uniformly truthful mechanisms
and optimal deterministically truthful mechanisms in theyBsian setting. So LemrhaB.6 follows. [



3.1 Nearly Optimal Mechanism for Constant Number of Items ard bidders

The mechanisms for constant number of items and constarberoh bidders mostly follow directly from
previous work. The general approach is to brute-force beaith the hope that the search space would be
small since both the number of items and the number of bidatersmall. However, the strategy spaces for
mechanism design problems are typically infinite. Henceragriate discretization is needed in order to
reduce the size of the search space. We will briefly deschiéset mechanisms and thus prove Lerhmh 3.2
in the AppendiXB for self-containness.

3.2 Nearly Optimal Mechanism When Social Welfare Concentrees

In this section, we will prove Lemnia 3.3 by demonstrating howesign nearly optimal mechanisms, when
the social welfare concentrates near its expectation dsidlders’ values are drawn from the corresponding
distributions.

3.2.1 Single-Bidder Case

As a warm-up, let us first consider the single-bidder casés ddse is quite straight-forward. We note that
agrand-bundle-reserve-price auctiga.g. see Armstrong [3]) shall suffice. More precisely, thetian will
offer the bidder the grand bundle with a take-it-or-leavprice

r*=(1-eE] vl .
J
If the bidder values the grand bundle above she will take the grand bundle and pey; no item is

allocated otherwise and the bidder pays nothing. The prbtfeonext theorem follows straightforwardly
from the definition of the mechanism afd ¢)-concentrated. So we will omit the tedious details.

Theorem 3.7. The grand-bundle-reserve-price auction is determingdlyctruthful, individually rational,
and its expected revenue is at leést- ¢)(1 — §) E[>_; v;] if the social welfare ige, §)-concentrated.

3.2.2 Constant Number of Bidders

Now we show a similar result for multiple bidders. As a naltfirat attempt, it might be tempting to think
there exists @eserve-revenue mechanismith reserve revenue® = (1 — ¢) E[}; max; v;;] such that the
mechanism offers the grand-bundle to all the bidders atervegricer* and let the bidders discuss and
decide whether to accept this offer and how to share the isrmdshe costs if they decide to accept. Of
course, the last step in the above procedure is not wellet&fiihe hope is that there is a truthful way for
the bidders to come to a consensus of accepting the offeravketthe optimal social welfare is greater
thanr*, since in such cases the bidders as a whole has positivaisugplen buying the grand-bundle at
the reserve price*. It is easy to see that this mechanism (if implementable)eselk a revenue of at least
(1 —¢€)(1—6)E[>; max; v;;]. Unfortunately, we show that such mechanisms cannot besimgtited in a
truthful and IR manner. We will defer the discussion of thigpbssibility result to AppendixIF.

Reserve-Welfare Mechanism In order to handle the multiple-bidder case, we will propas®vel mech-
anism in the VCG-family, which we shall refer to as tleserve-welfare mechanisnThe idea is the fol-
lowing: it might be too aggressive to ask for a certain reseevenue whenever the social welfare is above
this reserve revenue; but it suffices to aim for the weakel gfogetting good revenue only when the social
welfare is closed to its expectation because the sociabveetfoncentrates by our assumption. Concretely,
thereserve-welfare mechanisismidefined in Figuréll.
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1 Lets=(1—-¢)E [Zj max; vw} be the reserve welfare.

2. If the optimal social welfare according to the bi@j max; b;;, is smaller the reserve
welfares, then no item is allocated and the bidders pays nothing.

1]

3. Otherwise, allocate items according to an allocaos (51, . .., Sk) that maximizes th
social welfare.

4. Charge biddei pricep; = 5 — >y, > e, bej-

Figure 1: The reserve-welfare mechanism

Notice whenk = 1, this mechanism indeed becomes the grand-bundle-repenae-auction. So the
reserve-welfare mechanism can be viewed as a generatizatithe grand-bundle-reserve-price auction.
We shall prove that this mechanism satisfies the desireceptiop.

