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Abstract

We provide a near-optimal, computationally efficient algorithm for the unit-demand pricing
problem, where a seller wants to price n items to optimize revenue against a unit-demand buyer
whose values for the items are independently drawn from known distributions. For any chosen
accuracy ε > 0 and item values bounded in [0, 1], our algorithm achieves revenue that is optimal
up to an additive error of at most ε, in polynomial time. For values sampled from Monotone
Hazard Rate (MHR) distributions, we achieve a (1− ε)-fraction of the optimal revenue in poly-
nomial time, while for values sampled from regular distributions the same revenue guarantees
are achieved in quasi-polynomial time.

Our algorithm for bounded distributions applies probabilistic techniques to understand the
statistical properties of revenue distributions, obtaining a reduction in the search space of the
algorithm through dynamic programming. Adapting this approach to MHR and regular distri-
butions requires the proof of novel extreme value theorems for such distributions.

As a byproduct, our techniques establish structural properties of approximately-optimal and
near-optimal solutions. We show that, when the buyer’s values are independently distributed
according to MHR distributions, pricing all items at the same price achieves a constant fraction
of the optimal revenue. Moreover, for all ε > 0, at most g(1/ε) distinct prices suffice to obtain a
(1− ε)-fraction of the optimal revenue, where g(1/ε) is a quadratic function of 1/ε that does not
depend on the number of items. Similarly, for all ε > 0 and n > 0, at most g(1/ε · log n) distinct
prices suffice if the values are independently distributed according to regular distributions, where
g(·) is a polynomial function. Finally, if the values are i.i.d. from some MHR distribution, we
show that, as long as the number of items is a sufficiently large function of 1/ε, a single price
suffices to achieve a (1− ε)-fraction of the optimal revenue.

∗Work done while the author was a student at MIT, supported by NSF Awards CCF-0953960 (CAREER) and
CCF-1101491.
†Supported by a Sloan Foundation Fellowship, a Microsoft Research Faculty Fellowship, and NSF Awards CCF-
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1 Introduction

We study the following pricing problem. A seller has n items to sell to a buyer who is looking to buy
a single item. The seller wants to maximize profit from the sale, leveraging stochastic knowledge
she has about the buyer to achieve this goal. In particular, we assume that the seller has access to
a distribution F from which the values (v1, . . . , vn) of the buyer for the items are drawn. Given this
information, the seller wants to compute prices p1, . . . , pn for the items to maximize her revenue,
assuming that the buyer is quasi-linear—i.e. will buy the item i maximizing vi− pi, as long as this
difference is positive. That is, the seller’s expected revenue from a price vector P = (p1, . . . , pn) is

RP =

n∑
i=1

pi · Pr
[
(i = arg max{vj − pj}) ∧ (vi − pi ≥ 0)

]
, (1)

where we assume that the arg max breaks ties in favor of a single item, when there are multiple
maximizers. A more sophisticated seller could try to improve her revenue by pricing lotteries over
items, that is also price randomized allocations of items [BCKW10], albeit this may be less natural
than item pricing, and we will not study it extensively in this paper.

While our problem has a simple statement, it exhibits rich behavior depending on the nature
of F . For example, if F assigns the same value to all the items with probability 1, i.e. when the
buyer always values all items equally, the problem becomes single-dimensional. In this setting, it
is clear that lotteries do not improve the revenue and that the optimal price vector can assign the
same price to all the items. This observation is a special case of the more general, celebrated result
of Myerson [Mye81] on optimal mechanism design, i.e. the multi-buyer version of our problem, and
generalizations thereof. Myerson’s result provides a closed-form solution to the multi-buyer problem
in a single sweep that covers many settings, but only works under the same limiting assumption that
every buyer is single-dimensional, i.e. receives the same value from all the items. (More generally,
every buyer receives the same value from all outcomes of the mechanism that provide her service.)

Following Myerson, a large body of research in both Economics and Engineering has been
devoted to extending his result to the multi-dimensional setting, where the buyers’ values come
from general distributions. And, while there has been sporadic progress (see survey [MV07] and
its references), an optimal multi-dimensional mechanism, generalizing Myerson’s result, does not
seem to be in sight. Indeed, there is not even an optimal solution known for the single-buyer item
pricing problem. Even the ostensibly easier version of that problem, where the values of the buyer
for the items are independent and supported on a set of cardinality 2 is unresolved.1 Our main
contribution in this paper is to develop near-optimal polynomial-time algorithms for this problem,
when the buyer’s values for the items are independent.

1.1 Main Results

We partition our results into algorithmic and structural. The former provide efficient algorithmic
procedures for computing near-optimal price vectors. The latter shed light into the structure of
optimal solutions.

1Incidentally, the problem is trickier than it originally seems, and various intuitive properties that one would
expect from the optimal solution fail to hold. See Appendix J for an interesting example.
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Algorithmic Results. Previous work on the item pricing problem has provided constant factor
approximation algorithms. The best known polynomial-time algorithm obtains revenue that is at
least 1/2 of the revenue of the optimal price vector [CHK07, CHMS10]. We discuss these approaches
in Section 1.3, also noting that they are limited to constant factor approximations. We are aiming
instead for item pricing mechanisms that come arbitrarily close to the optimal revenue, obtaining
the following results. Their proofs are overviewed in Sections 4 through 9, while complete details
are provided in the appendix.

Theorem 1 (Main Algorithmic Result: Additive PTAS for Bounded Distributions). Suppose
that the values of the buyer for n items are independent and normalized to lie in [0, 1]. Then, for
all ε > 0, there exists an algorithm that computes a price vector whose revenue is within an additive

ε of optimal, and whose running time is polynomial in n
log3 1/ε

ε4 .

Theorem 2 (General Algorithm). Suppose that the values of the buyer for n items are independent
and supported on some interval [umin, r · umin] for some umin > 0 and r ≥ 1. Then, for all ε > 0,
there is an algorithm that computes a price vector whose revenue is at least a (1− ε)-fraction of the

optimal revenue, and whose running time is polynomial in max

{
nlog11 r·log log r, n

log3 r·log 1
ε

ε8

}
.2

Theorem 3 (Multiplicative PTAS for MHR Distributions). There is a Polynomial-Time Approx-
imation Scheme3 for computing an optimal price vector, when the values of the buyer are indepen-
dently drawn from Monotone Hazard Rate distributions.4

For any accuracy ε > 0, the algorithm runs in time polynomial in n
1
ε7 , and outputs a price

vector whose revenue is at least a (1− ε)-fraction of the optimal revenue, where n is the number of
items.

Theorem 4 (Multiplicative Quasi-PTAS for Regular Distributions). There is a Quasi-Polynomial-
Time Approximation Scheme5 for computing an optimal price vector, when the values of the buyer
are independent and drawn from regular distributions.6

For any accuracy ε > 0, the algorithm runs in time polynomial in max

{
nlog11 n

ε
·log log n

ε , n
log3 nε ·log

1
ε

ε8

}
,

and outputs a price vector whose revenue is at least a (1− ε)-fraction of the optimal revenue, where
n is the number of items.

2We note that a natural approach for computing approximately optimal price vectors is to discretize the domain
of price vectors and show that searching over the discretized domain suffices for approximating the optimal rev-
enue. However, a straightforward application of the discretizations proposed by Nisan [CHK07] and Hartline and

Koltun [HK05] to our problem would result in running time of
(
1
ε

log r
)O(n)

. The purpose of our theorem is to remove
the exponential dependence of the running time on the number of items n.

3A Polynomial-Time Approximation Scheme (PTAS) is a family of algorithms {Aε}ε, indexed by the accuracy
parameter ε > 0, such that for every fixed ε > 0, Aε runs in time polynomial in the size of its input. See Section 2
for a formal definition.

4Monotone Hazard Rate (MHR) distributions are a commonly studied class of distributions that contain such
familiar distributions as the Uniform, Gaussian and Exponential distributions. See Section 2 for a formal definition.

5A Quasi-Polynomial-Time Approximation Scheme (Quasi-PTAS) is a family of algorithms {Aε}ε, indexed by the
accuracy parameter ε > 0, such that for every fixed ε > 0, Aε runs in time quasi-polynomial in the size of its input.
See Section 2 for formal definition.

6Regular distributions are another widely studied class of distributions that contain MHR distributions. See
Section 2 for a formal defintion.
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Discussion of Algorithmic Results. Prior to our work, there were no (near-)optimal algo-
rithms known for multi-dimensional auction problems without special structure. In particular, only
constant factor approximation algorithms were known for the item pricing problems addressed by
Theorems 1 through 4. (For an extensive discussion of related work, we refer the reader to Sec-
tion 1.3.) Our results are the first to obtain near-optimal solutions for these problems in polynomial
time. We view the main contribution of our results not to be the practicality of our algorithms, but
establishing that there is no lingering constant inapproximability results for item pricing. In par-
ticular, our results show that, for any desired accuracy ε > 0, there are polynomial-time algorithms
that compute ε-optimal solutions. Complemented with the NP-hardness result for the item pricing
problem discussed in Section 1.3, what is left open by our work is obtaining faster near-optimal
algorithms.

Structural Results. Our algorithms are obtained by studying the distribution of the optimal
revenue, as a function of the buyer’s values (which are random) and the optimal price vector
(which is unknown), as overviewed in Section 1.2. As a byproduct of our techniques, we deduce
the following structural properties of optimal solutions, whose proofs are given in Appendix I.
Theorem 5 states that, when the values are independently distributed according to monotone
hazard rate distributions, then pricing all items at the same price guarantees a constant fraction of
the optimal revenue. Theorem 6 generalizes this to showing that only the desired approximation ε
dictates the number of distinct prices that are necessary to achieve a (1− ε)-fraction of the optimal
revenue, and not the number of items or the size of the support of the distributions, as long as they
are monotone hazard rate. Theorem 7 generalizes this result to a mild dependence on n for regular
distributions.

Theorem 5 (Structural 1 (MHR): Constant Factor Approximation from a Single Price). If
the buyer’s values for the items are independently distributed according to MHR distributions, there
exists a price p such that pricing all items at p guarantees a constant fraction of the optimal revenue.
Price p can be computed efficiently from the value distributions.

Theorem 6 (Structural 2 (MHR): A Constant Number of Distinct Prices Suffice for Near-Op-
timal Revenue). There exists a quasi-quadratic7 function g(·) such that, for all ε > 0 and all n > 0,
g(1/ε) distinct prices suffice to achieve a (1− ε)-fraction of the optimal revenue, when the buyer’s
values for the n items are independently distributed according to MHR distributions. These distinct
prices can be computed efficiently from the value distributions.

Theorem 7 (Structural 3 (Regular): A Polylogarithmic Number of Distinct Prices Suffice for
Near-Optimal Revenue). There exists a polynomial function g(·) such that, for all ε > 0 and n > 0,
g(1/ε · log n) distinct prices suffice to achieve a (1 − ε)-fraction of the optimal revenue, when the
buyer’s values for the n items are independently distributed according to regular distributions. These
prices can be computed efficiently from the value distributions.

Finally, it seems intuitive that, when the value distributions are not widely different, a single
price might suffice for extracting a (1 − ε)-fraction of the optimal revenue, as long as there is a
sufficient number of items for sale. We show such a result for the case where the buyer’s values are
i.i.d. according to a MHR distribution. See Appendix I.1 for the proof of this theorem.

7A function g : R+ −→ R+ is quasi-quadratic iff it satisfies g(x) = O(x2 logc x), for some absolute constant c > 0.
For the meaning of the O(·) notation please refer to Section 2.
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Theorem 8 (Structural 4 (i.i.d. MHR): A Single Price Suffices for Near-Optimal Revenue).
There is a function g(·) such that, for all ε > 0, if the number of items is larger than g(1/ε) then
pricing all the items at the same price obtains a (1 − ε)-fraction of the optimal revenue, if the
buyer’s values are i.i.d. according to a MHR distribution.

Extreme Value Theorems. Establishing the above structural properties relies on understanding
the tails of MHR and regular distributions. For this purpose, we develop extreme value theorems
for these classes of distributions. We state our extreme value theorems informally below, referring
the reader to Theorems 19 and 21 (in Sections 8 and 9 respectively) for formal statements.

Informal Theorem 9. [Extreme Values of MHR Distributions] Let X1, . . . , Xn be a collection of
independent random variables whose distributions are MHR, and let Z = maxiXi. Then, for all ε
sufficiently small, at least a (1−ε)-fraction of E[Z] is contributed to by the event Z ≤ O(log2

1
ε )·E[Z].

Informal Theorem 10. [Extreme Values of Regular Distributions] Let X1, . . . , Xn be a collection
of independent random variables whose distributions are regular, and let Z = maxiXi. Then the
tail of Z is eventually not fatter than the tail of the equal revenue distribution.8

Bounding the size of the tail of the maximum of n independent random variables, which are MHR
or regular respectively, is instrumental in establishing the following truncation property: restricting
all item prices into an interval of the form [α,poly(1/ε)α] in the MHR case, and [α,poly(n, 1/ε)α]
in the regular case, for some α that depends on the value distributions, only loses an ε-fraction of
the optimal revenue. This is quite remarkable, especially when the value distributions are non-
identical or have large tails. How is it possible to restrict the prices into a bounded interval, when
the underlying value distributions may concentrate on different supports, or even worse when they
do not exhibit good concentration at all as when they are power law distributions? 9 To establish
the truncation properties claimed above, we follow a different approach depending on whether the
underlying distributions are MHR or regular. In the MHR case, we argue (using Theorem 9) that
even if we could extract full surplus in the event that Z ≥ Ω(log2

1
ε ) · E[Z], the revenue would

only increase by a tiny factor. Thus, to obtain nearly-optimal revenue, it suffices to only consider
item prices in a bounded range of the form [α,poly(1/ε)α]. When the distributions are regular,
this approach fails, simply because the expectation E[Z] could be infinite. We bypass this issue
by arguing (using Theorem 10) that the tail of Z eventually becomes no heavier than the tail of
the equal revenue distribution. Intuitively, this means that varying the extremely high item prices
barely affects the revenue. Formally, we prove that, whenever some item price is set higher than
some large enough threshold, then bringing it down to the threshold has little effect on revenue.

Besides enabling the aforementioned structural results for our problem, we expect that our ex-
treme value theorems will find applications in future work, and indeed they have already been used
in followup research. In [DW12, CDW12a], our theorem is used to convert nearly-optimal multi-item

8The equal revenue distribution is supported on [1,+∞] and has cumulative density function F (x) = 1− 1
x

. Notice
that, if a buyer’s value for a single item is distributed according to this distribution, the buyer’s expected value for
the item is +∞. However, if the item is priced at any price x, the expected revenue is 1, hence the name “equal
revenue.” The equal revenue distribution is itself a regular distribution. So our theorem says that the fattest the tail
of the maximum of n regular distributions can eventually be is that of a regular distribution.

9A power law distribution is a distribution whose probability density function f(x) ∝ L(x)x−α where α > 1 and

L(·) is a slowly varying function, that is, for any t > 0, limx→∞
L(tx)
L(x)

= 1. It usually has large or even unbounded

variance. Many power law distributions are also regular, for example when L(x) equals some constant c.
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multi-bidder mechanisms for distributions with bounded support to nearly-optimal mechanisms for
MHR distributions. For the same setting, [CH13] use our theorem to show that relatively simple
auctions can extract near-optimal revenue when the bidders are identical, by showing that the
welfare is highly-concentrated. We also note that extreme value theorems have been obtained in
Statistics for large classes of distributions [dHF06], and indeed such theorems have been applied to
optimal mechanism design prior to our work [BH08]. Nevertheless, the known extreme value theo-
rems are typically asymptotic, only hold for maxima of i.i.d. random variables, and are not known
to hold for all MHR or regular distributions. We can instead handle the non-i.i.d. case, maxima of
a finite number of random variables, and the full spectrum of MHR and regular distributions.

1.2 Algorithmic Ideas: Covers of Revenue Distributions

We overview our approach for Theorem 1. A natural strategy for reducing the search space for
an approximately optimal price vector is to discretize the set of possible prices into a finite set,
whose size scales mildly with the number of items, n, and the approximation accuracy, 1/ε. Of
course, even with discretization the number of possible price vectors is exponential in the number
of items, and it is not clear how to search this set efficiently. A natural idea to shortcut the search
further is to cluster the value distributions into a small number of buckets, containing distributions
with similar statistical properties, and proceed to treat all items in a bucket as essentially identical.
However, the expected revenue is not sufficiently smooth for us to perform such bucketing. We do
obtain a delicate discretization of the supports of the value distributions (Corollary 16), but cannot
discretize the probabilities used by these distributions into a coarse-enough accuracy to allow for
polynomial-time solvability of the problem.

Our main algorithmic idea is to shift the focus of attention from the space of value distributions,
which is inherently exponential in the number of items, to the space of all possible revenue distri-
butions, which are single-dimensional distributions. The revenue from a given price vector can be
viewed as a random variable that depends on the (random) values of the items. So, there is still
an exponential number of possible revenue distributions, corresponding to all possible price vec-
tors. Nevertheless, we can exploit the single-dimensional nature of these distributions to construct
a polynomial-size δ-cover of the set of all possible revenue distributions under the total variation
distance between distributions. That is, for every possible revenue distribution, there exists a
distribution in our cover that is within δ in total variation distance from it.

Our cover is implicit, i.e. we do not provide a closed-form description for it. We show instead
that it can be constructed efficiently using dynamic programming. Our algorithm iteratively con-
siders prefixes of the items and, for each prefix 1 . . . i, constructs a cover of all possible revenue
distributions from only pricing items 1, . . . , i. For the next iteration, we show that the cover for
items 1, . . . , i + 1 can be easily computed from the cover for items 1, . . . , i and the distribution
of vi+1. In the end of our iterations we obtain a polynomial-size δ-cover of all possible revenue dis-
tributions, and we argue that only a δ-fraction of revenue is lost if we replace the optimal revenue
distribution with its closest one in our cover. And, because the cover has polynomial size, we can
exhaustively try every distribution in the cover and its associated price vector to pick the one with
the highest expected revenue. A more detailed description of our algorithm is given in Section 4,
and complete details are provided in Section 5. Theorem 1 follows then easily in Section 6.

Theorem 2 follows similarly, except we employ a stronger discretization (Theorem 17) before
using dynamic programming to obtain a cover of all possible revenue distributions. Finally, our
algorithms for MHR and regular distributions (Theorems 3 and 4 respectively) are corollaries of
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Theorem 2, except they require some extra work for restricting the value distributions into a
bounded range. This is achieved in Sections 8 (for MHR distributions) and 9 (for regular distribu-
tions) using our extreme value theorems (Theorems 19 and 21). The detailed proofs of Theorems 3
and 4 are provided in Appendix H.

1.3 Related and Future Work

The focus of this paper is the multidimensional item pricing problem for a unit-demand buyer whose
values for the items are independent. This problem is related to the celebrated multidimensional
mechanism design problem, but it is restricted in two ways. First, there is a single bidder who is unit-
demand. Second, we are interested in coming close to the revenue of the optimal deterministic—
i.e. item pricing—mechanism and not the optimal unrestricted mechanism, which may also price
lotteries over items. While it is unclear whether the restriction to deterministic mechanisms should
make the problem easier or harder computationally, the restriction to a single unit-demand bidder
should make the problem easier compared to having many bidders with arbitrary valuations.