Theorem 3.8. The reserve-welfare mechanism is deterministically fodthindividually rational, and its
expected revenue is at legdt — ke — k6) E[}_; max; v;;] if the social welfare ige, §)-concentrated for

constantst > ¢ > 0andl > § > 0.

Briefly speaking, the proof goes as follows. By our definitadrihe payments, each bidder pays almost
up to her value on the subset she gets when if social welfaresisthe reserve welfage Further, the social
welfare will be near the reserve welfagealmost for sure by our choice éfand that the social welfare is
(e, 9)-concentrated. The only catch is the prices in the reseeléare mechanism might be negative when
the values of the bidders are very large. We manage to shawhhaontribution of the negative prices
can be bounded as well. So the expected revenue almost mabehexpected social welfare. Below let us
present the formal argument.

Proof. (Theorer 318)f we omit step 2 and always allocate items according to tie@savelfare-maximizing
allocation, then the mechanism falls into the VCG familyepicthat we are using the reserve welfaras
our pivot instead of the Clarke pivot. So this variance of tbgerve-welfare mechanism is deterministi-
cally truthful. Yet it is not individually rational. The rean of doing step 2 is exactly to fix the individual
rationality.

Formally, for each biddef, suppose her true valuations afeand she bid$;. If reportingv; the items
will not be allocated, then she should not lie and get thestattocated, since in the former case, her utility
is 0, while in the latter case her utility is negative. Now assugrthe items are allocated, her utility is

IR SRS 3 SR
JES; JES; 0#£i jESK

Note that the mechanism chooses the allocation that mae#hiz > . ¢. b;;. So by reporting her value
truthfully the bidder maximizes her utility. Thus, the maaism is deterministically truthful. Moreover,
step 2 guarantees that allocation will be made onlyif> ", s bi; > 5. Therefore, the mechanism is

individually rational.
Finally, let us analyze the revenue achieved by the resselfare mechanism. We will let

s*=E [zj max; vi]}

11



denote the optimal expected social welfare, and recalkthat1—e¢)s* is the reserve welfare. Assuming the
bidders bid truthfully, the revenue is zero if the social faed is less thad, and is the following otherwise:

)R B D 35 9

i i L#i §ES,
- k=Y Y g
{ jJES
= ks—(k—1) Zmaxvgj .
J€[n]

By our assumption that the social welfard éso)-concentrated, the expected revenue is at least

(1-0)1—e)ks™— (1 — -1) Z MAax g | Z Max v >s5| . (1)
j€(n] Jj€ln]
Note that
st > Z max vy >3 E Z mAax vy | Z max v, >3
JEn] Jj€ln] jE€n]
> : > 8 . 2
> Zj:m?xvgj\ Zj:mlnggj > 8 2)

Combining (1) and(2) we get that the expected revenue ofetherve-welfare mechanism is at least
(1-0)1—e)ks* — (k—1)s* > (1 — kb — ke)s*
This proves the desired revenue guarantee. O

Since the number of bidders is an absolute constant, Thé®@mplies Lemma 3]3.

4 Many Bidders From the Same Population

As a natural restriction of the general multi-item auctioohzlm, we will consider multi-item auctions
with arbitrary number of items and bidders under the assiomphat they are from the same population.
Formally, for every itemj, the value distributionsF;; are identical for every biddet. In this case, we
manage to design nearly-optimal mechanisms based on auisré&s the few-bidder case.

Theorem 4.1(Thm.[1.1 elaborated)Suppose the bidders are from the same population, then thexe
PTAS (polynomial in both andm) for finding revenue-optimal mechanisms among (all sedtieguire the
mechanism to be IR):

e |IC/BIC mechanisms with discrete explicit access.

e DT mechanisms with discrete explicit accéss.

BIC mechanisms with continuous oracle access.

e DT/IC mechanisms with continuous oracle acckess.

1 Our mechanisms in these cases are erdgterministically truthful and-IC.

12



We will need the following lemma for i.i.d. MHR distributigrfollowing Theorem 7 in Cai and Daskalakis
[7] and the proof therein.