Despite the apparent simplicity of the item pricing problem, (near-)optimal polynomial-time al-
gorithms for it were not known prior to our work. Chawla et al. [CHK07] provide a 3-approximation
algorithm, computing a price vector whose revenue is at least a third of the optimal revenue. Their
technique is quite elegant, connecting the item pricing problem to a related, single-dimensional
mechanism design problem, which can be analyzed using Myerson’s result [Mye81]. Using the same
approach, the approximation factor is improved to 2 in [CHMS10], and the result is generalized to
the multi-bidder setting, albeit with a worse approximation factor. Different work [BGGM10, Ala11]
obtains polynomial-time constant factor approximations for additive bidders, using convex program-
ming relaxations of the problem.

However, all these approaches are limited to constant factor approximations, as ultimately the
attained revenue is compared to the optimal revenue in a related single-dimensional setting [CHK07,
CHMS10], or a convex programming relaxation of the problem [BGGM10, Ala11]. In particular,
the limitation of these approaches comes from avoiding a direct comparison of the attained revenue
to the optimal revenue in the actual problem, comparing it instead to the optimal revenue in a
related problem. Our work provides instead near-optimal algorithms, using a direct comparison to
the real optimum via covers of revenue distributions.

Our work leaves several directions open for exploration and some have already been studied
following the announcement of our results [CD11]. We classify them into three categories discussed
below.

• Unit-demand Bidders: Can our near-optimal algorithms be improved to be exactly optimal?
Recent work has shown that the answer is no, namely that there are no exactly optimal
polynomial-time algorithms for product value distributions, unless P = NP [CDP+14]. Still
there is room for improving the dependence of our running times on the approximation
parameter ε. E.g., is there an algorithm that runs in time polynomial in n and 1/ε when the
item values are bounded in [0, 1]?

And how about correlated distributions over item values? Here, it had already been known
that computing an optimal price vector is highly inapproximable in polynomial-time [BK07].
So there cannot even be a polynomial-time constant factor approximation in this case.

Beyond item pricing, it is important to understand the complexity of optimal random-
ized mechanisms, which may increase revenue by also pricing lotteries over items [Tha04,
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BCKW10]. For product distributions, Chawla et al. [CMS10] show that randomization does
not increase revenue by more than a factor of 4, thus extending the constant-factor approxi-
mation algorithms of [CHK07, CHMS10] to the randomized multi-bidder setting, except with
worse approximation guarantees. Is there a polynomial-time optimal mechanism for this
setting? No computational lower bound is known at the time of writing of this paper.

For correlated distributions over item values, Cai et al. [CDW12b] obtain near-optimal, ran-
domized mechanisms for multi-bidder multi-item settings with unit-demand bidders. For
any desired accuracy ε > 0, they compute a mechanism whose revenue is within an addi-
tive error of ε from optimal in time polynomial in 1/ε and the size of the support of each
bidder’s distribution over valuations, when these distributions are discrete. (When they are
continuous, they are handled via fine enough discretization.) This algorithm is clearly also
applicable when every bidder’s values for the items are independent (i.e. the setting discussed
in the previous paragraph). However, the dependence of the running time on the support of
the product distribution may be unreasonable computationally. Indeed, a discrete product
distribution can be described by specifying all of its marginals, with description complexity
logarithmic in the size of its support.

• Additive Bidders: Can our algorithms be extended to additive bidders? Here, an optimal
mechanism may increase revenue by pricing bundles of items [MV06], or (if randomization
is allowed) lotteries over bundles of items. Exploiting our extreme value theorems for MHR
distributions, Cai and Huang [CH13] provide near-optimal polynomial-time mechanisms for
multiple i.i.d. bidders, whose values for the items are independently distributed according
to MHR distributions. Moreover, Daskalakis et al. [DDT14] show that this result cannot
be made exact for general product distributions. They show that, subject to widely held
complexity theoretic beliefs—in particular that ZPP 6⊇ P#P,10 computing and implementing
an exactly optimal mechanism cannot be done computationally efficiently. Indeed, this is true
even in the ostensibly simple setting where there is a single additive bidder whose values for
the items are independently distributed on two rational numbers with rational probabilities.

For correlated distributions, Cai et al. [CDW12a] obtain (exactly) optimal mechanisms for
multi-bidder multi-item settings with additive bidders, in time polynomial in the size of the
support of each bidder’s distribution over valuations.

On a different vein, Daskalakis et al. [DDT13] study the structure (rather than the computa-
tional complexity) of optimal mechanisms, following earlier work on the topic by Economists,
e.g. [Roc85, Arm00, MV06, MV07, Pav11]. They provide a duality framework based on
Monge-Kantorovich duality for characterizing the structure of the optimal mechanism of sell-
ing multiple items to a single additive bidder.

• General Settings: It is important to understand the computational complexity of mechanism
design in general settings: multiple bidders, general valuations (beyond unit-demand and
additive), general constraints on what allocations of items to bidders are feasible, and general
objectives, potentially going beyond the familiar objectives of revenue and welfare.11 In recent

10ZPP ⊇ P#P would imply that there are randomized polynomial-time algorithms for NP-complete problems, which
is widely believed to be unlikely.

11A general objective O takes as input the valuations of the bidders ~t and a randomized allocation and price vector
(A, p) and outputs a real number O(~t, (A, p)).
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work, Cai et al. [CDW13] provide a computational black-box reduction from mechanism design
for maximizing an arbitrary concave objective O12 under arbitrary allocation constraints and
an arbitrary family of bidder valuations (e.g. submodular, supermodular, etc.) to algorithm
design for that same objective O, modified by an additive virtual welfare and virtual revenue
term, and under the same allocation constraints and family of allowed valuations. Roughly
speaking, they show that, whenever the algorithmic problem is polynomial-time solvable
(exactly or approximately), the mechanism design problem also becomes solvable (exactly or
approximately) in time polynomial in the size of the support of each bidder’s distribution over
valuations. It is important to find applications of this reduction to settings of interest beyond
optimizing fractional max-min fairness for additive bidders, which was done in [CDW13].

2 Preliminaries

Computational Problems. We define three variants of the item pricing problem. Addi-
tivePrice and Price are the main computational problems that we aim to solve, but Restrict-
edPrice is an auxiliary one that is helpful in the analysis. For the value distributions that we
consider, it can be shown that all three problems have finite optimal solutions.

AdditivePrice: Input: A collection of mutually independent random variables {vi}ni=1, and some
ε > 0. Output: A vector of prices P = (p1, . . . , pn) such that the expected revenue RP from using
P , defined as in Eq. (1), is within an additive ε of the optimal revenue achieved by any price vector.

Price: Input: A collection of mutually independent random variables {vi}ni=1, and some ε > 0.
Output: A vector of prices P = (p1, . . . , pn) such that the expected revenue RP from using P ,
defined as in Eq. (1), is within a (1 + ε)-factor of the optimal revenue achieved by any price vector.

RestrictedPrice: Input: A collection of mutually independent random variables {vi}ni=1 sup-
ported on a common discrete set S, and a discrete set P ⊂ R≥0 of possible prices.
Output: A vector of prices P = (p1, . . . , pn) ∈ Pn such that the expected revenue RP from using
P is optimal among all vectors in Pn.

In Section 3 we describe how these computational problems are interconnected through other results
in this paper to establish Theorems 1 through 4.

Computational Efficiency. Throughout the paper we use the standard convention of identi-
fying “computational efficiency” with polynomial-time computation. Namely, we will say that an
algorithm is “computationally efficient” iff its running time is polynomial in the number of bits
required to describe the input to the algorithm.

Reductions Between Computational Problems. We provide several reductions between dif-
ferent flavors of the item pricing problem. Formally, a (polynomial-time) reduction from a com-
putational problem P1 (e.g. Price) to a computational problem P2 (e.g. RestrictedPrice) is

12An objective function O(~t, (A, p)) is called concave iff, for all bidder valuations ~t, and all (A1, p1) and (A2, p2),
it holds that O(~t, 1

2
(A1, p1) + 1

2
(A2, p2)) ≥ 1

2
O(~t, (A1, P1)) + 1

2
O(~t, (A2, P2)), where 1

2
(A1, p1) + 1

2
(A2, p2) denotes

uniformly randomizing between (A1, p1) and (A2, p2). Clearly, revenue and welfare satisfy this condition with equality,
but several other objectives are concave, such as the max-min fairness objective considered in [CDW13].
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a pair of (polynomial-time) algorithms A and B satisfying the following properties. For all inputs
Π1 to P1:

• A(Π1) is a valid input to P2;

• if S is a solution to A(Π1) then B(S) is a solution to Π1.

For example, a polynomial-time reduction from Price to RestrictedPrice would allow us to
convert (in polynomial time) any input to Price to a valid input to RestrictedPrice so that, if
we found a solution to the latter, we would also be able to compute (in polynomial time) a solution
to the former.

Approximation Algorithms. Our algorithmic results use the concept of a Polynomial-Time
Approximation Scheme, or PTAS. A PTAS for a computational problem such as Price is a collec-
tion of algorithms (Aε)ε, indexed by the approximation parameter ε, such that, for all ε > 0 and
for any given input Π to the algorithm, Algorithm Aε computes an ε-optimal solution to Π in time
d(Π)g(1/ε), where d(Π) is the number of bits required to describe problem Π and g is some increasing
function of 1/ε, which does not depend on Π or its description complexity. The algorithms in the
collection are called polynomial-time because for all fixed ε, e.g. ε = 1/3, the running time of Aε is
polynomial in the description of the problem. A quasi-polynomial-time approximation scheme, or
Quasi-PTAS is a similar concept, except that running time is 2g(1/ε)·poly(log d(Π)) for some function
g instead of 2g(1/ε)·log d(Π) as in a PTAS.

Distributions. For a random variableX we denote by FX(x) the cumulative distribution function
of X, and by fX(x) its probability density function. We also let uXmin = sup{x|FX(x) = 0} and
uXmax = inf{x|FX(x) = 1}. uXmax may be +∞, but we assume that uXmin ≥ 0, since our distributions
represent value distributions. We drop the subscript/superscript of X, if X is clear from context.

We proceed with a precise definition of Monotone Hazard Rate (MHR) and Regular distributions,
which are two commonly studied families of distributions.

Definition 11 (Monotone Hazard Rate Distribution). We say that a one-dimensional differentiable

distribution F has Monotone Hazard Rate if f(x)
1−F (x) is non-decreasing in [umin, umax]. We call such

F a Monotone Hazard Rate, or MHR, distribution.

Definition 12 (Regular Distribution). A one-dimensional differentiable distribution F is called

regular if x− 1−F (x)
f(x) is non-decreasing in [umin, umax].

It is worth noting that all MHR distributions are also regular distributions, but there are regular
distributions that are not MHR. The family of MHR distributions includes such familiar distribu-
tions as the Normal, Exponential, and Uniform distributions. The family of regular distributions
contains a broader range of distributions, including fat-tail distributions fX(x) ∼ x−(1+α) for α ≥ 1
(which are not MHR). In Appendices F.1 and G.1 we establish important properties of MHR and
regular distributions. These properties are instrumental in establishing our extreme value theorems
for these distributions (Theorems 19 and 21 in Sections 8 and 9).

To formally study the complexity of the item pricing problem, we need to pay attention to how
value distributions are described as part of the input to the problem. We discuss this technical
issue in Appendix B, entertaining three types of access to a distribution. Maybe we are given
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an explicit description of the distribution, specifying its support and the probabilities assigned to
every value in the support. Such explicit description is appropriate if the distribution is discrete
and has finite support. Alternatively, we may have more limited access to the distribution. E.g.,
we may only have sample access to the distribution via a procedure that generates independent
samples from it. Or, we may have oracle access to the cumulative distribution function via a
procedure that returns its value at any queried point. We formally discuss these types of access to
a distribution in Appendix B, also defining precisely what it means for an algorithm who takes as
input a distribution or outputs a distribution to be “computationally efficient” in each case.

Order Notation. Throughout the text we use the O(·), Ω(·) and Θ(·) notation. Let f(x), g(x)
be two positive functions defined on some infinite subset of R+. Then:

• we write f(x) = O(g(x)) iff there exist some positive reals M and x0 such that f(x) ≤Mg(x),
for all x > x0;

• we write f(x) = Ω(g(x)) iff there exist some positive reals m and x0 such that f(x) ≥ mg(x),
for all x > x0; and

• we write f(x) = Θ(g(x)) iff f(x) = O(g(x)) and f(x) = Ω(g(x)).

Other Notation. Whenever we write poly(x) in an expression providing a bound to some quan-
tity, we mean that there exists some positive polynomial p(x) which can replace “poly(x)” so that
the bound is true. Whenever we write log in some expression without specifying the base of the
logarithm, any constant base that is larger than 1 works. For some positive rational number x,
we write 〈x〉 to denote the bit complexity of x, i.e. the number of bits required to specify the
numerator and denominator of an irreducible fraction representing x.

3 Paper Organization

We provide a roadmap to the paper and a high-level description of our approach. We first study
RestrictedPrice. Despite its input/output restrictions, it addresses the major algorithmic chal-
lenges of the item pricing problem. Our approach to RestrictedPrice is to first design a dynamic
programming algorithm that produces a cover of all possible revenue distributions arising from price
vectors in Pn, where P is the set of possible prices specified in the input to the problem. Using the
cover it is then easy to obtain a near-optimal algorithm for RestrictedPrice, which is not nec-
essarily polynomial-time. Section 4 provides an intuitive description of the dynamic programming
approach for producing the cover, and Section 5 describes our algorithm for RestrictedPrice
formally. This algorithm serves as the main algorithmic tool of this paper, and is at the root of the
tree structure of Figure 1, summarizing our results and proofs.

In Section 6, we obtain Theorem 1 by reducing AdditivePrice for value distributions sup-
ported on [0, 1] to RestrictedPrice. The reduction is obtained by showing a discretization result,
establishing that the supports of the value distributions as well as the candidate prices can be dis-
cretized without too much loss in revenue. The reduction is summarized by Corollary 16, which
together with our algorithm for RestrictedPrice immediately shows Theorem 1.

In Section 7, we move on to multiplicative approximations, establishing Theorem 2. The ap-
proach is similar, reducing Price to RestrictedPrice by discretizing the supports of the value
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Section 8: 
Extreme-Value Theorem for 

MHR Distributions 
(Theorems 18&19)  

PTAS for MHR Distributions 
(Theorem 3) 

Quasi-PTAS for Regular 
Distributions (Theorem 4) 

Section 9: 
Extreme-Value Theorem for 

Regular Distributions  
(Theorems 20&21)  

General Algorithm (Theorem 2) 

RESTRICTEDPRICE 

Section 7: 
Strong Discretization  

(Theorem 17)  

Section 4, 5: 
Probabilistic Covers of Revenue 

Distribution (Theorem 13)  

Additive PTAS for [0,1]n 
(Theorem 1) 

Section 6: 
Weak Discretization 

(Theorem 15 and 
Corollary 16)  

Figure 1: Overview of our results and the proof structure. Arrows are implications.

distributions as well as the set of available prices. However, Theorem 15, the discretization result
at the heart of Corollary 16 (our reduction from Section 6), is not strong enough for our purposes
here. We establish instead a stronger discretization (Theorem 17) that is sufficiently powerful for
our reduction.

In Sections 8 and 9, we establish our algorithms for MHR and regular distributions. In Section 8,
we present an extreme value theorem for MHR distributions (Theorem 19). This theorem enables
us to obtain a polynomial-time reduction from Price where the value distributions are MHR to
Price where the value distributions are supported on a common range of the form [umin, r · umin],
where the multiplier r is independent of the number of items n. Our reduction is summarized by
Theorem 18. Theorem 3 follows then as a corollary of Theorem 18 and Theorem 2. Our algorithm
for regular distributions follows similarly in Section 9. We show an extreme value theorem for
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regular distributions (Theorem 21), enabling a reduction from Price with regular distributions to
Price with distributions supported on a common range of the form [umin, r ·umin], except that now
the multiplier r depends polynomially on the number of items n. Our reduction is summarized in
Theorem 20. Theorem 4 follows then as a corollary of Theorem 20 and Theorem 2.

Reading the paper. Sections 4 through 9 are meant to provide a self-contained overview of
the proofs of our algorithmic results, with the appendices containing the complete proof details.
Appendix A provides a roadmap to the appendices.

4 Probabilistic Covers of Revenue Distributions

In this section, we discuss our algorithmic approach to RestrictedPrice, postponing the de-
scription of our algorithm for it to Section 5. As we have already discussed in Section 3, although
seemingly restricted this problem captures the main algorithmic challenges underlying problems
Price and AdditivePrice. In particular, our algorithm for RestrictedPrice will become a
central building block in all our algorithmic results (Theorems 1 through 4).

For convenience, throughout this section we will take F1, . . . , Fn to be a collection of distribu-
tions supported on a discrete set S =

{
v(1), v(2), . . . , v(k1)

}
, and v1, . . . , vn to be a collection of mutu-

ally independent random variables distributed according to the Fi’s. We will then assume that the
input to RestrictedPrice comprises the vi’s and a finite set of prices P = {p(1), p(2), . . . , p(k2)}.

The obvious algorithmic challenge in RestrictedPrice is that, even though the set of possible
prices is finite, there are still exponentially many (namely kn2 ) possible price vectors that we need
to choose from for an optimal one. If k2 were a constant and the items were i.i.d., then we could
decrease the possible vectors to a polynomial number by exploiting the symmetry of the items.13

Similarly, we can obtain polynomial-time algorithms for the case where there is only a constant
number of possible value distributions and a constant number of possible prices. However, when
all the Fi’s may be different, the problem looks inherently exponential, even if both k1 and k2 are
absolute constants, e.g., even when the value distributions are supported on 2 possible values and
there are 2 possible prices available.

Our algorithmic approach is enabled by a shift in perspective, which may be applicable to
other problems with a similar structure. To illustrate the approach, let us view our problem
in the graphical representation of Figure 2. C is a function that takes as input a price vector
P = (p1, . . . , pn) and outputs the distribution FRP of the revenue of the seller under this price
vector. Indeed, the revenue of the seller is a random variable RP that depends on the random
variables {vi}i∈[n]. So in order to compute the distribution of the revenue, C also takes as input
the distributions F1, . . . , Fn. What we are aiming at maximizing is the expectation RP of RP .

Given our restriction of the prices to a finite set {p(1), p(2), . . . , p(k2)}, there are kn2 possible
inputs to the function, and at most kn2 possible revenue distributions that the function can output.
Our main conceptual idea is the following:

13A broader exposition of the role of symmetries in mechanism design can be found in [DW12].
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Figure 2: The Revenue Distribution as the output of a function. The inputs to the function are
the prices and the value distributions.

Instead of searching the space of possible price vectors that can be input to C, we search the
space of possible outputs of C, i.e. the space of all possible revenue distributions resulting
from different price vectors, for one with maximum expectation.

Moreover, to efficiently search the space of all possible revenue distributions, we construct
an appropriately small subset of it and only search the distributions in that subset.

The subset we construct is a probabilistic cover (under some appropriate metric) of the space of all
possible revenue distributions.14 The properties of our cover that are crucial for our algorithmic
applications are the following: (a) the cover has small cardinality, and (b) for any possible revenue
distribution that the function may output, there exists a revenue distribution in our cover whose
expectation is close.

Constructing the Cover. At a high level, we construct our cover using dynamic programming
(henceforth DP for short), whose steps are interleaved with coupling arguments that prune the size
of the DP table before proceeding to the next step.

Intuitively, our DP algorithm sweeps the items from 1 through n, maintaining a cover of the
revenue distributions produced by all possible price vectors on every prefix of the items. More
precisely, for each prefix 1 . . . j of the items, our DP table keeps track of all possible feasible
collections of k1 × k2 probability values, where Pri1,i2 , i1 ∈ [k1], i2 ∈ [k2], denotes the probability
that the item with the largest value-minus-price gap (i.e. the item that would have been sold in a
sale that only sells items 1 through j) has value v(i1) for the buyer and is assigned price p(i2) by the
seller. I.e. we store in our DP table all possible (winning-value, winning-price) distributions that
can arise from a price vector on every prefix of the items. The reasons we store these distributions
are the following:

• First, if we have all possible (winning-value, winning-price) distributions for the full set of
items, we can search for the one with the highest expected revenue. For every distribution
we will also maintain in our DP table a price vector resulting in that distribution. So, once
we have found the distribution with the optimal expected revenue, we will also find the price
vector with that optimal revenue.

• Second, we can construct the set of all possible (winning-value, winning-price) distributions
for the full set of items, by considering one prefix at a time. In particular, suppose that we

14A δ-cover of a set of distributions F with metric d is a subset F ′ ⊆ F such that for all F ∈ F there exists some
F ′ ∈ F ′ such that d(F, F ′) ≤ δ.
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have all possible (winning-value, winning-price) distributions for the prefix of items 1 . . . j. By
combining every such distribution with all k2 possible prices for item j+1, we can compute all
possible (winning-value, winning-price) distributions for the prefix of items 1 . . . j + 1. That
is, if we have these distributions for a prefix of items, we do not need any other information to
extend the prefix by one item. For this scheme to work, observe that it is crucial to maintain
the joint distribution of both the winning-value and the winning-price, rather than just the
distribution of the winning-price.

Clearly, the dynamic programming approach that we just outlined for computing a cover of all
possible revenue distributions achieves nothing in terms of reducing the number of distributions.
Indeed, there could be one (winning-value, winning-price) distribution for every price vector, so
that the total number of distributions that we need to store in our DP table is exponential. To
control the size of our cover from exploding, we show that we can be coarse in our bookkeeping
of the (winning-value, winning-price) distributions, without sacrificing much revenue. Indeed, it is
here where viewing our problem in the “upside-down” manner illustrated in Figure 2 (i.e. targeting
a cover of the output of C) is important. We show that we can discretize the probabilities used
by the distributions stored in the DP table into multiples of some fraction 1

m without losing much
revenue. In particular, after a prefix of items is processed by the algorithm, we show that we
can discretize the probabilities in all distributions in the table before considering the next item.
That the loss due to coarsening the probabilities is not significant follows from coupling arguments
interleaved with the steps of dynamic programming.

In the next section we make our ideas precise, obtaining our algorithm for RestrictedPrice.

5 The Algorithm for the Discrete Problem

In this section, we formalize our ideas from the previous section, describing our main algorithmic
result for RestrictedPrice. We use the same notation as in Section 4, namely we assume that the
input distributions are supported on a common set S of cardinality k1 and the prices are restricted
to a set P of cardinality k2. We also denote by OPT the optimal expected revenue for the input
value distributions when the prices are restricted to P.

The Algorithm. As a first step we discretize the probabilities used by the input distributions.
We prove a discretization lemma that provides a polynomial-time reduction from our problem
into a new one, where additionally the probabilities that the value distributions assign to each
point in their support S are integer multiples of 1/m, for some integer m that is a free parameter
in our algorithm. We show that the loss in revenue resulting from our reduction is at most an
additive 4k1n

m maxi{p(i)} in the following sense: for any price vector P , the expected revenue from
the original value distributions {Fi}i and the expected revenue from the discretized distributions
{F̂i}i are within an additive 4k1n

m maxi{p(i)}. Moreover, the construction of Lemma 23 is explicit,

so from now on we can assume that we know the {F̂i}i explicitly, regardless of what type of access
we have to the {Fi}i (see Appendix B).

The second phase of our algorithm is the dynamic programming algorithm outlined in Section 4.
We provide some further details on this now. Our algorithm computes a Boolean function g(i,Pr),
whose arguments lie in the following range: i ∈ [n] and Pr = (Pr1,1,Pr1,2, . . . ,Prk1,k2), where each
Pri1,i2 ∈ [0, 1] is an integer multiple of 1

m . The function g is stored in a table that has one cell
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for every setting of i and Pr, and the cell contains a 0 or a 1 depending on the value of g at the
corresponding input. In the terminology of the previous section, argument i indexes the last item
in a prefix of items and Pr defines a (winning-value, winning-price) distribution whose probabilities
are integer multiples of 1

m . If Pr can arise from some pricing of the items 1 . . . i (up to discretization
of probabilities into multiples of 1

m), we intend to store g(i,Pr) = 1; otherwise we store g(i,Pr) = 0.
For each cell of the table such that g(i,Pr) = 1, we also store a price vector on the corresponding
prefix of items 1 . . . i consistent with Pr.

For conciseness, we give next a high-level description of the dynamic programming algorithm,
postponing its full details to Appendix C.1. The table is filled in a bottom-up fashion from i = 1
through n. At the end of the i-th iteration, we have computed all feasible “discretized” (winning-
value,winning-price) distributions for the prefix of items 1 . . . i, where “discretized” means that all
probabilities have been rounded into multiples of 1/m. For the next iteration, we try all possible
prices p(j) for item i+ 1 and compute how each of the feasible discretized (winning-value,winning-
price) distributions for the prefix 1 . . . i evolves into a discretized distribution for the prefix 1 . . . i+1,
setting the corresponding cell of layer g(i+ 1, ·) of the DP table to 1. Notice, in particular, that we
lose accuracy in every step of the dynamic programming algorithm, as each step involves computing
how a discretized distribution for items 1 . . . i evolves into a distribution for items 1 . . . i + 1 and
then rounding the latter back into multiples of 1/m. We show in the analysis of our algorithm that
the error accumulating from these roundings can be controlled via coupling arguments.

After computing the truth-table of function g, we look at all cells such that g(n,Pr) = 1 and
evaluate the expected revenue resulting from the distribution Pr, i.e.

RPr =
∑

i1∈[k1],i2∈[k2]

p(i2) · Pri1,i2 · 1v(i1)≥p(i2) .

Having located the cell whose RPr is the largest, we output the price vector stored in that cell.

Running Time and Correctness. Next we bound the algorithm’s running time and revenue.

Theorem 13. Given an instance of RestrictedPrice, where the value distributions are supported
on a discrete set S of cardinality k1 and the prices are restricted to a discrete set P of cardinality
k2, and for any choice of discretization accuracy m ≥ 2k1, the algorithm described in this section
produces a price vector with expected revenue at least

OPT − (2nk1k2 + 16k1n)

m
·max{P},

where max{P} is the maximum element in P and OPT the optimal expected revenue. The running
time of the algorithm is polynomial in the size of the input and mk1k2.

The proof of the theorem is given in Appendix C. Intuitively, if we did not perform any round-
ing of distributions, our algorithm would have been exact, outputting an optimal price vector in
{p(1), . . . , p(k2)}n. What we show is that the roundings performed at the steps of the dynamic pro-
gramming algorithm are fine enough that do not become detrimental to the revenue. To show this,
we use coupling arguments, invoking the coupling lemma and the optimal coupling theorem after
each step of the algorithm. (See Lemma 22 in Appendix C.2.) This way, we show that the rounded
(winning-value,winning-price) distributions maintained by the algorithm for each price vector are
close in total variation distance to the corresponding exact distributions arising from these price
vectors, culminating in Theorem 13.
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6 Additive PTAS for values distributed in [0, 1]n

In this section, we provide a polynomial-time reduction from AdditivePrice(V, ε), for value dis-
tributions V = {vi}i supported on [0, 1], to O(ε)-approximating RestrictedPrice(V̂,P), where V̂
is a collection of mutually independent random variables supported on a common set of cardinality
poly(1/ε) and |P| = poly(1/ε). A PTAS for AdditivePrice then follows from Theorem 13 with
an appropriate choice of the discretization m.

As a first step, we reduce AdditivePrice(V, ε) to AdditivePrice(Ṽ, O(ε)), where the random
variables Ṽ = {ṽi}i are independently distributed in [O(ε), 1]. The reduction is quite straightfor-
ward, replacing all sampled values that are smaller than some O(ε) with O(ε) and keeping the rest
unchanged. We argue that a nearly optimal price vector for the new value distributions is also
nearly optimal for the original value distributions. Formally,

Lemma 14. Let V = {vi}i∈[n] be a collection of mutually independent random variables sup-
ported on [0, 1]. For any ε > 0, there is a polynomial-time reduction from AdditivePrice(V, ε)
to AdditivePrice(Ṽ, ε/3), where Ṽ = {ṽi}i∈[n] is a collection of mutually independent random
variables supported on [ε/6, 1].

The proof can be found in Appendix D.4.

Next we want to discretize the problem AdditivePrice(Ṽ, ε/3). As alluded to in Section 1,
the expected revenue can be sensitive even to small perturbations of the prices and the probability
distributions. So our discretization, summarized in the next theorem, must be done delicately.

Theorem 15 (Price/Value Discretization for Additive Approximation). Let V = {vi}i∈[n] be a
collection of mutually independent random variables supported on a bounded set [umin, umax] ⊂
R+, and let r = umax

umin
≥ 1. For any ε > 0, there is a reduction from AdditivePrice(V, ε) to

approximating RestrictedPrice(V̂,P) to within an additive error of ε
6 , where

• V̂ = {v̂i}i∈[n] is a collection of mutually independent random variables that are supported on

a common set of cardinality O
(
u2max log r

ε2

)
;

• |P| = O
(
u2max log r

ε2

)
and maxx∈P x ≤ 7

6umax.

Moreover, if umin and umax are given explicitly as input to the reduction,15 the running time of
the reduction is polynomial in the description of V, 〈umin〉, 〈umax〉, and 1/ε.

That the prices can be restricted to a discrete set without hurting the revenue too much follows
immediately from a discretization lemma attributed to Nisan [CHK07]. (See also [HK05] for a
related discretization.) Our price discretization result is summarized in Lemma 25 of Appendix D.2.
The discretization of the support of the value distributions is inspired by Nisan’s lemma, and our
corresponding discretization result is summarized in Lemma 31.

Combining Lemma 14 and Theorem 15, we complete our reduction from AdditivePrice to
RestrictedPrice.

15This requirement is only relevant if we have oracle access to the distributions of the vi’s, as if we are given the
distributions explicitly we immediately also know umin and umax.
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Corollary 16. Let V = {vi}i∈[n] be a collection of mutually independent random variables sup-
ported on [0, 1]. For any ε > 0, there is a polynomial-time reduction from AdditivePrice(V, ε)
to approximating RestrictedPrice(V̂,P) to within an additive error of ε

18 , where V̂ is a collec-

tion of mutually independent random variables supported on a common set of cardinality O( log 1/ε
ε2

),

|P| = O( log 1/ε
ε2

) and maxx∈P x ≤ 7/6.

We are now ready to prove Theorem 1, using the reduction of Corollary 16 and our algorithm
from Section 5.

Proof of Theorem 1: We first perform the reduction of Corollary 16. In the resulting instance of
RestrictedPrice both the cardinality of the support of the value distribution and the number

of available prices are O( log 1/ε
ε2

). Using m = O(n·log2 1/ε
ε5

) we can solve the resulting instance of
RestrictedPrice to within additive error O(ε) using the algorithm of Theorem 13. The running

time of the algorithm is polynomial in the input and n
log3 1/ε

ε4 . �

7 Multiplicative PTAS

For the remainder of our main exposition, we move on to multiplicative approximations to the item
pricing problem, obtaining algorithms for Price. In this section, we study the general problem
where the values are independently distributed on a bounded range [umin, umax ≡ r·umin] according
to arbitrary distributions, proving Theorem 2.

Notice that, using our results from the previous sections, we can already get an algorithm for
Price. We can first apply our reduction from Theorem 15 to discretize the prices and the supports
of the value distributions. Then we can use our algorithm from Theorem 13 to solve the discretized
problem. However to convert the additive approximation of this algorithm to a multiplicative one,
we need to choose the approximation to be no worse than ε · umin. This requirement forces the
support of the discretized value distributions to be Ω(r2 log r/ε2) and the discrete set of prices to also

have cardinality Ω(r2 log r/ε2). Hence, the algorithm has running time polynomial in nr
4 log2 r/ε4 .

In this section, we present a stronger discretization result, reducing the size of the support
of the value distributions and the cardinality of the price set to linear in log r. With this new
discretization, we can speed up the running time of our algorithm to npoly(log r,1/ε). Our improved
discretization reduction is presented below, and proved in Appendix D.5.

Theorem 17 (Price/Value Distribution Discretization). Let V = {vi}i∈[n] be a collection of mu-
tually independent random variables supported on a bounded range [umin, umax] ⊂ R+, and let

r = umax
umin

≥ 1. For any ε ∈
(

0, 1
(4dlog2 re)1/6

)
, there is a reduction from Price(V, ε) to the problem

of approximating RestrictedPrice(V̂,P) to within a factor of (1− ε
16), where

• V̂ = {v̂i}i∈[n] is a collection of mutually independent random variables that are supported on

a common set of cardinality O
(

log r
ε16

)
;

• |P| = O
(

log r
ε2

)
.
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Moreover, if umin and umax are given explicitly as input to the reduction,16 the running time of the
reduction is polynomial in the description of V, 〈umin〉, 〈umax〉, and 1/ε.

Combining our discretization from Theorem 17 with our algorithm from Theorem 13, it is easy
to show Theorem 2. We only sketch the proof here, providing a formal proof in Appendix E.

Proof of Theorem 2: (sketch) We first perform the reduction of Theorem 17 to get an instance
of RestrictedPrice where both the values and the prices come from discrete sets of cardinality
O( log r

poly(ε)). Using the algorithm of Theorem 13, we can then approximately solve this instance to

within a factor of 1−O(ε) in time polynomial in the input and n
log2 r
poly(ε) . �

8 Extreme Values of MHR Distributions

We reduce the problem of finding a near-optimal price vector for value distributions that are MHR
to finding a near-optimal price vector for value distributions that are supported on a bounded
range [umin, umax], where umax/umin is only a function of the desired approximation ε > 0. More
precisely, we establish the following reduction.

Theorem 18 (From MHR to Bounded Distributions). Let V = {vi}i∈[n] be a collection of mutually
independent MHR random variables. Then there exists some β = β(V) > 0 such that for all
ε ∈ (0, 1/4), there is a reduction from Price(V, cε log2(1

ε )) to Price(Ṽ, ε), where Ṽ := {ṽi}i is a
collection of mutually independent random variables supported on the set [ ε2β, 2 log2

1
εβ], and c is

some absolute constant.17

Moreover, β is efficiently computable from the distributions of the vi’s, and, for all ε, the running
time of the reduction is polynomial in the size of the input and 1

ε .

We discuss the essential elements of our reduction below. Most crucially, the reduction is
enabled by the following theorem, characterizing the extreme values of a collection of independent
MHR distributions.

Theorem 19 (Extreme Values of MHR distributions). Let X1, . . . , Xn be a collection of indepen-
dent random variables whose distributions are MHR. Then there exists some anchoring point β
such that Pr[maxi{Xi} ≥ β/2] ≥ 1− 1√

e
and∫ +∞

2β log2 1/ε
t · fmaxi{Xi}(t)dt ≤ 36βε log2 1/ε, for all ε ∈ (0, 1/4), (2)

where fmaxi{Xi}(t) is the probability density function of maxi{Xi}. Moreover, β is efficiently com-
putable from the distributions of the Xi’s.

16This requirement is only relevant if we have oracle access to the distributions of the vi’s, as if we are given the
distributions explicitly we immediately also know umin and umax.

17Clearly, by plugging ε = O( ε̂
log2 1/ε̂

) into our reduction, we obtain a reduction from Price(V, ε̂) to

Price(Ṽ, O( ε̂
log2 1/ε̂

)), for any desired ε̂. We phrased our theorem as a reduction from Price(V, cε log2( 1
ε
)) to

Price(Ṽ, ε) only to have better expressions in the supports of the ṽi’s.
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Theorem 19, whose proof is given in Appendix F.2, implies that, for ε sufficiently small, at least a
(1−ε)-fraction of E[maxiXi] is contributed to by values that are no larger than E[maxiXi]·O(log2

1
ε ).

Our result is quite surprising, especially for the case of non-identically distributed MHR random
variables. Why should most of the contribution to E[maxiXi] come from values that are close
(within a function of ε only) to the expectation, when the underlying random variables Xi may
concentrate on widely different supports? To obtain the theorem one needs to understand how the
tails of the distributions of a collection of independent MHR random variables contribute to the
expectation of their maximum. Our proof technique is intricate, defining a tournament between the
tails of the distributions. Each round of the tournament ranks the remaining distributions according
to the size of their tails, and eliminates the lightest half of the distributions. The threshold β is
then obtained by some side-information that the algorithm records in every round.

Given our understanding of the extreme values of MHR distributions, our reduction of Theo-
rem 18 from MHR to bounded distributions proceeds in the following steps:

• We start with the computation of the threshold β specified by Theorem 19. This computation
can be done efficiently, as stated in the statement of the theorem. Given that Pr[maxi{Xi} ≥
β/2] is bounded away from 0, the revenue from pricing every item at β/2 is Ω(β), hence the
optimal revenue is also Ω(β). See Appendix F.3.1 for the precise lower bound we obtain.
Such lower bound is useful as it implies that, if our transformation loses revenue that is a
small fraction of β, this corresponds to a small fraction of optimal revenue lost.

• Next, using (2) we show that, for all ε > 0, if we restrict the prices to lie in the range
[ε · β, 2 log2(1

ε ) · β], we only lose a O(ε log2 1/ε) fraction of the optimal revenue; this step is
detailed in Appendix F.3.2.

• Finally, we show that we can efficiently transform the given MHR random variables {vi}i∈[n]

into a new collection of random variables {ṽi}i∈[n] that take values in [ ε2 · β, 2 log2(1
ε ) · β] and

satisfy the following: a near-optimal price vector for the setting where the buyer’s values are
distributed as {ṽi}i∈[n] can be efficiently transformed into a near-optimal price vector for the
original setting, i.e. where the buyer’s values are distributed as {vi}i∈[n]. This step is detailed
in Appendix F.3.3.