Lemma 4.2. Suppose, . . . , vy, are i.i.d. according to a MHR distribution, arid> (12/¢)'?/¢. Then there
is a threshold-* such that

Pr [maxvi > 7‘*] r*>(1-¢E [maxvl}
7 7

Moreover, one can efficiently find such a threshaidn polynomial time.

Roughly speaking, Cai and Daskalakis managed to improvedkigeme value theorem when the bid-
ders are i.i.d. so that consider the expectation of the randriablemax; v;, we only need to focus on the
contribution from a small interval whose upper and lowerrmsionly differ by &1+ ¢) factor. As a simple
corollary of this stronger extreme value theorem, we hagattove lemma.

Equipped with this lemma, we are now ready to solve the casebitfary number of i.i.d. bidders.

Proof. (Theoreni_411)Note that for each iteny, the bidders’ valuations for this itemy;, ..., vy, are
i.i.d. random variable according to a MHR distribution. Tdfere, if the number of bidderk is greater
than(12/¢)'?/¢, then by Lemm&4]2, we can find in polynomial time a threshgltbr each itemyj such that

Prmax; vi; > ri] -1} > (1 — €) E[max; vj;] .

Therefore, if we run the second price auction with reserveepr; for each itemyj, then the expected
revenue is at least
Ej Pr[max; vi; > ri]-r7 > (1 —¢) Zj E[max; v;] .

Note that the right-hand-side of the above inequality isojpégmal expected social welfare and therefore
is an upper bound on the optimal revenue. So in the case whemnake at leagti2/¢)'?/¢ bidders, a simple
reserve-price auction suffices to obtaifila— ¢) fraction of the optimal revenue. Note that this mechanism
is deterministic truthful and thus satisfies all our defonis of truthfulness.

So it suffices to solve the case when the number of biddersraaties than(12/¢)'?/<. But this falls into
the case of constant number of bidders for any consgtan. So we could use the mechanism in Theorem
[1.72 to solve the few-bidder case. In sum, we have proved #w¢m. O
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A Omitted Proofs in Section[3

Proof. (Theoreni 3]1)First, we will use Lemma 212 to truncate the random variablgs= max; v;; and
geth, so that everyf(j lies in an interval where upper bound and lower bound are ()blysg(%)) factor
away andE[X;] > (1 — O(elog(1))) E[X,].

By Lemma(3.5, we partitiofn] into three sets?, S andT using the same. Let S1, Se and S5 be the
sets of items whose max value areRin S and7’, respectively. Then, the size §f is a constant that only
depends om and the following its true.

Jgs:?) E[m?x vl = 1—0 (elog(2))
> i1 E[Xi]

~ 1-0 (elog(%))
O(e)opt([n])
- 1—O(elog(%)) ’

3)
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where the last inequality follows from LemraB.4.
Let M; and M, be the(1 — €)-approximate mechanisms from Lemmal 3.2 and Lemnla 3.3 riagglgc
Consider the following mechanisi¥ for [n]:

1. Letthe bidders submit their bidg [, . . ., by -
2. RuniM on bidSb17S17b27S17 Ce ,bhsl andM; on bidSbLSQ, b2732, Ce ,bk752.

3. LetS’, p’ andS”, p” be the corresponding allocation and pricesX¥frandM,, give items inS;U S
to bidderi, and charge him/, + p!.

Let R(N) be the revenue for mechanisi thenR (M) = R(M;) +R(Ms). By Lemmd3.6, we know

opt([n]) < opt(S1) + max E[max v;;] + max E[max v;;] .
JESs 7 JESs %
First of all, the contribution of the last term is small aatiog to [3). So it suffices to obtain revenue
close tOOpt(Sl) + max;eg, E [maxi Uij]- Further, we know thaR(Ml) > (1 — e)opt(Sl) andR(Mg) >
(1 —€)>_,¢s, E[max; v;;]. Therefore, we hav& (M) > (1 — O(e))opt([n]).
Finally, the truthfulness (with respect to the correspogdiolution concept) ol/ follows straightfor-
wardly from the truthfulness af/; andM>. So we have proved the theorem. O