Theorem 3 is established by combining the reduction of Theorem 18 with our algorithm for
bounded distributions of Theorem 2. See Appendix H.

9 Extreme Values of Regular Distributions

We reduce the problem of finding a near-optimal price vector for value distributions that are regular
to finding a near-optimal price vector for value distributions that are supported on a bounded range
[umin, umax] satisfying umax/umin ≤ 16n8/ε4, where n is the number of distributions and ε is the
desired approximation. It is important to notice that our bound on the ratio umax/umin does not
depend on the distributions at hand, just their number and the required approximation. We also
emphasize that the given regular distributions may be supported on [0,+∞), so it is a priori not
clear if we can truncate these distributions to any finite set without losing substantial revenue. Our
reduction is the following.
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Theorem 20 (Reduction from Regular to Poly(n)-Bounded Distributions). Let V = {vi}i∈[n] be a
collection of mutually independent regular random variables. Then there exists some α = α(V) >
0 such that, for any ε ∈ (0, 1), there is a reduction from Price(V, ε) to Price(Ṽ, ε − Θ(ε/n)),
where Ṽ = {ṽi}i∈[n] is a collection of mutually independent random variables that are supported on

[ εα
4n4 ,

4n4α
ε3

].
Moreover, α is efficiently computable from the distributions of the vi’s, and, for all ε, the running

time of the reduction is polynomial in the size of the input and 1/ε.

Our reduction is based on the following extreme value theorem for regular distributions, whose
proof is provided in Appendix G.2. Immediately following the statement of the theorem we sketch
how it is used to establish our reduction, whose detailed proof is in Appendix G.3. Section 9.1 gives
other example applications of the theorem to illustrate its usefulness in bounding extreme values
of regular distributions.

Theorem 21 (Homogenization of the Extreme Values of Regular Distributions). Let {Xi}i∈[n] be a
collection of mutually independent regular random variables, where n ≥ 2. Then there exists some
α = α({Xi}i∈[n]) such that:

1. α has the following “anchoring” properties:

• for all ` ≥ 1, Pr[Xi ≥ `α] ≤ 2/(`n3), for all i ∈ [n];

• α/n3 ≤ c ·maxz(z · Pr[maxi{Xi} ≥ z]), where c is an absolute constant.

2. For all ε ∈ (0, 1), the tails beyond 2n2α
ε2

can be “homogenized”, i.e.

• for any integer m ≤ n, thresholds t1, . . . , tm ≥ t ≥ 2n2α
ε2

, and index set {a1, . . . , am} ⊆
[n]:

m∑
i=1

ti Pr[Xai ≥ ti] ≤
(
t− 2α

ε

)
· Pr

[
max
i∈[m]
{Xai} ≥ t

]
+

7ε

n
·
(

2α

ε
· Pr

[
max
i∈[m]
{Xai} ≥

2α

ε

])
.

Furthermore, α is efficiently computable from the distributions of the Xi’s.

Given our homogenization theorem, our reduction of Theorem 20 is obtained as follows.

• First, we compute the threshold α specified in Theorem 21. This can be done efficiently as
stated in Theorem 21. Now given the second anchoring property of α, we obtain an Ω(α/n3)
lower bound to the optimal revenue. Such a lower bound is useful as it implies that we can
ignore prices below some O(εα/n3), without losing more than an ε-fraction of revenue.

• Next, using the homogenization part of Theorem 21, we show that, if we restrict a price vector
to lie in [εα/n4, 2n2α/ε2]n, we only lose a O( εn) fraction of the optimal revenue. This step is
detailed in Appendix G.3.1.

• Finally, we show that we can efficiently transform the input regular random variables {vi}i∈[n]

into a new collection of random variables {ṽi}i∈[n] that are supported on [ εα
4n4 ,

4n4α
ε3

] and sat-
isfy the following: a near-optimal price vector for when the buyer’s values are distributed
as {ṽi}i∈[n] can be efficiently transformed into a near-optimal price vector for when the
buyer’s values are distributed as {vi}i∈[n]. This step is detailed in Appendix G.3.2, and
Appendix G.3.3 concludes the proof of Theorem 20.
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Theorem 4 is established by combining the reduction of Theorem 20 with our algorithm for
bounded distributions of Theorem 2. See Appendix H.

9.1 Discussion of Theorem 21

We give a couple of applications of Theorem 21 to gain some intuition about its content:

• Suppose that we set all the ti’s equal to t ≥ 2n2α/ε2. In this case, the homogenization
property of Theorem 21 implies that the union bound is essentially tight for t large enough,
as 14α

tn · Pr
[
maxi∈[m]{Xai} ≥ 2α

ε

]
in the following calculation gets arbitrary close to 0:

Pr

[
max
i∈[m]
{Xai} ≥ t

]
≤

(
m∑
i=1

Pr[Xai ≥ t]

)

≤

(
t− 2α

ε

t

)
· Pr

[
max
i∈[m]
{Xai} ≥ t

]
+

7ε

tn
·
(

2α

ε
· Pr

[
max
i∈[m]
{Xai} ≥

2α

ε

])
≤ Pr

[
max
i∈[m]
{Xai} ≥ t

]
+

14α

tn
· Pr

[
max
i∈[m]
{Xai} ≥

2α

ε

]
.

This is not surprising, since for all i, the event Xai ≥ t only happens with tiny probability,
by the anchoring property of α.

• Now let’s try to set all the ti’s to the same value t′ > t ≥ 2n2α/ε2. The homogenization
property can be used to show that the probability of the event maxi∈[m]{Xai} ≥ t′ scales
inverse proportionally with t′. Essentially this says that the tails of maxi∈[m]{Xai} are not
fatter than those of the equal revenue distribution.18

Pr

[
max
i∈[m]
{Xai} ≥ t′

]
≤

m∑
i=1

Pr[Xai ≥ t′]

≤

(
t− 2α

ε

t′

)
· Pr

[
max
i∈[m]
{Xai} ≥ t

]
+

7ε

t′n
·
(

2α

ε
· Pr

[
max
i∈[m]
{Xai} ≥

2α

ε

])
≤ 1

t′
·
[
t · Pr

[
max
i∈[m]
{Xai} ≥ t

]
+

7ε

n
·
(

2α

ε
· Pr

[
max
i∈[m]
{Xai} ≥

2α

ε

])]
.

A similar bound would follow from Markov’s inequality, if the expression inside the brackets
were within a constant factor of E[maxi∈[m]{Xai}]. The result is interesting as it is possible
for that expression to be much smaller than E[maxi∈[m]{Xai}]. For example, if m = 1 and
Xa1 is distributed according to the equal revenue distribution, the expectation of Xa1 is +∞,
while the expression inside the brackets is 1 + 7ε

n .

18Recall that the equal revenue distribution is supported on [1,+∞] and has cumulative density function F (x) =
1− 1

x
.
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Appendix

A Roadmap to the Appendix

Appendix B describes several computational models of accessing a value distribution, explaining
what it means for an algorithm with each type of access to be “computationally efficient” or “take
time polynomial in the input.”

Appendix C contains a formal description and analysis of our dynamic programming approach
for RestrictedPrice, culminating in the proof of Theorem 13.

Appendix D provides several reductions among item pricing problems, whose goal is to discretize
some aspect of the problem such as the support of the value distributions, the probabilities they
assign to their support, or the set of available prices. The appendix culminates in the reductions
of Theorems 15 and 17.

Appendix E provides a proof of Theorem 2, our algorithm for bounded distributions.

The rest of the appendix is dedicated to our treatment of MHR and regular distributions. Ap-
pendix F provides the proof of our extreme value theorem for MHR distributions (Theorem 19), as
well as our reduction from item pricing problems with MHR distributions to item pricing problems
with bounded distributions (Theorem 18). Similarly, Appendix G provides the proof of our extreme
value theorem for regular distributions (Theorem 21), as well as our reduction from item pricing
problems with regular distributions to item pricing problems with bounded distributions (Theo-
rem 20). The proofs of our algorithmic results for MHR and regular distributions (Theorems 3
and 4) are provided in Appendix H. The proofs of our structural results for independent MHR
and regular distributions (Theorems 5, 6 and 7) are provided in Appendix I. Finally, Appendix I.1
contains the proof of our structural result for i.i.d. MHR distributions (Theorem 8).

B Access to Value Distributions, and Computational Complexity

We consider three ways in which a distribution may be input to an algorithm, as well as what it
means for the algorithm to run in time “polynomial in the description of the distribution” in each
case.

• Explicitly: In this case, the distribution has to be discrete, and we are given its support (as
a list of numbers), and the probabilities that the distribution places on every element in its
support. If a distribution is explicitly input to an algorithm, the algorithm is computationally
efficient if it runs in time polynomial in its other inputs and the bit-complexity of the numbers
required to specify the distribution, i.e. the numbers in the support of the distribution and
the probabilities assigned to them.

• As an Oracle: In this case, we are given (potentially black-box) access to a subroutine,
called an oracle, that answers queries about the value of the cumulative distribution function
on a queried point. In particular, a query to the oracle consists of a point x and a precision
ε, and the oracle outputs a value of bit-complexity polynomial in the bit-complexity of x
and ε, which is within ε from the value of the cumulative distribution function at point x.
Moreover, we assume that we are given an anchoring point x∗ such that the value of the
cumulative distribution at that point is between two a priori known absolute constants c1
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and c2, such that 0 < c1 < c2 < 1. Having such a point is necessary, as otherwise it would
be computationally impossible to find any interesting point in the support of the distribution
(i.e. any point where the cumulative is different than 0 or 1).

If a distribution is provided to an algorithm as an oracle, the algorithm is computationally
efficient if it runs in time polynomial in its other inputs and the bit complexity of x∗, ignoring
the time spent by the oracle to answer queries (since this is not under the algorithm’s control).

If, as it so happens in practice, we have a closed-form description of our input distribution,
e.g. if our distribution is N (µ, σ2), we think of it as given to us as an oracle, answering
queries of the form (x, ε) as specified above. In most common cases, such an oracle can be
implemented so that it also runs efficiently in the bit-complexity of the query to the oracle.

• Sample Access: In this case, our only access to the distribution is our ability to take
samples from it. It is easy to see that sample access to a distribution can be reduced to
oracle access as follows. Suppose we have an algorithm A designed to work with oracle access
to a distribution, and let B be a bound on the total number of queries that the algorithm
may make to the oracle. (B is always upper bounded by the running time of the algorithm.)
Suppose now that instead of oracle access we have sample access to the distribution. Here is
how we can fix this: For any query (x, ε) that A needs to make to the oracle, we can simply
take 1

2ε2
ln(2B

δ ) samples from the distribution to estimate the cumulative distribution function
at x. By Chernoff bounds, our estimate will have error greater than ε with probability at
most δ

B . So a union bound shows that all (at most B) queries of the algorithm will have error
smaller than ε with probability at least 1− δ. (We can tune this probability to be as close to
one as we want at a cost of a factor of log 1

δ in the running time.) It is also easy to find an
anchoring point. If we take many samples from the distribution and pick the median as the
anchoring point, with very high probability the value of the cumulative distribution at this
point is between 1/3 and 2/3.

Given the above, whenever we have sample access to a distribution we will pretend to have
instead oracle access to it, and we will say that an algorithm is computationally efficient using
the same criterion we used for oracle access.

Polynomial-Time Reductions Involving Value Distributions. This paper provides several
polynomial-time reductions among item pricing problems. Recall from Section 2 that a reduction
contains an algorithm A that takes as input an instance of the item pricing problem, comprising
distributions (and sometimes a restricted set of prices), and outputs another instance of the item
pricing problem, comprising potentially different distributions (and prices). But what do we mean
when we say that “an algorithm A outputs a distribution F?” The algorithm may either output an
explicit description of the distribution or an oracle for it.19 In the former case, A must enumerate
the support of the distribution and specify the probabilities assigned to every point in the support,
as required by the first bullet above. In the latter case, A outputs an oracle for F , i.e. the
description of an algorithm that satisfies the requirements of the second bullet above. This oracle
may use as subroutines the oracles of the distributions provided in the input to A, if any. We will
then say that “A runs in polynomial time” if two properties are satisfied: 1. A’s running time is
polynomial in its input; and 2. if A outputs an oracle for some distribution F , this oracle must

19Our reductions never output a distribution by providing sample access to it.

23



run in time polynomial in the description of the oracle and the input (x, ε) to the oracle, excluding
the time spent in oracles (from the input to A) that the oracle may use as subroutines.

C The Algorithm for Discrete Distributions

C.1 The Generic DP Step: Add an Item and Discretize Probabilities

In Section 5, we described our intended meaning for the Boolean function g(i,Pr). Here we explain
how to compute g using dynamic programming. Our algorithm works bottom-up (i.e. from smaller
to larger i’s), filling in g’s table so that the following recursive conditions are met.

• If i > 1, we set g(i,Pr) = 1 iff there is a price p(j) and a distribution Pr′ so that the following
hold:

1. g (i− 1,Pr′) = 1.

2. Suppose that Pi−1 is the price vector stored at cell (i−1,Pr′) of the table, namely that under
price vector Pi−1 the (winning-value, winning-price) distribution for the prefix 1 . . . i−1 of the
items is Pr′. What would happen if we assigned price p(j) to the i-th item? If the gap between
the winning-value and winning-price among the first i−1 items is larger than the gap between
the value and price for the i-th item, the winning-value and winning-price would remain the
same. Otherwise, they will become the value and price for the i-th item. Based on this, we
can compute the resulting (winning-value, winning-price) distribution {Pr′′i1,i2}i1∈[k1], i2∈[k2]

for the prefix 1 . . . i from just Pr′i1,i2 and the distribution F̂i of item i. Indeed:

Pr′′i1,i2 = Pr′i1,i2 · Pr
vi∼F̂i

[vi − p(j) < v(i1) − p(i2)]

+


∑
j1,j2

s.t. v(j1)−p(j2)
≤v(i1)−p(i2)

Pr′j1,j2

 · Pr
vi∼F̂i

[vi = v(i1)] · 1p(j)=p(i2) . (3)

We require that Pr is a rounded version of Pr′′ computed as above, where all the probabilities
are integer multiples of 1

m . The rounding should be of the following canonical form. Setting

δi1,i2 = Pr′′i1,i2 −
⌊

Pr′′i1,i2
1/m

⌋
· 1
m , and l =

(∑
i1∈[k1], i2∈[k2] δi1,i2

)/
( 1
m), we will round the first

l probabilities in {Pr′′i1,i2}i1∈[k1],[i2]∈k2 in some fixed lexicographic order up to the closest

multiple of 1
m , and round the rest down to the closest multiple of 1

m .20

If Conditions 1 and 2 are met, we also store price vector (Pi−1, p
(j)) in cell g(i,Pr) of the table.

• To fill in the first slice of the table corresponding to i = 1, we use the same recursive definition
given above, imagining that there is a slice i = 0, whose cells are all 0 except for those corresponding
to the distributions Pr that satisfy: Pri1,i2 = 0, for all i1, i2, except for the lexicographically smallest
(i∗1, i

∗
2) ∈ arg min(k1,k2) v

(k1) − p(k2), where Pri∗1,i∗2 = 1.

While we decribed the function g recursively above, we compute it iteratively from i = 1 through n.

20Any rounding would work. We use this one just to make the description of our algorithm explicit.
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C.2 Proof of Theorem 13

In this appendix, we prove the correctness and running time of the algorithm presented in Section 5,
providing a proof of Theorem 13. Intuitively, if we did not perform any rounding of distributions,
our algorithm would have been exact, outputting an optimal price vector in {p(1), . . . , p(k2)}n. We
show next that the rounding is fine enough that it does not become detrimental to our revenue.
To show this, we use the probabilistic concepts of total variation distance and coupling of random
variables. Recall that the total variation distance between two distributions P and Q over a finite
set A is defined as follows

||P−Q||TV =
1

2

∑
α∈A
|P(α)−Q(α)|.

Similarly, if X and Y are two random variables ranging over a finite set, their total variation
distance, denoted ||X−Y ||TV is defined as the total variation distance between their distributions.

Proceeding to the correctness of our algorithm, let P = (p1, p2, · · · , pn) ∈ {p(1), . . . , p(k2)}n be an
arbitrary price vector. We can use this price vector to select n cells of our dynamic programming
table, picking one cell per layer. The cells are those that the algorithm would have traversed
if it made the decision of assigning price pi to item i, for all i. Let us call the resulting cells
cell1, cell2, . . . , celln.

For all i, we intend to compare the distributions

{
P̂r

(i)

i1,i2

}
i1∈[k1], i2∈[k2]

and
{

Pr
(i)
i1,i2

}
i1∈[k1], i2∈[k2]

,

which are respectively the (winning-value,winning-price) distribution:

• arising when the prefix 1 . . . i of items with distributions {F̂j}j=1,...,i is priced according to
price vector (p1, . . . , pi);

• stored in celli of the DP table.

The following lemma shows that these distributions have small total variation distance.

Lemma 22. For all i ∈ [n], ||Pr(i)−P̂r
(i)
||TV ≤ ik1k2/m.

Proof. At a high level, our argument shows two properties for every i: (1) if rounding was not

performed at step i of the DP algorithm, the distance between P̂r
(i)

and Pr(i) would not increase

compared to the distance between P̂r
(i−1)

and Pr(i−1); (2) after the rounding is performed the
distance increases by at most k1k2/m. Combining the two properties, we can prove the lemma.

Formally, we prove the lemma by induction. The base case is trivially true as Pr(1) is just a

rounding of P̂r
(1)

into probabilities that are multiples of 1
m , whereby the probability of every point

in the support is modified by no more than an additive 1
m .

We proceed to show the inductive step. For convenience, for all i, let Xi be a random variable

distributed according to Pr(i), i.e. Pr[Xi = (v(i1), p(i2))] = Pr
(i)
i1,i2

for all i1, i2, and let X̂i be a

random variable distributed according to P̂r
(i)

.
Now suppose that the claim is true for i. We want to show that it holds for i+1. For this purpose

we define an auxiliary random variable Zi+1. Zi+1 is a function of the random variable Xi and an
independent random variable v̂i+1 distributed according to F̂i+1. If v̂i+1 − pi+1 ≥ Xi(1) − Xi(2),
we set Zi+1 = (v̂i+1, pi+1), otherwise we set Zi+1 = Xi. Clearly, if we replaced Xi by X̂i in this
definition, we would get a random variable with the same distribution as X̂i+1.
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Now consider the following coupling of X̂i+1 and Zi+1. Use the optimal coupling of X̂i and Xi.
Then generate both X̂i+1 and Zi+1 using the above procedure with the same sample for v̂i+1. It is
clear then that, conditioning on Xi = X̂i, X̂i+1 = Zi+1 with probability 1. So

||X̂i+1 − Zi+1||TV ≤ Pr[X̂i+1 6= Zi+1] ≤ Pr[Xi 6= X̂i] = ||Xi − X̂i||TV , (4)

where the first inequality is true under any coupling, the second inequality is true for our particular
coupling, and the last equality is true because we assumed an optimal coupling of Xi and X̂i.

On the other hand, we know that, if we round the distribution of Zi+1 into integer multiples of
1/m, we will get the distribution of Xi+1. Therefore,

||Zi+1 −Xi+1||TV ≤ k1k2/m (5)

Combining (4) and (5), the triangle inequality implies that ||Xi+1− X̂i+1||TV ≤ ||Xi− X̂i||TV +
k1k2/m, which completes the inductive step.

Proof of Theorem 13: Correctness: Let P ∗ be an optimal price vector for the instance of Re-
strictedPrice resulting after the reduction of Lemma 23 is applied to discretize the Fi’s into F̂i’s.
Let cell∗ be the cell at layer n of the DP table corresponding to the price vector P ∗. Lemma 22
implies that ∑

i1∈[k1], i2∈[k2]

|Pr
(n)
i1,i2
− P̂r

(n)

i1,i2 | ≤ nk1k2/m,

where P̂r
(n)

is the true (winning-value,winning-price) distribution corresponding to price vector P ∗

and Pr(n) is the distribution stored in cell cell∗. Clearly, the expected revenues RP ∗ and Rcell∗
from these two distributions are related, as follows

|RP ∗ −Rcell∗ | ≤
∑

i1∈[k1], i2∈[k2]

|Pr
(n)
i1,i2
− P̂r

(n)

i1,i2 | · p
(i2) ≤ nk1k2

m
·max

i
{p(i)}.

Now let cell′ be the cell at layer n of the DP table that has the highest expected revenue, and
let P ′ be the price vector stored in cell′. Using the same notation as above, call Rcell′ the revenue
from the distribution stored at cell′ and RP ′ the revenue from price vector P ′. Then we have the
following:

Rcell′ ≥ Rcell∗ ; (by the optimality of cell′) (6)

|RP ′ −Rcell′ | ≤
nk1k2

m
·max

i
{p(i)}. (using Lemma 22, as above) (7)

Putting all the above together, we obtain that

RP ′ ≥ RP ∗ −
2nk1k2

m
·max

i
{p(i)}. (8)

Hence, the price vector P ′ output by our algorithm achieves revenue RP ′ that is close to the
optimal revenue RP ∗ for the discretized distributions {F̂i}i. We now have to relate this revenue to
the optimal revenue for the distributions {Fi}i. So let us define the following quantities:

• R(P ∗): the revenue achieved by price vector P ∗ in the original instance {Fi}i;

26



• R(P ′): the revenue achieved by price vector P ′ in the original instance {Fi}i.

Using Lemma 23 we easily see the following:

• R(P ∗) ≥ OPT − 8k1n
m ·maxi{p(i)};

• R(P ′) ≥ RP ′ − 4k1n
m ·maxi{p(i)}; and

• RP ∗ ≥ R(P ∗)− 4k1n
m ·maxi{p(i)}.

Combining these with (8), we get

R(P ′) ≥ RP ∗ −
2nk1k2

m
·max

i
{p(i)} − 4k1n

m
·max

i
{p(i)}

≥ R(P ∗)− 2nk1k2

m
·max

i
{p(i)} − 8k1n

m
·max

i
{p(i)}

≥ OPT − (2nk1k2 + 16k1n)

m
·max

i
{p(i)}.

Running Time: Recall that both the support S = {v(1), v(2), . . . , v(k1)} of the value distributions
and the set P :=

{
p(1), . . . , p(k2)

}
of prices are explicitly part of the input to our algorithm.

Given this, the reduction of Lemma 23 (used as the first step of our algorithm) takes time
polynomial in the size of the input and logm. After this reduction is carried out, the value
distributions {F̂i}i that are provided as input to the dynamic programming algorithm are known
explicitly and the probabilities they assign to every point in S are integer multiples of 1

m .
We proceed to bound the running time of the dynamic programming algorithm. First, it is easy

to see that its table has at most n× (m+ 1)k1k2 cells, since there are n possible choices for i and
m+ 1 possible values for each Pri1,i2 . Our DP computation proceeds iteratively from layer i = 1 to
layer i = n of the table. For every cell of layer i, there are at most k2 different prices we can assign
to the next item i + 1. For every such price we need to compute a distribution using Eq. (3) and
then round that distribution. Hence, the total work we need to do per cell of layer i is polynomial
in the input size and logm, since our computation involves probabilities that are integer multiples
of 1

m . Indeed the probability distributions maintained in the DP table use probabilities that are

integer multiples of 1
m , and recall that the distributions F̂i also use probabilities in multiples of 1

m .
Hence, the total time we need to spend to fill up the whole table is polynomial in the size of the
input and mk1k2 . In the last phase of the algorithm, we exhaustively search for the cell of layer n
with the highest expected revenue. This costs time polynomial in the size of the input and mk1k2 ,
since there are mO(k1k2) cells at layer n, and the expected revenue computation for each cell can be
done in time polynomial in the input size and logm. Overall, the running time of the algorithm is
polynomial in the size of the input and mk1k2 . �

D Our Discretization Results

This appendix provides various reductions among item pricing problems. All reductions discretize
some aspect of a given item pricing problem. This could be the set of allowable prices, the support
of the value distributions, or the probabilities assigned by these distributions to the points in their
support. We will bound the loss in approximation resulting from each reduction. This bound is
useful in telling us how much revenue we are losing if we solve the discretized problem instead of
the given problem.
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D.1 Discretization of Probabilities

The following lemma allows us to discretize the probabilities assigned by value distributions sup-
ported on a discrete set to points in their support.

Lemma 23 (Probability Discretization). Suppose we are given a collection of mutually indepen-
dent random variables {vi}i∈[n] supported on a discrete set S = {s1, . . . , sk} ⊂ R≥0, an interval
[pmin, pmax] ⊂ R≥0 of possible prices, and an integer m ≥ 2k.21 In polynomial-time we can con-
struct another collection of mutually independent random variables {v′i}i∈[n] whose distributions
are supported on the same set S but only use probabilities that are integer multiples of 1/m. The
distributions of the v′i’s are computed explicitly. Moreover, for any price vector P ∈ [pmin, pmax]n,
the difference in expected revenue from the two collections of random variables is upper bounded
4kn
m · pmax.

Proof of Lemma 23: If we know the distributions of the vi’s explicitly, then, for all i, we construct
the distribution of v′i as follows. Let πsj = Pr[vi = sj ] and π′sj = Pr[v′i = sj ]. For all j ≥ 2, round
all πsj down to the nearest integer multiple of 1/m to get π′sj . We then round πs1 up to get π′s1 to
guarantee that π′ is still a distribution. We use δsj to denote the rounding error at sj .

As the total variation distance between the distribution of vi and v′i is 1
2

∑m
j=1 δsj ≤

k
m , we can

couple vi and v′i so that Pr[vi 6= v′i] ≤ k
m . Now taking a union bound over all i, the probability that

the vector v = (v1, v2, . . . , vn) is different from v′ = (v′1, v
′
2, . . . , v

′
n) is at most kn

m . In other words,

with probability at least 1− kn
m , v = v′. Clearly, for all draws from the distribution such that v = v′,

the revenues are the same. When v 6= v′, the difference between the revenues is at most pmax, since
P ∈ [pmin, pmax]n. And this only happens with probability at most kn

m . Therefore, the difference

between the expected revenues under the two distributions should be no greater than kn
m · pmax.

Clearly, we can compute the distributions of the v′i’s in time polynomial in n, k, logm and the
description complexity of the distributions of the variables vi’s, if these distributions are given to us
explicitly. If we have oracle access to the distributions of the vi’s we can query our oracle with high
enough precision, say 1/m, to obtain a function gi : S → [0, 1] that satisfies

∑
x∈S gi(x) = 1 ± k

m .
Using the normalized gi as a proxy for the distribution of vi we can follow the algorithm outlined
above to define the distribution of v′i. It is not hard to argue that the total variation distance
between vi and v′i can be bounded by 4k

m . Hence, we can couple vi and v′i so that Pr[vi 6= v′i] ≤ 4k
m

and proceed as above. �

D.2 Discretization of Prices

In this appendix, we present several easy lemmas that can be used to restrict the search space for
a (nearly-)optimal price vector. First, it is staightforward to see that, when the value distributions
are supported in some range [umin, umax], it is sufficient to only consider prices that lie in the same
range, without any sacrifice in revenue.

Lemma 24 (Price Restriction). In an instance of the item pricing problem, suppose that the values
are independently distributed in some range [umin, umax]. Let also P = (p1, . . . , pn) be an arbitrary
price vector, and suppose that we modify P into a new price vector P ′ as follows: for all i, set

21It is assumed that S, pmin, pmax and m are given explicitly. We may have any access to the value distributions
(as discussed in Appendix B).
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p′i = umax, if pi > umax; set p′i = umin, if pi < umin; otherwise set p′i = pi. The expected revenues
RP and RP ′ achieved by the price vectors P and P ′ respectively satisfy RP ′ ≥ RP .

Proof of Lemma 24: Let us do the modification in two steps. We first increase the prices that are
below umin to umin, and then decrease the prices that are above umax to umax. We will show that
each step will not decrease the expected revenue.

Let us increase the low prices first, and call P ′′ the resulting price vector. For every sample
(v1, . . . , vn) from the value distributions, if the buyer makes the same decision under P and P ′′, his
price under P ′′ is at least as high as under P . If the buyer makes a different decision under P and
P ′′, it must be that, under P , the buyer is buying an item priced less than umin and, because the
price of that item was increased to umin in P ′′, the buyer prefers to buy a different item. In this
case, the buyer was paying less than umin under P and is paying at least umin under P ′′.

Now let us decrease the prices in P ′′ that are above umax to umax to obtain P ′, and let us
compare the price that a buyer will pay under these two price vectors. Whenever the buyer does
not buy anything under P ′, he is also not buying anything under P ′′, as the items under P ′ are at
least as cheap. Also notice that the only items whose value-minus-price gap is different under P ′′

and P ′ are those that are priced above umax in P ′′ and umax in P ′, and their gap increases in P ′.
So if the buyer buys different items under P ′′ and P ′, then the buyer is paying umax under P ′ and
at most umax under P ′′.�

Combining Lemma 24 with a price discretization lemma attributed to Nisan [CHK07], we can

restrict the set of prices to a set of cardinality O( log umax/umin
ε2

), if [umin, umax] is the support of the
value distributions.

Lemma 25 (Price Discretization). Suppose that the value distributions in an instance of the item
pricing problem are independent and supported on [umin, umax] ⊂ R+. For any ε ∈ (0, 1/2), consider
the following finite set of prices:

Pε =

{
p p =

1 + ε2 − ε
(1− ε2)i

· umin, i ∈
[⌊

log 1
(1−ε2)

(umax/umin)

⌋]}
.

For any price vector P ∈ [umin, umax]n, there exists a price vector P ′ such that p′i ∈ Pε and
p′i ∈ [1− ε, 1 + ε2 − ε] · pi, for all i. The expected revenue achieved by the two price vectors satisfies
RP ′ ≥ (1− 2ε)RP .

Proof of Lemma 25: Our proof exploits the following lemma, attributed in [CHK07] to Nisan.

Lemma 26. Let ε ∈ (0, 1), and let P , P ′ be price vectors satisfying p′i ∈ [1 − ε, 1 + ε2 − ε] · pi,
for all i. Then the expected revenues achieved by the two price vectors in an instance of the item
pricing problem satisfy RP ′ ≥ (1− 2ε)RP .

To prove Lemma 25, define for every pi:

p′i =
1 + ε2 − ε

(1− ε2)

⌊
log1/(1−ε2)(pi/umin)

⌋ · umin.
Observe that

1

(1− ε2)
blog1/(1−ε2)(pi/umin)c · umin ∈ [1− ε2, 1] · pi.
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On the other hand, (1− ε2)(1 + ε2 − ε) = 1− ε+ ε3 − ε4 ≥ 1− ε. Thus, p′i ∈ [1− ε, 1 + ε2 − ε] · pi,
for all i. Now Lemma 26 implies that RP ′ ≥ (1− 2ε)RP . �

We conclude with a lemma with a similar flavor as Lemma 24.

Lemma 27. Let α > 0 be arbitrary, let P be any price vector, and define P ′ as follows: set p′i = pi,
if pi ≥ α, and p′i = α otherwise. Then the expected revenues RP and RP ′ from these price vectors
in an instance of the item pricing problem satisfy RP ′ ≥ RP − α.

Proof of Lemma 27: Let Slow = {i | pi < α } and fix the buyer’s values for the items. The only
case where the buyer’s behavior is different under P and P ′ is when the buyer is buying some item
Slow under P , as these are the only items whose value-minus-price gap changed/decreased from P
to P ′. So the difference in revenue is bounded by the contribution to RP of items in Slow, which is
no greater than α. �

D.3 Discretization of Values

In this appendix, we establish polynomial-time reductions, discretizing the support of the value
distributions in the input to the item pricing problem. Our reductions are specialized depending
on whether we want to achieve multiplicative (Lemma 30) or additive (Lemma 31) approximations
to the optimal revenue. Both reductions are enabled by an extension of Nisan’s lemma to value
distributions, summarized in Lemma 28.

Lemma 28. Let {vi}i∈[n] and {v̂i}i∈[n] be two collections of mutually independent random variables,
where all vi’s are supported on a common set [umin, umax] ⊂ R+, and let r = umax/umin. Let also

δ ∈
(

0, 1
(4dlog2 re)1/(2a−1)

]
, where a ∈ (1/2, 1), and suppose that we can couple the two collections of

random variables so that, for all i ∈ [n], v̂i ∈ [1 + δ − δ2, 1 + δ] · vi with probability 1. Finally, let
ROPT be the optimal expected revenue from any price vector when the buyer’s values are {vi}i∈[n].
Then, for any price vector P ∈ [umin, umax]n, such that RP ({vi}i) ≥ ROPT /2, it holds that

RP ({v̂i}i) ≥ (1− 3δ1−a)RP ({vi}i),

where RP ({vi}i) is the expected revenue under price vector P when the values are {vi}i∈[n], while
RP ({v̂i}i) is the revenue under P when the values are {v̂i}i∈[n].

Proof of Lemma 28: For notational convenience, throughout this proof we use RP := RP ({vi}i)
and R̂P := RP ({v̂i}i).

Consider now the joint distribution of {vi}i∈[n] and {v̂i}i∈[n] satisfying v̂i ∈ [1 + δ− δ2, 1 + δ] ·vi,
for all i, with probability 1. For every point in the support of the joint distribution, we show that
the revenue of the seller under price vector P is not much larger in “Scenario A”, where the values
of the buyer are {vi}i∈[n], than in “Scenario B”, where the values are {v̂i}i∈[n]. In particular, we
argue first that the price paid in “Scenario A” is at most δ · umax larger than the price paid in
“Scenario B,” with probability 1. Indeed, for every point in the support of the joint distribution,
we distinguish two cases:

1. The items sold are the same in the two scenarios. In this case, the winning prices are also
the same.
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2. The items sold are different in the two scenarios. In this case, we show that the winning
prices are close. Since v̂i is greater than vi for all i, if there is a winner (item) in Scenario A,
there is a winner in Scenario B. Let i be the winner in Scenario A, and j be the winner in
Scenario B. We have the following two inequalities:

vi − pi ≥ vj − pj
v̂j − pj ≥ v̂i − pi

The two inequalities imply that
v̂j − vj ≥ v̂i − vi.

Since v̂j ∈ [1 + δ − δ2, 1 + δ] · vj , it follows that v̂j − vj ≤ δ · vj . Using the same starting
condition for i, we can show that v̂i − vi ≥ (δ − δ2) · vi.
Hence,

δ · vj ≥ (δ − δ2) · vi.

Also we know that
pj ≥ pi + vj − vi.

Therefore,
pj ≥ pi + vj − vi ≥ pi + (1− δ) · vi − vi = pi − δ · vi. (9)

The above establishes that with probability 1 the price paid in “Scenario A” is larger than
that paid in “Scenario B” by at most an additive δumax. We proceed to convert this additive
approximation guarantee into a multiplicative approximation guarantee. Observe that whenever
pi ≥ δavi, pi−δ ·vi ≥ (1−δ1−a)pi. Hence, if we can show that most of the revenue RP is contributed
by value-price pairs (vi, pi) satisfying pi ≥ δavi, we can convert our additive approximation to a
(1−δ1−a) multiplicative approximation. Indeed, we argue next that when a price vector P satisfies
RP ≥ ROPT /2, the contribution to the revenue from the event

S = {the sold item k satisfies pk < δavk}

is small. More precisely,

Proposition 29. If RP ≥ ROPT /2, then the contribution to RP from the event S is no greater
than 2δ1−aRP .

Proof. The proof is by contradiction. For all i ∈ [dlog2 re], define the event

Si = {(the sold item k has price pk < δavk) ∧ (pk ∈ [2i−1umin, 2
iumin))}.

Note that Si and Sj are disjoint for all i 6= j. Let np = dlog2 re and note that S = ∪npi=1Si.
22

Assuming that the contribution to RP from the event S is larger than 2δ1−aRP , there must exist
some i such that the contribution to RP from Si is at least 2δ1−aRP /np ≥ δ1−aROPT /np. For this
i, let us modify the price vector P to P ′ in the following fashion:

p′k =

{
+∞ pk /∈ [2i−1umin, 2

iumin)
2i−1umin

δa otherwise

22To be more accurate, replace the set [2i−1umin, 2
iumin) by [2i−1umin, 2

iumin] for the definition of the event Snp .
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We claim that for all outcomes (v1, v2, . . . , vn) ∈ Si, there always exists an item sold under P ′.
Indeed, let k be the winner under P . Then pk < δavk. By the definition of p′k, we know that

p′k =
2i−1umin

δa
≤ pk/δa < vk.

Thus, an item has to be sold. Moreover, the sold item has price 2i−1umin
δa , as all the other prices are

set to +∞. Hence, we can lower bound RP ′ as follows

RP ′ ≥ Pr[Si] ·
2i−1umin

δa
≥ Contribution of Si to RP

2δa
≥ δ1−aROPT

2npδa
.

Given that δ ≤ ( 1
4np

)1/(2a−1), the above implies RP ′ ≥ 2ROPT , which is impossible, i.e. we get a
contradiction. This concludes the proof of the proposition.

Given the proposition, at least (1 − 2δ1−a) fraction of RP is contributed by value-price pairs
(vi, pi) satisfying pi ≥ δavi. Recalling our earlier discussion, this implies that R̂P ≥ (1−2δ1−a)(1−
δ1−a)RP ≥ (1− 3δ1−a)RP . �

Lemma 28 enables polynomial-time reductions from value distributions supported on some
bounded range [umin, umax] to value distributions supported on some discrete set of cardinality
O(log r), where r = umax/umin. We provide two reductions (Lemmas 30 and 31) depending on
whether the approximation to the optimal revenue is intended to be additive or multiplicative. We
note that a straightforward extension of Nisan’s lemma to value distributions would have resulted
in supports of cardinality O(r2 log r). The exponential improvement in the size of the support
comes from our more intricate extension obtained by Lemma 28.