B Nearly Optimal Mechanism for Constant Number of Items and Bidders

B.1 Discrete Explicit Access Model

In this setting, the problem of optimal mechanism designrésenue among IC and IR mechanisms or
among BIC and IR mechanisms can be written as polynomialisiezar programs (each bidder might have
many different values for an item). Therefore, we can effittjefind the optimal mechanism in these two
settings. Since the LPs we used are very standard (e.d.[3ee¢4will defer the discussion of these LPs to
Appendix(C.

For the problem of optimal mechanism design among detestigally truthful mechanisms, however,
we need to solve the integer program version of the LP of aggti@ mechanisms. In order to do so, we need
to reduce the size of the integer program from polynomiabtwstant. We will take the standard approach of
rounding down each bidder’s value to the nearest multipte A& a result, for each bidder-item pair we only
need to consider a constant number of possible valuatiopsalRhere are only a constant number of items
and bidders, we can solve the constant-size integer profgmathis coarsened support set efficiently. As a
result of the coarsening, however, we only geteterministically truthful instead of perfect truthfelss.

B.2 Continuous Oracle Access Model
B.2.1 DT Mechanism for a Single Bidder

By the taxation principle, any deterministically truthimlechanism can be interpreted as a bundle-pricing
mechanism: the bidder is given a menu of bundles of items thaththe prices of the bundles are inde-
pendent on the reported values; moreover, the bidder algaigsone of the utility-maximizing bundles.
In other words, it suffices to find the nearly optimal bundlees. In order to do so, we first show that in
order to obtain nearly optimal revenue it suffice to consaénite number of prices for each bundle via a
standard price discretization lemma attributed to Nisag @eel[11]). Then, we can search over all possible
bundle-pricings within the discretized price set and clkeab® optimal one. Since there are only constant
number of items and thus constant number of bundles, su¢b-fotce search can be done efficiently. For
completeness we include a formal statement and the probggdrice discretization lemma in Appendik D.

15



B.2.2 IC Mechanism for a Single Bidder

In this case, our starting point is again the taxation ppleci Any IC mechanism can be interpreted as a
lottery-pricing mechanism: the bidder is given a (not neadly finite) menu of lotteries, each of which
is represented by a vector of the probabilities of gettinghagem, such that the prices of the lotteries are
independent on the reported values; moreover, the biddetyalgets the utility maximizing lottery. By
the same price discretization lemma, we only need to considimite number of prices for each lottery.
However, there is an infinite number of possible lotteriese s#ttle this problem by showing the lottery
space can be discretized as well. Concretely, we proverthatier to obtain —O(e) of the optimal revenue,

it suffices to consider lotteries in which the probabilitefgetting each item are powers @f + %) and are
greater than®. As a result, we can combine the lottery discretization lenamd the pricing discretization
lemma to show that in order to get nearly optimal lottery ipdt suffices to search over constant number
of lottery-pricing mechanisms and choose the best one. Toef pf the lottery discretization lemma is
deferred to AppendixE.

B.2.3 DT/IC/BIC Mechanisms for Multiple Bidders

In order to solve the problem for multiple bidders, we usedaiction to the discrete case: discretize the prior
distributions by rounding each sampled value to the clgsasers of(1 + ¢) and truncate values that are too
large or too small according to the extreme value theoreif]irVJfe then find the nearly optimal mechanism
for the coarsened problem via the integer programing/fipeagramming approach for the discrete case.
Finally, we will round the bids of the bidders to the closestprs of(1+¢), run the above mechanism on the
coarsened bids, and use the allocation and prices chosée bydgchanism. As a result of the rounding, the
mechanisms we obtain are oreitruthful with respect to the corresponding solution cqgrise Nonetheless,

in the BIC case, we can use the technique recently develop&hbkalakis and Weinberg [13] to convert
our e-BIC mechanism into a BIC one with only a small additionalslas the expected revenue.