Lemma 30 (Value Discretization for Multiplicative Approximations). Let {vi}i∈[n] be a collection
of mutually independent random variables supported on a bounded range [umin, umax] ⊂ R+, and

r = umax
umin

. For any δ ∈
(

0, 1
(4dlog2 re)4/3

)
, there exists a collection of mutually independent random

variables {v̂i}i∈[n], which are supported on a discrete set of cardinality O
(

log r
δ2

)
and satisfy the

following properties.

1. The optimal revenue when the buyer’s values are {v̂i}i∈[n] is at least a (1 − 3δ1/8)-fraction

of the optimal revenue when the values are {vi}i∈[n]. I.e. R̂OPT ≥ (1 − 3δ1/8)ROPT , where

ROPT = maxP RP ({vi}i) and R̂OPT = maxP RP ({v̂i}i).

2. Moreover, for any constant ρ ∈ (0, 1/2) and any price vector P such that RP ({v̂i}i) ≥
(1 − ρ)R̂OPT , we can construct in time polynomial in the description of P and 1/δ another
price vector P̃ such that RP̃ ({vi}i) ≥ (1− 7δ1/8 − ρ)ROPT .

If umin and umax are provided explicitly as input to the reduction,23 we can compute the distributions
of the v̂i’s

24 and their support in time polynomial in the description of {vi}i∈[n], 〈umin〉, 〈umax〉
and 1/δ.

23This requirement is only relevant if we have oracle access to the distributions of the vi’s, as if we are given the
distributions explicitly we immediately also know umin and umax.

24The v̂i’s will inherit the same type of access that we have to the distributions of the vi’s, according to Appendix B.
In particular, if the vi’s are specified explicitly in the input to the reduction then the v̂i’s will also be specified explicitly
in the output of the reduction; if the vi’s are given as oracles then the v̂i’s will be given as oracles; etc.
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Proof of Lemma 30: Informally, our reduction establishes the following properties: (1) Suppose that
we transform a buyer with arbitrary valuations (call this buyer “Buyer A”) to a buyer with discrete
valuations (called “Buyer B”) by first multiplying each of Buyer A’s values by (1 + δ) and then
rounding them down to the closest real of the form (1+δ)(1+ξ)jumin, for some integer j, where δ is

fixed and ξ = δ2

1+δ−δ2 . We show that the optimal revenue from Buyer B is very close to the optimal
revenue from Buyer A by exploiting that Buyer B’s values have been boosted, using Lemma 28. (2)
For the reduction to be computationally useful, we also show that given an approximately optimal
price vector for Buyer B, if we divide all prices by (1 + δ)(1 + δ − δ2), the new price vector will be
an approximately optimal price vector for Buyer A. Intuitively, scaling down the prices undoes the
effect of boosting the values.

We proceed to make the above plan precise, beginning with the description of the random vari-
ables {v̂i}i∈[n]. We will use {Fi}i∈[n] and {F̂i}i∈[n] to denote respectively the cumulative distribution
functions of the variables {vi}i∈[n] and {v̂i}i∈[n]. Our variables {v̂i}i∈[n] will only be supported on
the set {

aj = (1 + δ)(1 + ξ)jumin j ∈
{

0, . . . ,
⌊

log1+ξ

umax
umin

⌋}}
.

Moreover, for all i, F̂i is defined in terms of Fi as follows:

F̂i(aj) = Fi(aj/(1 + δ − δ2))− Fi(aj/(1 + δ)) + F̂i(aj−1)1j>0, ∀j.

Now, for all i, we couple vi with v̂i as follows: If vi ∈ [aj/(1 + δ), aj/(1 + δ − δ2)), we set v̂i = aj .
Given our definition of the F̂i’s, this defines a valid coupling of the collections V = {vi}i and
V̂ = {v̂i}i. Moreover, by definition, our coupling satisfies

v̂i ∈ [1 + δ − δ2, 1 + δ] · vi, ∀i, (10)

with probability 1, and all the v̂i’s are supported on [(1 + δ)umin, (1 + δ)umax].
We are now ready to establish the first part of the lemma. Using Lemma 28 and the property

of our coupling it follows immediately that

RP (V̂) ≥ (1− 3δ1/8)RP (V),

for any price vector P ∈ [umin, umax]n s.t. RP (V) ≥ 1
2ROPT . Lemma 24 implies that the optimal

revenue for V is achieved by some price vector in [umin, umax]n. Hence, we get from the above that
R̂OPT ≥ (1− 3δ1/8)ROPT .

We proceed to show the second part of the lemma. We do this by defining another collection
of random variables Ṽ = {ṽi}i∈[n]. These are defined implicitly via the following coupling between
{ṽi}i∈[n] and {v̂i}i∈[n]: for all i, we set

ṽi =
v̂i

(1 + δ − δ2)(1 + δ)
.

It follows that the ṽi’s are supported on [umin/(1 + δ − δ2), umax/(1 + δ − δ2)].
Moreover, for any price vector P , let us construct another price vector P̃ as follows:

p̃i =
pi

(1 + δ − δ2)(1 + δ)
. (11)
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Under our coupling between {ṽi}i∈[n] and {v̂i}i∈[n], it is not hard to see that if we use price vector

P when the buyer’s values are {v̂i}i∈[n] and price vector P̃ when the buyer’s values are {ṽi}i∈[n],
then the index of the item that the buyer buys is the same in the two cases, with probability 1.
Hence:

RP̃ (Ṽ) =
RP (V̂)

(1 + δ − δ2)(1 + δ)
. (12)

This follows from the fact that both P̃ and {ṽi}i∈[n] are the same linear transformations of P and
{v̂i}i∈[n] respectively.

Composing the coupling between vi and v̂i and the coupling between v̂i with ṽi, we obtain a
coupling between vi and ṽi. We show that this coupling satisfies vi ∈ [1 + δ − δ2, 1 + δ] · ṽi, with
probability 1. Since (1 + δ − δ2)vi ≤ v̂i ≤ (1 + δ)vi, it follows that

vi/(1 + δ) ≤ v̂i/(1 + δ − δ2)(1 + δ) = ṽi ≤ vi/(1 + δ − δ2).

Hence

vi ∈ [1 + δ − δ2, 1 + δ] · ṽi,∀i, (13)

with probability 1. Now an application of Lemma 28 implies that, for any price vector P̃ ∈
[umin/(1 + δ − δ2), umax/(1 + δ − δ2)]n satisfying RP̃ (Ṽ ) ≥ 1

2ROPT (Ṽ ):

RP̃ (V) ≥ (1− 3δ1/8)RP̃ (Ṽ). (14)

Now let P be a price vector satisfying RP (V̂) ≥ (1− ρ)R̂OPT . Lemma 24 implies that WLOG
we can assume that P ∈ [(1+δ)umin, (1+δ)umax]n (as if the given price vector is not in this set, we
can efficiently convert it into one that is in this set without losing any revenue). Then the vector
P̃ obtained from P via Eq. (11) is in [umin/(1 + δ − δ2), umax/(1 + δ − δ2)]n, and clearly satisfies
RP̃ (Ṽ) ≥ (1−ρ)ROPT (Ṽ), as P̃ and Ṽ are the same linear transformations of P and V̂ respectively.
Hence, Equations (12) and (14) give

RP̃ (V) ≥
(

(1− 3δ1/8)
/

(1 + δ)(1 + δ − δ2)
)
RP (V̂)

≥ (1− 3δ1/8)(1− 2δ)RP (V̂)

≥ (1− 4δ1/8)RP (V̂)

≥ (1− 4δ1/8)(1− ρ)R̂OPT
≥ (1− 4δ1/8)(1− ρ)(1− 3δ1/8)ROPT (using the first part of the theorem)

≥ (1− 7δ1/8 − ρ)ROPT .

�

Lemma 31 (Value Discretization for Additive Approximations). Let {vi}i∈[n] be a collection of
mutually independent random variables supported on a bounded range [umin, umax] ⊂ R+, and
r = umax

umin
. For any δ > 0, there exists another collection of mutually independent random variables

{v̂i}i∈[n], which are supported on a discrete set of cardinality O
(

log r
δ2

)
and satisfy the following

properties.
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1. The optimal revenue when the buyer’s values are {v̂i}i∈[n] is at most δumax smaller than

the optimal revenue when the values are {vi}i∈[n]. I.e. R̂OPT ≥ ROPT − δumax, where

ROPT = maxP RP ({vi}i) and R̂OPT = maxP RP ({v̂i}i).

2. Moreover, for any constant ρ > 0 and any price vector P such that RP ({v̂i}i) ≥ R̂OPT − ρ,
we can construct in time polynomial in the description of P and 1/δ another price vector P̃
such that RP̃ ({vi}i) ≥ ROPT − 4δumax − ρ.

If umin and umax are provided explicitly as input to the reduction,25 we can compute the distributions
of the v̂i’s

26 and their support in time polynomial in the description of {vi}i∈[n], 〈umin〉, 〈umax〉,
and 1/δ.

Proof. The proof is very similar to the proof of Lemma 30. In particular, let V̂ = {v̂i}i∈[n] and

Ṽ = {ṽi}i∈[n] be defined in the same way as in that lemma. So, with probability 1, (10) and (13)

are satisfied. So Eq. (9) of Lemma 28 implies that R̂OPT ≥ ROPT − δumax.
Now let P be a price vector satisfying RP (V̂) ≥ R̂OPT − ρ. Lemma 24 implies that WLOG we

can assume that P ∈ [(1 + δ)umin, (1 + δ)umax]n. Then the vector P̃ obtained from P via Eq. (11)

is in [umin/(1 + δ − δ2), umax/(1 + δ − δ2)]n, and satisfies RP̃ (Ṽ) = RP (V̂)
(1+δ)(1+δ−δ2)

, as P̃ and Ṽ are

the same linear transformations of P and V̂ respectively. Hence,

RP̃ (V) ≥ RP̃ (Ṽ)− δumax (by Eq. (9) of Lemma 28 given (13))

=
RP (V̂)

(1 + δ)(1 + δ − δ2)
− δumax

≥ (1− 2δ)RP (V̂)− δumax
≥ R̂OPT − 3δumax − ρ
≥ ROPT − 4δumax − ρ.

D.4 Omitted Details from Section 6

Proof of Lemma 14: Let OPT be the optimal revenue under V. Also, let ε′ = ε/3.
By Lemma 24, we only need to consider price vectors in [0, 1]n for an optimal one. Moreover,

it follows from Lemma 27 that, if we restrict all prices to be higher than ε′, we lose at most an
additive ε′ in revenue. So there exists a price vector P̄ ∈ [ε′, 1]n such that RP̄ (V) ≥ OPT − ε′.

Now, let us define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling:

for all i ∈ [n], set ṽi = ε′

2 if vi < ε′, and ṽi = vi otherwise. We claim the following:

Claim 32. For any price vector P in [ε′, 1]n, RP (Ṽ) = RP (V).

25This requirement is only relevant if we have oracle access to the distributions of the vi’s, as if we are given the
distributions explicitly we immediately also know umin and umax.

26The v̂i’s will inherit the same type of access that we have to the distributions of the vi’s, according to Appendix B.
In particular, if the vi’s are specified explicitly in the input to the reduction then the v̂i’s will also be specified explicitly
in the output of the reduction; if the vi’s are given as oracles then the v̂i’s will be given as oracles; etc.
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Proof of Claim 32: Recall that the variables {ṽi}i are defined via a coupling with the vi’s. Under
the same coupling, sample values from the vi’s and the ṽi’s. For all items i such that vi 6= ṽi, the
price of item i is higher than the value of item i in both cases, so item i will not be purchased
in both cases. That means the buyer will make the same decision in both cases, as she will only
consider items whose values are the same. So the revenues under V and Ṽ are pointwise equal. �

We proceed to show that an approximately optimal solution for Ṽ provides an approximately
optimal solution for V. Suppose that a price vector P̃ satisfies RP̃ (Ṽ) ≥ ROPT (Ṽ ) − ε′. By

Lemmas 24 and 27, we can efficiently convert P̃ to P ′ ∈ [ε′, 1]n, such that RP ′(Ṽ) ≥ RP̃ (Ṽ)− ε′.
Combining the inequalities above, we have

ROPT (Ṽ) ≥ RP̄ (Ṽ) = RP̄ (V) ≥ OPT − ε′,

and
RP ′(V) = RP ′(Ṽ) ≥ RP̃ (Ṽ)− ε′ ≥ ROPT (Ṽ)− 2ε′.

Thus,
RP ′(V) ≥ OPT − 3ε′.

�

Proof of Theorem 15: Lemma 31 implies that we can reduce the problem AdditivePrice(V, ε)
to the problem AdditivePrice(V̂, ε3), where V̂ = {v̂i}i is a collection of mutually independent

random variables supported on a common discrete set S = {s(1), . . . , s(k1)} ⊂ [(1+ ε
6umax

)umin, (1+
ε

6umax
)umax] of cardinality k1 = O(u

2
max log r
ε2

). Now, Lemmas 24 and 25 imply that we can reduce

the problem AdditivePrice(V̂, ε3) to the problem of approximating ResrtictedPrice(V̂,P) to

within an additive ε
6 , where P is a discrete set of prices of cardinality O(u

2
max log r
ε2

), satisfying
maxx∈P x ≤ 7

6umax. �

D.5 Proof of Theorem 17

Proof of Theorem 17: Lemma 30 implies that we can reduce the problem Price(V, ε) to the problem
Price(V̂, ε8), where V̂ = {v̂i}i is a collection of mutually independent random variables supported

on a common discrete set S = {s(1), . . . , s(k1)} ⊂ [(1 + (ε/8)8)umin, (1 + (ε/8)8)umax] of cardinality
k1 = O( log r

ε16
). Now, Lemmas 24 and 25 imply that we can reduce the problem Price(V̂, ε8) to

the problem of approximating ResrtictedPrice(V̂,P) to within a multiplicative factor of 1− ε
16 ,

where P is a discrete set of prices of cardinality O( log r
ε2

). �

E Proof of Theorem 2

We restate and prove Theorem 2. We note that we have not tried to carefully optimize the constants
in the running time. There may be room for improvement with a more careful analysis.

Theorem 2 [Restated] Let {Fi}i∈[n] be a collection of distributions that are supported on a
bounded set [umin, umax] ⊂ R+, where umin and umax are specified as part of the input,27 and let

27This requirement is only relevant if we have oracle access to the Fi’s, as if we are given the distributions explicitly
we immediately also know umin and umax.
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r := umax/umin. Then, for any constant ε > 0, there is an algorithm that runs in time polynomial

in the size of the input and max

{
nlog11 r·log log r, n

log3 r·log 1
ε

ε8

}
and computes a price vector P such

that
RP ≥ (1− ε)OPT,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independent draws from the distributions {Fi}i and OPT is the optimal revenue.

Proof of Theorem 2: First set ε̂ = min
{
ε, 1

(4dlog2 re)1/6

}
. Clearly, it suffices to find a price vector with

expected revenue (1− ε̂)OPT . Now, let us invoke the reduction of Theorem 17, reducing this task to
approximating RestrictedPrice({F̂i}i,P) to within a factor of (1− ε̂

16), where the distributions

{F̂i}i are supported on a discrete set S = {s(1), . . . , s(k1)} of cardinality k1 = O(log r/ε̂16) and the
prices are also restricted to a discrete set P = {p(1), . . . , p(k2)} of cardinality k2 = O(log r/ε̂2). It is
important to note that S ⊂ [(1 + (ε̂/8)8)umin, (1 + (ε̂/8)8)umax] and mini{p(i)} ≤ mini{s(i)} (this

can be checked by a careful study of the proof of Theorem 17). Hence, if ÔPT is the optimal

revenue of the discrete instance resulting from the reduction, we have ÔPT ≥ mini{p(i)}. It is our

goal to achieve revenue at least (1− ε̂
16)ÔPT .

To do this, we invoke the algorithm of Theorem 13 with a choice of m = Θ(nrk1k2ε̂ ) = O(nr log2 r
ε̂19

),
obtaining a price vector with revenue at least:

ÔPT −O
(
nk1k2

m
max
i
{p(i)}

)
= ÔPT −O (ε̂) ·min

i
{p(i)} ≥ ÔPT (1−O(ε̂)) , (15)

as we wanted. The running time of the algorithm in this case is polynomial in the input and m
log2 r

ε̂18 ,

that is polynomial in the input and max

{
nlog6 r·log log r, n

log3 r·log 1
ε

ε18

}
.

Being a bit more careful in the application of our discretization lemmas we can obtain running

time polynomial in the input and max

{
nlog11 r·log log r, n

log3 r·log 1
ε

ε8

}
. Recall that to establish our

reduction in Theorem 17 we employed Lemma 30, which in turn made use of Lemma 28, setting
a = 7

8 . Setting instead a = 2
3 would result in a stronger Lemma 30 and Theorem 17, improving our

running time here. �

F Details of Section 8: MHR to Bounded Distributions

F.1 Basic Properties of MHR Distributions

Definition 33. For a random variable X, we define α1 = umin, and for every real number p ∈
(1,+∞), we define αp = inf

{
x|F (x) ≥ 1− 1

p

}
.

The following lemma establishes an interesting property of MHR distributions. Intuitively, the
lemma provides a lower bound on the speed of the decay of the tail of a MHR distribution. We
prove the lemma by showing that the function loge

(
1−F (x)

)
is concave if F is MHR, and exploiting

this concavity (see Appendix F.1.1).
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Lemma 34. If the distribution of a random variable X satisfies MHR, m ≥ 1 and d ≥ 1, d ·αm ≥
αmd.

Next we study the expectation of a random variable that satisfies MHR. We show that the
contribution to the expectation from values ≥ m, is O(m ·Pr[X ≥ m]). We start with a definition.

Definition 35. For a random variable X, let Con[X ≥ x] = E[X|X ≥ x] · Pr{X ≥ x} be the
contribution to expectation of X from values which are no smaller than x, i.e.

Con[X ≥ x] =

∫ +∞

x
t · f(t)dt.

It is an obvious fact that for any random variable X and any two points x1 ≤ x2, Con[X ≥
x1] ≥ Con[X ≥ x2]. Using the bound on the tail of a MHR distribution obtained in Lemma 34, we
bound the contribution to the expectation of X by the values at the tail of the distribution. The
proof is given in Appendix F.1.

Lemma 36. Let X be a random variable whose distribution satisfies MHR. For all m ≥ 2, Con[X ≥
αm] ≤ 6αm/m.

F.1.1 Proofs Omitted from Appendix F.1

Proof of Lemma 34: It is not hard to see that f(x) > 0, for all x ∈ (umin, umax). For a contradiction,
assume this is not true, that is, for some x′ ∈ (umin, umax), f(x′) = 0. We know 1−F (x′) > 0. Thus
f(x′)

1−F (x′) = 0. Since the distribution satisfies MHR and 1 − F (x) is positive for all x ∈ (umin, x
′),

f(x) = 0 in this interval. Hence, it must also be that F (x) = 0 in [umin, x
′). Since x′ > umin, it

follows that umin 6= sup{x|F (x) = 0}, a contradiction.
Since f(x) > 0 in (umin, umax), F (x) is monotone in (umin, umax). So we can define the inverse

F−1(x) in (umin, umax). It is not hard to see that for any p ∈ [1,+∞), F (αp) = 1 − 1/p and
αp = F−1(1− 1/p).

Now let G(x) = loge(1− F (x)). We will show that G(x) is a concave function.

Let us consider the derivative of G(x). By the definition of MHR, G′(x) = −f(x)
1−F (x) is monotoni-

cally non-increasing. Therefore, G(x) is concave. It follows that, for every m, by the concavity of
G(x), the following inequality holds:

G

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ d− 1

d
G(α1) +

1

d
G(αmd).

Let us rewrite the RHS as follows

d− 1

d
G(α1) +

1

d
G(αmd) =

d− 1

d
loge 1 +

1

d
loge(1− F (αmd)) =

1

d
loge

(
1

md

)
= loge

(
1

m

)
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Hence, we have the following:

G

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ loge

(
1

m

)
=⇒ loge

(
1− F

(
d− 1

d
· α1 +

1

d
· αmd

))
≥ loge

(
1

m

)
=⇒1− F

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ 1

m

=⇒1− F
(
d− 1

d
· α1 +

1

d
· αmd

)
≥ 1− F (αm)

=⇒F (αm) ≥ F
(
d− 1

d
· α1 +

1

d
· αmd

)
=⇒αm ≥

d− 1

d
· α1 +

1

d
· αmd (F is monotone increasing)

=⇒αm ≥
1

d
· αmd (umin ≥ 0)

=⇒d · αm ≥ αmd .

�

Proof of Lemma 36: Let S = Con[X ≥ αm], and consider the sequence {βi := α
m(2i)}, defined for

all non-negative integers i. It can easily be seen that limi→+∞ αm(2i) = umax; hence, limi→+∞ βi =
umax and by continuity limi→+∞ F (βi) = F (umax) = 1.

Also, ∫ βi+1

βi

x · f(x)dx ≤ βi+1(1− F (βi)) = βi+1/m
(2i).

Moreover, Lemma 34 implies that βi ≤ 2βi−1; thus, βi ≤ 2iβ0 ≤ 2iαm. Hence, we have the
following:

S =

∫ umax

αm

x · f(x)dx ≤
+∞∑
i=0

βi+1

m(2i)
≤

+∞∑
i=0

2i+1αm

m(2i)

≤2αm
m

+
+∞∑
i=1

2(i+1)αm

m(2i)
=

2αm
m

+
4αm
m2

+∞∑
i=0

(
2

m2

)i
=

2αm
m

+
4αm
m2
· 1

1− 2/m2

≤2αm
m

+
4αm
m

≤6αm
m

.

�

F.2 Proof of Theorem 19: Extreme Value Theorem for MHR Distributions

We start with some useful notation. For all i = 1, . . . , n, we denote by Fi the distribution of

variable Xi. We also let α
(i)
m := inf

{
x|Fi(x) ≥ 1− 1

m

}
, for all m ≥ 1. Moreover, we assume that
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n is a power of 2. If not, we can always include at most n additional random variables that are
detreministically 0, making the total number of variables a power of 2.

We proceed with the proof of Theorem 19. The threshold β is computed by an algorithm. At
a high level, the algorithm proceeds in O(log n) rounds, indexed by t ∈ {0, . . . , log2 n}, eliminating
half of the variables at each round. The way the elimination works is as follows. In round t, we
compute for each of the variables that have survived so far the threshold αn/2t beyond which the

size of the tail of their distribution becomes smaller than 2t

n . We then sort these thresholds and
eliminate the bottom half of the variables, recording the threshold of the last variable that survived
this round. The maximum of these records among the log2 n rounds of the algorithm is our β. The
pseudocode of the algorithm is given below. Given that we may only be given oracle access to the
distributions {Fi}i∈[n], we allow some slack η ≤ 1

2 in the computation of our thresholds so that the
computation is efficient. If we know the distributions explicitly, the description of the algorithm
simplifies to the case η = 0.

Algorithm 1 Algorithm for finding β

1: Define the permutation of the variables π0(i) = i, ∀ i ∈ [n], and the set of remaining variables
Q0 = [n].

2: for t := 0 to log2 n− 1 do

3: For all j ∈ [n/2t], compute some x
(πt(j))
n/2t ∈ [1 − η, 1 + η] · α(πt(j))

n/2t , for a small constant

η ∈ [0, 1/2)
4: Sort these n/2t numbers in decreasing order πt+1 such that

x
(πt+1(1))
n/2t ≥ x(πt+1(2))

n/2t ≥ . . . ≥ x(πt+1(n/2t))
n/2t

5: Qt+1 := { πt+1(i) | i ≤ n/2t+1 }
6: βt := x

(πt+1(n/2t+1))
n/2t

7: end for
8: Compute x

(πlog2 n(1))

2 ∈ [1− η, 1 + η] · α(πlog2 n(1))

2

9: Set βlog2 n := x
(πlog2 n(1))

2

10: Output β := maxt βt

Crucial in the proof of the theorem is the following lemma.

Lemma 37. For all i ∈ [n] and ε ∈ (0, 1/4), let Si = Con[Xi ≥ 2 log2(1
ε ) · β], where Con[·] is

defined as in Definition 35. Then

n∑
i=1

Si ≤ 36 log2(1/ε)ε · β, for all ε ∈ (0, 1/4).

Proof. Let d = log2(1
ε ) and notice that d ≥ 2. It is not hard to see that we can divide [n] into

(log2 n) + 1 different groups {Gt}t∈{0,...,log2 n} based on the sets Qt maintained by the algorithm, as
follows. For t ∈ {0, . . . , log2 n}, set

Gt =

{
Qt \Qt+1 t < log2 n

Qlog2 n t = log2 n

Now, it is not hard to see that, for all t < log2 n and all i ∈ Gt, Si ≤ Con[Xi ≥ 2d · βt], since
βt ≤ β. Also for any i ∈ Gt, there must exist some k ∈ (n/2t+1, n/2t], such that i = πt+1(k). Then
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by the definition of the algorithm, we know that

(1− η)α
(i)
n/2t ≤ x

(i)
n/2t ≤ x

(πt+1(n/2t+1))
n/2t = βt.

Recall that η is chosen to satisfy 2 ≥ 1/(1 − η). Then d · α(i)
n/2t ≤ 2d · βt. But Lemma 34 gives

d · α(i)
n/2t ≥ α

(i)

(n/2t)d
. Hence,

2d · βt ≥ d · α(i)
n/2t ≥ α

(i)

(n/2t)d
,

which implies that

Con[vi ≥ 2d · βt] ≤ Con[vi ≥ α(i)

(n/2t)d
].

Using Lemma 36, we know that

Con[vi ≥ α(i)

(n/2t)d
] ≤ 6α

(i)

(n/2t)d
(2t/n)d ≤ 12dβt(2

t/n)d.

Now, since |Gt| = n/2t+1,∑
i∈Gt

Si ≤ 12dβt(2
t/n)d × n/2t+1 = 6d · βt(2t/n)d−1 =

6d · βt
nd−1

(2d−1)t.

Thus,

∑
i∈[n]\Glog2 n

Si ≤
(log2 n)−1∑

t=0

6d · βt
nd−1

(2d−1)t

≤6d · β
nd−1

· (2d−1)log2 n − 1

2d−1 − 1

=
6d · β
nd−1

· n
d−1 − 1

2d−1 − 1

≤12d · β
2d − 2

≤24d · β
2d

=24 log2(1/ε)ε · β

Let i be the unique element in Glog2 n. Then βlog2 n = x
(i)
2 . Using Lemma 34 and the definition

of x
(i)
2 , we obtain

2d · β ≥ 2d · βlog2 n ≥ 2d · x(i)
2 ≥ 2(1− η)d · α(i)

2 ≥ d · α
(i)
2 ≥ α

(i)

2d
= α

(i)
1/ε.

Using the above and Lemma 36 we get

Si ≤ Con[vi ≥ α(i)
1/ε] ≤ 6ε · α(i)

1/ε ≤ 12εd · β.

Putting everything together,

n∑
i=1

Si ≤ 36 log2(1/ε)ε · β.
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Using Lemma 37, we obtain∫ +∞

2β log2 1/ε
t · fmaxi{Xi}(t)dt ≤

n∑
i=1

Si ≤ 36 log2(1/ε)ε · β.

It remains to show that

Pr[max
i
{Xi} ≥ β/2] ≥ 1− 1

e1/2
. (16)

We show that, for all t, Pr
[
maxi{Xi} ≥ βt

1+η

]
≥ 1− 1

e1/2
, where η is the parameter used in Algo-

rithm 1. This is sufficient to imply (16), as η ≤ 1/2. Observe that for all i ∈ [n/2t+1],

(1 + η) · α(πt+1(i))
n/2t ≥ x(πt+1(i))

n/2t ≥ βt,

where πt+1 is the permutation constructed in the t-th round of the algorithm. This implies

α
(πt+1(i))
n/2t ≥ βt

1 + η
.

Hence, for all i ∈ [n/2t+1], Pr[Xπt+1(i) ≤ βt
1+η ] ≤ 1− 2t/n. Thus,

Pr

[
max
i
{Xi} ≥

βt
1 + η

]
≥ Pr

[
∃i ∈ [n/2t+1], Xπt+1(i) ≥

βt
1 + η

]
≥ 1− (1− 2t/n)n/2

t+1

≥ 1− 1

e1/2
.

Eq. (16) now follows.

F.3 Proof of Theorem 18: Reduction from MHR to Bounded Distributions

Recall that we represent by {vi}i∈[n] the values of the buyer for the items. We will denote their
distributions by {Fi}i∈[n] throughout this appendix.

F.3.1 Relating OPT to β

We demonstrate that the anchoring point β of Theorem 19 provides a lower bound to the optimal
revenue. In particular, we show that the optimal revenue satisfies OPT = Ω(β). This lemma
justifies the relevance of β.

Lemma 38. If β is the anchoring point of Theorem 19, then OPT ≥
(

1− 1√
e

)
β
2 .

Proof of Lemma 38: Suppose we priced all items at β
2 . The revenue we would get from such price

vector would be at least
β

2
Pr

[
max{vi} ≥

β

2

]
≥ β

2

(
1− 1√

e

)
,

where we used Theorem 19. Hence, OPT ≥
(

1− 1√
e

)
β
2 . �

For simplicity, we set c1 := 1
2

(
1− 1√

e

)
for the next appendices, keeping in mind that c1 is an

absolute constant.
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F.3.2 Restricting the Prices

This appendix culminates in Lemma 40 (given below), which states that we can constrain our prices

to the set [ε · β, 2 log2(1
ε ) · β] without hurting the revenue by more than a fraction of ε+c2(ε)

c1
, where

c2(ε) := 36 log2(1
ε )ε and c1 is the constant defined in Appendix F.3.1. We prove this in two steps.

First, exploiting our extreme value theorem for MHR distributions (Theorem 19), we show that for
a given price vector, if we lower the prices that are above 2 log2(1

ε ) · β to 2 log2(1
ε ) · β, the loss in

revenue is bounded by c2(ε) · β, namely

Lemma 39. Fix an arbitrary ε ∈ (0, 1/4). Given a price vector P , define P ′ as follows: set
p′i = pi, if pi ≤ 2 log2(1

ε ) · β, and p′i = 2 log2(1
ε ) · β otherwise. Then the expected revenues RP and

RP ′ achieved by price vectors P and P ′ respectively satisfy: RP ′ ≥ RP − c2(ε) · β.

Using Lemma 39, we obtain our main result for this appendix. Observe that we can make the
loss in revenue arbitrarily small be taking ε sufficiently small.

Lemma 40. For all ε ∈ (0, 1/4), there exists a price vector P ∗ ∈ [ε · β, 2 log2(1
ε ) · β]n, such that

the revenue from this price vector satisfies RP ∗ ≥
(

1− ε+c2(ε)
c1

)
OPT, where OPT is the optimal

revenue under any price vector.

All proofs of this appendix can be found in Appendix F.4.1.

F.3.3 Truncating the Value Distributions

Exploiting Lemma 40, i.e. that we can constrain the prices to [ε ·β, 2 log2(1
ε ) ·β] without hurting the

revenue, we show Theorem 18, i.e. that we can also constrain the support of the value distributions
into a bounded range. In particular, we show that we can “truncate” the value distributions to the
range [ ε2 ·β, 2 log2(1

ε ) ·β], where for our purposes “truncating” means this: for every distribution Fi,
we shift all probability mass from (2 log2(1

ε ) · β,+∞) to the point 2 log2(1
ε ) · β, and all probability

mass from (−∞, ε·β) to ε
2 ·β. We show that our modification does not hurt the revenue. That is, we

establish a polynomial-time reduction from the problem of computing a near-optimal price vector
when the buyer’s value distributions are arbitrary MHR distributions to the case where the buyer’s
value distributions are supported on a bounded interval [umin, c ·umin], where c = c(ε) = 41

ε log2(1
ε )

is a constant that only depends on the desired approximation ε. The proof of Theorem 41 is given
in Appendix F.4.2.

Theorem 41 (Reduction from MHR to Bounded Distributions). Given ε ∈ (0, 1/4) and a collection
of mutually independent random variables {vi}i that are MHR, let us define a new collection of
random variables {ṽi}i via the following coupling: for all i ∈ [n], set ṽi = ε

2 · β if vi < ε · β,
set ṽi = 2 log2(1

ε ) · β if vi ≥ 2 log2(1
ε ) · β, and set ṽi = vi otherwise, where β = β({vi}i) is the

anchoring point of Theorem 19 computed from the distributions of the variables {vi}i. Let also

ÕPT be the optimal revenue of the seller when the buyer’s values are distributed as {ṽi}i∈[n] and
OPT the optimal revenue when the buyer’s values are distributed as {vi}i∈[n]. Then given a price

vector that achieves revenue (1− δ) · ÕPT when the buyer’s values are distributed as {ṽi}i∈[n], we
can efficientlly compute a price vector with revenue(

1− δ − 2ε+ 3c2(ε)

c1

)
OPT

when the buyer’s values are distributed as {vi}i∈[n].
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Theorem 18 follows from Theorem 41.

F.4 Proofs Omitted from Appendix F.3

F.4.1 Restricting the Price Range for MHR Distributions: the Proofs

Proof of Lemma 39: We will show a slightly more general result. Given a price vector, if we make
all prices that are above α equal to α, then the loss in revenue can bounded by the sum, over all
items whose price was above α, of the contribution to this item’s expected value by points above
α. Formally,

Lemma 42. Let α > 0 and S(α) = Con[maxi vi ≥ α], where Con[·] is defined as in Definition 35.
Moreover, for a given price vector P , define P ′ as follows: set p′i = pi, if pi < α, and p′i = α,
otherwise. Then the expected revenues RP and RP ′ from P and P ′ respectively satisfy

RP ′ ≥ RP − S(α).

Proof. Let Sexp = { i | pi > α } be the set of expensive items under P , and let P ′′ be a new price
vector obtained from P by changing the price of all items i ∈ Sexp from pi to +∞. If we switch
from P to P ′′, the only case where the buyer makes a different decision is when she used to buy
some item from Sexp under P . So the decrease in revenue can be bounded by the contribution to
RP from the items in Sexp. Clearly, this contribution is at most Con

[
maxi∈Sexp vi ≥ α

]
≤ S(α).

We proceed to argue that RP ′ ≥ RP ′′ . If we switch from P ′′ to P ′, the buyer will pointwise
either make the same decision or switch to buy some item in Sexp paying α. Since α is larger than
any finite price in P ′′, the revenue does not decrease.

Combining the two inequalities, we have RP ′ ≥ RP ′′ ≥ RP − S(α).

Combining Theorem 19 with Lemma 42, it is easy to argue that if we truncate a price vector
P at value 2 log2(1

ε ) · β to obtain a new price vector P ′ the change in revenue can be bounded as
follows: RP ′ ≥ RP − c2(ε) · β. �

Proof of Lemma 40: Lemma 39 implies that, if we start from any price vector P , we can modify it
into another price vector P ′ that does not use any price above 2 log2(1

ε )·β, and satisfies RP ′ ≥ RP−
c2(ε)·β. Then Lemma 27 implies that we can change P ′ into another vector P ′′ ∈ [ε·β, 2 log2(1

ε )·β]n,
such that RP ′′ ≥ RP ′ − ε · β.

By Lemma 38, we know that OPT ≥ c1 · β. Hence, if we start with the optimal price vector P
and apply the above transformations, we will obtain a price vector P ∗ ∈ [ε · β, 2 log2(1

ε ) · β]n such
that

RP ∗ ≥ OPT −
(
ε+ c2(ε)

)
· β ≥

(
1− ε+ c2(ε)

c1

)
OPT.

�

F.4.2 Bounding the Support of the Distributions: the Proofs

To establish Theorem 41 we show that we can transform {vi}i∈[n] into {ṽi}i∈[n] such that, for all

i, ṽi only takes values in [ ε2 · β, 2 log2(1
ε ) · β], and for any price vector P ∈ [ε · β, 2 log2(1

ε ) · β]n,

|R̃P −RP | ≤ c2(ε) ·β, where RP and R̃P are respectively the revenues of the seller when the buyer’s
values are distributed as {vi}i∈[n] and {ṽi}i∈[n]. We first show that one side of our truncation works.
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Lemma 43. Given ε ∈ (0, 1/4) and a collection of random variables {vi}i that are MHR, let us
define a new collection of random variables {v̂i}i via the following coupling: for all i ∈ [n], if
vi ≤ 2 log2(1

ε ) · β, set v̂i = vi, otherwise set v̂i = 2 log2(1
ε ) · β, where β = β({vi}i) is the anchoring

point of Theorem 19 computed from the distributions of the variables {vi}i. Then, for any price
vector P ∈ [ε · β, 2 log2(1

ε ) · β]n, |RP − R̂P | ≤ c2(ε) · β, where RP and R̂P are respectively the
revenues of the seller when the buyer’s values are distributed as {vi}i∈[n] and as {v̂i}i∈[n].

Proof. For convenience let d = log2(1
ε ), and let RP and R̂P be random variables representing the

revenue when the buyer’s values are {vi}i∈[n] and {v̂i}i∈[n] respectively. Recall that {vi}i and {v̂i}i
are defined via a coupling, so RP − R̂P 6= 0 only in the event vi 6= v̂i, for some i. Notice that the
probability of this event is Pr[∃i, vi > 2d · β], and that 0 ≤ RP , R̂P ≤ 2d · β since the maximum
price of any item is 2d · β. Hence, we can bound |E[RP ]− E[R̂P ]| using Theorem 19 as follows:

|E[RP ]− E[R̂P ]| ≤ 2d · β · Pr[∃i, vi > 2d · β]

= 2d · β · Pr[max
i
vi ≥ 2d · β] ≤ Con[max

i
vi ≥ 2d · β] ≤ c2(ε) · β.