C Linear Programs for Multi-Iltem Auctions

It has long been known that if the support set is finite, thengoblem of designing truthful (IC/BIC)
mechanism that achieves optimal revenue can be charaddza linear problem. For completeness, we
will describe the standard linear programs for the mudtivitauction.

For any type profilev, any bidderi, and any iteny, we letz(v);; denote the probability that bidder
gets itemy when the valuations are, and letp(v); denote the expected payment of biddeThe problem
of optimal multi-item auction among IC mechanisms has tiieiong exact LP characterization:

k

Maximize > Prlv]) p(v) st
v =1
k
Vj,'v : Z:L’(’U)ij <1
i=1
n n
VZ./U?’UZ,' : m(v)ijvij _p(v)i > Zx(vg>v—i)ijvij —p(Ug,’U_i)i
J=1 Jj=1
n
Vi, v ZIE(’U)ijUzj —p(v); 20
j=1
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The LP characterization of the problem of optimal multimtauction among BIC mechanisms is almost
the same, except for replacing the IC constraints with tHeving BIC constraints for alf, v, andv:

n n

Z PI'[’U_Z‘] Z :U(vi, U_Z')Z'jvij — p(’UZ', 'U—i)z' Z Z PI'[’U_Z‘] Z l’(’U;, U—z’)ij'Uz'j — p(Ug, U—z’)z’

V—q 7j=1 Vg 7j=1

D Price Discretization Lemma

The following price discretization lemma is attributed tséh (e.g.,[[4, 11]):

Lemma D.1. For ¢ € (0,1), let p and p’ be two bundle pricing schemes such that for any buridle
pi € [1 —€,1 — e+ €2]pl. Suppose the bidder buys bungdlehenp are the prices and buys bundiavhen
p’ are the prices, thep; > (1 — 2¢)pj.

Proof. By our assumption, we have; — p; > v, — py, andwv, — p; > v; — pj;. Summing up the two
inequalities and cancelling the common terms, we héve p; > p, — pe- Note that by our assumption
P —pj < pj—(1—€)p) = ep);, andp| —py > pjy — (1 — e +€*)pj, = (e — ¢*)p}. So we havey; > (1 —€)p).
Finally, p; > (1 — €)p}. Sop; > (1 — €)%p, > (1 — 2¢)p). O

By LemmalD.1 we know that it suffices to consider prices that@owers of(1 + €2) in order to get
(1 — 2¢) of the optimal revenue. Of course, we still have infinite nemf prices to consider. In order to
settle this problem, we will use the extreme value theorej]ito conclude that for each bundle it suffices to
consider prices that are in a range whose upper and lowedbaliffier by at most aﬁ)(% log(%)) factor (this
range may be different for different bundles). Therefore only need to considé? (log, . (1 log(1))) =
O(L1log(1)) number of prices per bundle.

E Lottery Discretization Lemma

The following lottery discretization lemma is inspired netidea in the price discretization lemma. First, let
us define some notations. We will use@limensional vectog = (g1, .. ., g,) to denote a lottery whereg;
is the probability of getting itemj. A lottery menu is a collection (may or may not be finite) otdéoy-price

pairs: {(q1,p1), (g2,p2), - - - }-

LemmaE.1l. Suppose < (0, 1). Consider the optimal lottery meruand another lottery menli’ obtained
by rounding up probabilities of each lotterty;, p;) € L into (q;,p;) such that for allj € [n], ¢i; €

[1+ ¢ —€2,1+ €]gij. Then, the expected revenue from meéhis at least a(1 — O(e)) fraction of that from
menuL.

Proof. Suppose the type profile is. Further, let us assume the bidder buys lottggy, p;) when L is
presented any;, p¢) whenL' is presented. We have

V- qj — pj Qe — Dy 4)

v- QZ — D¢
By summing up these two inequalities and cancelling the comtarms, we have

VgV Qv g g .
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By our assumption, we further have

/ J—

v-gi—v-q>v-(l+e—€)g—v-qj=(e—€)v-gq; ,

and
vgp-v-q<v-(1+e)g—v-q=cv-q .
Therefore, we have - g, > (1 — €)v - g;. By this inequality and(4), we have

PeZpitv-q—v-q; >pj—€v-q; .

Hence, if we compare the expected revenue fi@E[p,|, and the expected revenue bf E[p;], then
the former is worse than the latter by no more tham &maction of the social welfare by.. We further note
that the optimal social welfare and the optimal revenueediffy at most a constant factor. Thus, we have
proved the lemma. O

By LemmaE.1, we can round up the probabilities in each lpttersome powers ofl + €2) in order
to getl — O(e) of the optimal revenue. There is only one catch in this argumby rounding up the
probabilities, some of them may excetednd therefore become infeasible. We resolve this problem by
rounding down the probabilities as well as the prices of #seilting discretized lotteries by a factoriof .

By doing so, we retain feasibility with the extra cost df-a e factor, but we still getd — O(e) of the optimal
revenue.

LemmdE.1 reduces the number of lotteries from uncountaifigiie to countably infinite. We observe
that we can further reduce this number to finite by droppinglumble lotteries and the negligible entries in
the valuable lotteries. Concretely, if the expected valua lottery is at most am fraction of the expected
welfare, then we can ignore this lottery because the totemee from such lotteries is at most &)
fraction of the optimal. Next, suppose we have a lottery elegpected value is at most afraction of the
expected social welfare. Then, any entry smaller #arontributes at most af () fraction to the expected
value of this lottery, and hence can be dropped.

F Impossibility of Truthful Reserve-Revenue Mechanism

In this section, we will show that the reserve-revenue meishas can not be implemented in a truthful and
individually rational manner. First of all, let us formaldiefine the family of reserve-revenue mechanisms.

Definition 8. A mechanismM is areserve-revenue mechanishthere is a reserve revenué > 0 and a
threshold social welfarg* > 0 (presumablys* > r*), such thatM achieves revenue at leastwhenever
the social welfare (according to the bids) is at legst

We have the following negative result.

Theorem F.1. If there are at leask > 2 bidders anch > 2 items, then there are no truthful and individually
rational reserve-revenue mechanism.

Proof. It suffices to prove the theorem for the casekoE n = 2. Assume for contradiction thdl/ is a
truthful and individually rational reserve-revenue meatken with reserve revenu€e and threshold social
welfares*.

Let us consider what happens when = s* — &, vjp = 0, va1 = 0, v32 = s* — . We claim that in
this casepy, p» < I

Consider the alternative type profile in which biddés values arey}; = % andv}, = 0, and bidder
2's values are still the same. Note that the social welfargHim type profile is exactly*. So M shall
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achieve revenue at least. It is obvious that the only allocation that could achievis tavel of revenue in
an individually rational fashion is to give bidd&ritem 1 and to give bidde® item 2. The price for bidder
1 in this case is at mo§§. By the taxation principle, from bidder's viewpoint any truthful mechanism
should look like a menu of lotteries over possible outcomih prices that do not depend on the value of
bidder1. Moreover, bidded should always get one of the utility maximizing lottery. Tétre, we know
that the lottery that corresponds to getting itérand not getting iten2 with probability 1 is available to
bidder1 with price at most% when bidder2 bids v, and it is bidderl’s utility-maximizing lottery when
her valuation i®}. Note that the only difference betweenandv] is the value for iten1 increases. So we
conclude that when the type profileus, v-, bidderl should purchase the same lottery with the same price.
Hence, we have proved that < .

Similarly, we can show that, < % Now we get that the revenue achievedMywhen the values are
v1 andwvs is at mostp; + ps < 2% < r*. Thus, we have obtained a contradiction. O

Remark 1. The conditions in Theorefm F.1 cannot be relaxed for thdt i 1, then the grand-bundle-
reserve-price auction is a reserve-revenue mechanismifane: 1, then the standard reserve price auction
iS a reserve-revenue mechanism.
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