Next we show that the other side of the truncation works.

Lemma 44. Given ε, β > 0 and a collection of random variables {v̂i}i, let us define a new collection
of random variables {ṽi}i via the following coupling: for all i ∈ [n], if v̂i ≥ ε·β, set ṽi = v̂i, otherwise
set ṽi = ε

2 · β. Then, for any price vector P ∈ [ε · β,+∞)n, R̃P = R̂P , where R̂P and R̃P are
respectively the revenues of the seller when the buyer’s values are distributed as {v̂i}i∈[n] and as
{ṽi}i∈[n].

Proof. Recall that the variables {ṽi}i are defined via a coupling with the v̂i’s. Under the same
coupling, sample values from the v̂i’s and the ṽi’s. For all items i such that v̂i 6= ṽi, the price of
item i is higher than the value of item i in both cases, so item i will not be purchased in both cases.
That means the buyer will make the same decision in both cases, as she will only consider items
whose values are the same. So the revenues are pointwise equal.

Putting these lemmas together we obtain our reduction.

Proof of Theorem 41: Let P be a near-optimal price vector when the values of the buyer are
distributed as {ṽi}i∈[n], i.e. one that satisfies

R̃P ≥ (1− δ) · ÕPT ,

where R̃P denotes the expected revenue of the seller under price vector P when the buyer’s values
are {ṽi}i∈[n]. Given that each ṽi lies in [ ε2 · β, 2 log2(1

ε ) · β], it follows from Lemma 24 that we can

(efficiently) transform P into another vector P ′ ∈ [ ε2 · β, 2 log2(1
ε ) · β]n, such that R̃P ≤ R̃P ′ .

We can then apply the following efficient transformation from P ′ to P ′′: For any i, if p′i < ε · β,
set p′′i = ε · β, and set p′′i = p′i otherwise. By Lemma 27, we know that, R̃P ′′ ≥ R̃P ′ − ε · β.

Now, since P ′′ is a price vector in [ε · β, 2 log2(1
ε ) · β]n, by Lemmas 43 and 44, we get RP ′′ ≥

R̃P ′′ − c2(ε) · β, where RP ′′ is the expected revenue of the seller under price vector P ′′ when the
values of the buyers are {vi}i.
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On the other hand, suppose that P ∗ is the optimal price vector in [ε ·β, 2 log2(1
ε ) ·β]n for values

{vi}i∈[n]. By Lemma 40, we know that RP ∗ ≥
(

1− ε+c2(ε)
c1

)
OPT . Now Lemmas 43 and 44 give

R̃P ∗ ≥ RP ∗ − c2(ε) · β ≥
(

1− ε+ c2(ε)

c1

)
OPT − c2(ε) · β ≥

(
1− ε+ 2c2(ε)

c1

)
OPT,

where we used that OPT ≥ c1 · β, by Lemma 38.
Since ÕPT ≥ R̃P ∗ ,

R̃P ′ ≥ R̃P ≥ (1− δ)ÕPT ≥ (1− δ)
(

1− ε+ 2c2(ε)

c1

)
OPT ≥

(
1− δ − ε+ 2c2(ε)

c1

)
OPT.

Recall that RP ′′ ≥ R̃P ′′ − c2(ε) · β ≥ R̃P ′ − ε · β − c2(ε) · β. Therefore,

RP ′′ ≥
(

1− δ − ε+ 2c2(ε)

c1

)
OPT − ε · β − c2(ε) · β ≥

(
1− δ − 2ε+ 3c2(ε)

c1

)
OPT.

So given a near-optimal price vector P for {ṽi}i∈[n], we can construct a near-optimal price vector
P ′′ for {vi}i∈[n] in polynomial time. �

G Details of Section 9

We start by establishing some useful properties of regular distributions, and proceed to show our
extreme value theorem (Theorem 21), and our reduction from item pricing problems with regular
distributions to item pricing problems with bounded distributions (Theorem 20).

G.1 Basic Properties of Regular Distributions

If F is a differentiable continuous regular distribution, it is not hard to see the following: if f(x) = 0
for some x ∈ (uXmin, u

X
max), then f(x′) = 0 for all x′ < x (as otherwise the definition of regularity

would be violated.) Hence, if X is a random variable distributed according to F , it must be that
f(x) > 0 for x ∈ [uXmin, u

X
max]. So we can define F−1 on [uXmin, u

X
max], and it will be differentiable,

since F is differentiable and f is non-zero. Now we can make the following definition, capturing
the revenue of a seller who prices an item with value distribution F , so that the item is bought
with probability exactly q.

Definition 45 (Revenue Curve). For a differentiable continuous regular distribution F , define
RF : [0, 1]→ R as follows

RF (q) = q · F−1(1− q).

The following is well-known. We include its short proof for completeness.

Lemma 46. If F is regular, RF (q) is a concave function on (0, 1].

Proof. The derivative of RF (q) is

R′F (q) = F−1(1− q)− q

f
(
F−1(1− q)

) .
Notice that F−1(1 − q) is monotonically non-increasing in q. This observation and the regularity
of F imply that R′F (q) is monotonically non-increasing in q. (To see this try the change of variable
x(q) = F−1(1− q).) This implies that RF (q) is concave.
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Lemma 47. For any regular distribution F , if 0 < q̃ ≤ q ≤ p < 1, then

RF (q̃) ≤ 1

1− p
RF (q).

Proof. Since q ∈ [q̃, 1), there exists a λ ∈ (0, 1], such that

λ · q̃ + (1− λ) · 1 = q.

Hence: λ = 1−q
1−q̃ ≥

1−p
1 = 1− p. Now, from Lemma 46, we have that RF (x) is concave. Thus

RF (q) = RF
(
λ · q̃ + (1− λ) · 1

)
≥ λ ·RF (q̃) + (1− λ) ·RF (1).

Since RF (1) ≥ 0, RF (q) ≥ λ ·RF (q̃) ≥ (1− p)RF (q̃). Thus, RF (q̃) ≤ 1
1−pRF (q).

Corollary 48. For any regular distribution F , if q̃ ≤ q ≤ 1
n3 , then

RF (q̃) ≤ n3

n3 − 1
RF (q).

G.2 Proof of Theorem 21: Extreme Value Theorem for Regular Distributions

We define α explicitly from the distributions {Fi}i of the variables {Xi}i. We first need a definition.

Definition 49. A point x is a (c1, c2)-anchoring point of a distribution F , if F (x) ∈ [c1, c2].

Now fix two arbitrary constants 0 < c1 < c2 ≤ 7
8 , and let, for all i, αi be a (c1, c2)-anchoring

point of the distribution Fi. Then define

α =
n3

c1
·max

i

[
αi ·

(
1− Fi(αi)

)]
.

Clearly, a collection α1, . . . , αn of (c1, c2)-anchoring points can be computed efficiently from the Fi’s.
Hence, an α as above can be computed efficiently. We proceed to establish anchoring properties
satisfied by α.

Proposition 50. α ≥ maxi α
(i)
n3 , where α

(i)
p = inf

{
x|Fi(x) ≥ 1− 1

p

}
as in Definition 33.

Proof. Because 1/n3 ≤ 1− c2 ≤ 1− F (αi) ≤ 1− c1, it follows from Lemma 47 that

1

c1
· αi ·

(
1− Fi(αi)

)
≥ α(i)

n3/n
3.

Hence: α ≥ n3

c1
·
[
αi ·

(
1− Fi(αi)

)]
≥ α(i)

n3 . This is true for all i, hence the theorem.

Proof of Theorem 21: We first show that Pr[Xi ≥ `α] ≤ 2/(`n3), for any ` ≥ 1. By Proposition 50

and Corollary 48, we have that (`α) Pr[Xi ≥ `α] ≤ n3

n3−1
αPr[Xi ≥ α]. Thus

Pr[Xi ≥ `α] ≤ n3

n3 − 1
· 1

`
· Pr[Xi ≥ α] ≤ 2/(`n3), (17)
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which establishes the first anchoring property satisfied by α.
Moreover, we have that

α/n3 =
1

c1
·max

i

[
ai ·
(
1− Fi(ai)

)]
≤ 1

c1
max
z

(z · Pr[max
i
{Xi} ≥ z]),

which establishes the second anchoring property of α.
Finally, we demonstrate the homogenization property of α. We want to show that, for any

integer m ≤ n, thresholds t1, . . . , tm ≥ t ≥ 2n2α
ε2

, index set S = {a1, . . . , am} ⊆ [n], and ε ∈ (0, 1):

m∑
i=1

ti Pr[Xai ≥ ti] ≤
(
t− 2α

ε

)
· Pr

[
max
i
{Xai} ≥ t

]
+

7ε · (2α/ε · Pr[maxi{Xai} ≥ 2α/ε])

n
. (18)

For notational simplicity, we define fi(zi) = zi · Pr[Xai ≥ zi] and f
(S)
max(z) = z · Pr[maxi{Xai} ≥

z]. Notice that for any ti ≥ t ≥ 2α/ε, a double application of Proposition 50, Lemma 47 and
Equation (17) gives

fi(ti) ≤
(n3/ε)

(n3/ε)− 1
fi(t) ≤

2(n3/ε)

(n3/ε)− 1
fi

(
2α

ε

)
. (19)

Thus,

LHS of (18) ≤
m∑
i=1

fi(t) +
1

(n3/ε)− 1

m∑
i=1

fi(t)

≤
m∑
i=1

fi(t) +
2

(n3/ε)− 1

m∑
i=1

fi

(
2α

ε

)

≤
m∑
i=1

fi(t) +
2n

(n3/ε)− 1
f (S)
max

(
2α

ε

)

≤
m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)
.

On the other hand, for any t ≥ 2α/ε: Pr[Xai ≥ t] ≤ Pr[Xai ≥ 2α/ε] ≤ ε/n3 (using (17)). Thus:∑
i

Pr[Xai ≥ t] ≥ Pr[max
i
{Xai} ≥ t] ≥ (1− ε/n2)

∑
i

Pr[Xai ≥ t], (20)

where the last inequality follows from the fact that, for all i, the probability that Xai ≥ t, while
Xaj < t for all j ∈ S \ {i} is at least Pr[Xai ≥ t](1− ε/n3)m−1 ≥ Pr[Xai ≥ t](1− ε/n2). Therefore,
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continuing our upper-bounding from above:

LHS of (18) ≤
m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (2α/ε) Pr[max

i
{Xai} ≥ t] + (ε/n2)

m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (2α/εt)

m∑
i=1

fi(t) + (2ε/n2)
m∑
i=1

fi

(
2α

ε

)
+

2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (ε/n2)

m∑
i=1

fi(t) +
4ε

n
f (S)
max

(
2α

ε

)
≤ (t− 2α/ε) Pr[max

i
{Xai} ≥ t] +

6ε

n
f (S)
max

(
2α

ε

)
,

where we got the third inequality by invoking (19) and (20), the fourth inequality by invoking (20)
with t = 2α/ε, and the fifth inequality by invoking (19) and then (20) with t = 2α/ε. This concludes
the proof of Theorem 21. �

G.3 Proof of Theorem 20: Reduction from Regular to Bounded Distributions

G.3.1 Restricting the Prices for the Input Regular Distributions

Lemma 51. Let V = {vi}i∈[n] be a collection of independent regular value distributions, ε ∈ (0, 1),
and c the absolute constant in the statement of Theorem 21. For any price vector P , we can
construct a new price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ ≥ RP −

(c+9)εROPT
n , where

RP and RP̂ are respectively the expected revenues under price vectors P and P̂ , and ROPT is the
optimal expected revenue for V.

Proof. First step: We first construct a price vector P ′ ∈ [0, 2n2α/ε2]n based on P , such that the
revenue under P ′ is at most an additive O( ε·ROPTn ) smaller than the revenue under P .

We define P ′ as follows. Let S = {i pi > 2n2α/ε2}. For any i ∈ S set p′i = 2(n2/ε−1)α
ε ,

while if i /∈ S set p′i = pi. Now assume |S| = m. For notational convenience we assume that

S = {ai i ∈ [m]}, and set Xai = vai . Moreover, let t = 2n2α
ε2

and ti = pai .
Clearly, the contribution to RP from items in S is upper bounded by

∑m
i=1 ti Pr[Xai ≥ ti]. We

proceed to analyze the contribution to revenueR′P from items in S. Notice that, when maxi∈S{vi} =
maxi{Xai} ≥ t, the largest value-minus-price gap for items in S is at least 2α/ε (given our subtle
choice of prices for items in S above). Hence, for the item of S achieving this gap not to be the
winner, it must be that some item in [n]\S has a larger value-minus-price gap. For this to happen,
the value for this item has to be higher than 2α/ε. However, the probability that there exists an
item in [n]\S with value greater than 2α/ε is smaller than n · ε/n3 = ε/n2 (by Theorem 21). Thus,
when maxi{Xai} ≥ t, then with probability at least 1 − ε/n2, the item in S achieving the largest
value-minus-price gap is the item bought by the buyer. So when the price vector is P ′, the revenue
from the items in S is lower bounded by (t − 2α/ε) Pr[maxi{Xai} ≥ t](1 − ε/n2) (where we used
independence and the fact that p′i = t− 2α/ε for all i ∈ S.)

Clearly, (t − 2α/ε) Pr[max{Xai} ≥ t] ≤ tPr[maxi{Xai} ≥ t] ≤ ROPT . To see this, notice that
the first inequality is obvious and the second follows from the observation that we could set the
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prices of all items in S to t and of all other items to +∞ to achieve revenue tPr[maxi{Xai} ≥ t]. So
ROPT should be larger than this revenue. Similarly, we see that 2α/ε·Pr[maxiXai ≥ 2α/ε] ≤ ROPT .
Using these observations and Theorem 21 we get

(t− 2α/ε) Pr[max
i
{Xai} ≥ t](1− ε/n2) +

8ε · ROPT
n

≥(t− 2α/ε) Pr[max
i
{Xai} ≥ t] +

7ε · (2α/ε · Pr[maxi{Xai} ≥ 2α/ε])

n

≥
m∑
i=1

ti Pr[Xai ≥ ti].

The above imply that the contribution toRP ′ from the items in S is at most an additive 8ε·ROPT
n

smaller than the contribution to RP from the items in S.
We proceed to compare the contributions from the items in [n] \ S to RP and RP ′ . We start

with RP . The contribution from the items in [n] \ S is no greater than the total revenue when we
ignore the existence of the items in S (e.g. by setting the prices of these items to +∞), since this
only boosts the winning probabilities of each item in [n] \ S.

Under price vector P ′, ∀i ∈ S, Pr[vi ≥ p′i] ≤ ε
n3 (Theorem 21). So with probability at least

1− ε
n2 , no item in S has a positive value-minus-price gap and the item that has the largest positive

gap among the items in [n] − S is the item that is bought by the buyer. Hence, by independence
the contribution to RP ′ from the items in [n]− S is at least a 1− ε

n2 fraction of the revenue when
the items of S are ignored.

By the above discussion, the contribution to RP ′ from the items in [n]−S is at most an additive
εROPT
n2 smaller than the contribution to RP from the items in [n]− S.

Putting everything together, we get that RP ′ ≥ RP − 9εROPT
n .

Second step: To truncate the lower prices, we invoke Lemma 27. This implies that we
can set all the prices below εα/n4 to εα/n4, only hurting our revenue by an additive εα/n4 ≤
cε
n ·maxz(z · Pr[maxi{Xi} ≥ z]) ≤ cεROPT /n (where we used Theorem 21 for the first inequality).

Hence, we can define P̂ as follows: if p′i ≤ εα/n4, set p̂i = εα/n4, otherwise set p̂i = p′i. It

follows from the above that RP̂ ≥ RP −
(c+9)εROPT

n .

Thus, we have reduced the problem of finding a near-optimal price vector in [0,+∞]n to the
problem of finding a near-optimal price vector in the set [εα/n4, 2n2α/ε2]n.

G.3.2 Truncating the Support of the Input Regular Distributions

We show that we can truncate the support of the distributions if the price vectors are restricted.
Namely

Lemma 52. Given a collection of independent regular random variables V = {vi}i∈[n] and any ε ∈
(0, 1), let us define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling: for
all i ∈ [n], set ṽi = εα

4n4 if vi <
εα
2n4 , set ṽi = 4n4α/ε3, if vi ≥ 4n4α/ε3, and ṽi = vi otherwise. Also,

let c be the absolute constant defined in Theorem 21. For any price vector P ∈ [εα/n4, 2n2α/ε2]n,

|RP (V)−RP (Ṽ)| ≤ cεROPT (V)
n , where RP (V) and RP (Ṽ) are respectively the revenues of the seller

under price vector P when the values of the buyer are V and Ṽ.
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Proof. First, let us define another collection of mutually independent random variables V̂ = {v̂i}i∈[n]

via the following coupling: for all i ∈ [n] set v̂i = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set v̂i = vi otherwise.

By Theorem 21, we know that for every i, Pr[vi ≥ 4n4α/ε3] ≤ ε3

2n7 . Hence, the probability of
the event that there exists an i such that vi ≥ 4n4α/ε3 is no greater than n × ε3/2n7 = ε3/2n6.
Thus the difference between the contributions of this event to the revenues RP (V) and RP (V̂) is
no greater than 2n2α/ε2 · (ε3/2n6) = εα

n4 ≤ cε
n ·maxz(z ·Pr[maxi{vi} ≥ z]) ≤ cεROPT

n , given that the
largest price is at most 2n2α/ε2.

Now let us consider the event: vi ≤ 4n4α/ε3, for all i. In this case v̂i = vi for all i. So the
contribution of this event to the revenues RP (V) and RP (V̂) is the same.

Thus, |RP (V)−RP (V̂)| ≤ cεROPT
n .

Now it follows from Lemma 44 that the seller’s revenue under any price vector in [εα/n4, 2n2α/ε2]n

is the same when the buyer’s value distributions are V̂ and Ṽ.

The above lemma shows that we can reduce the problem of finding a near-optimal price vector
in [εα/n4, 2n2α/ε2]n for the original value distributions V to the problem of finding a near-optimal
price vector in the set [εα/n4, 2n2α/ε2]n for a collection of value distributions Ṽ supported on the
set [ εα

4n4 , 4n
4α/ε3]. Next, we establish that the latter problem can be reduced to finding any (i.e.

not necessarily restricted) near-optimal price vector for the distributions Ṽ.

Lemma 53. Given a collection of independent regular random variables V = {vi}i∈[n] and any

ε ∈ (0, 1), let us define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling:
for all i ∈ [n], set ṽi = εα

4n4 if vi <
εα
2n4 , set ṽi = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set ṽi = vi otherwise.

Let also c be the absolute constant defined in Theorem 21. For any price vector P , we can efficiently

construct a new price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ (Ṽ) ≥ RP (Ṽ)− (c+9)ε·ROPT (Ṽ)
n .

The proof is essentially the same as the proof of Lemma 51 and we skip it. Combining Lem-
mas 51, 52 and 53 we obtain Theorem 20. The proof is given in the next appendix.

G.3.3 Finishing the Reduction

Proof of Theorem 20: We start with computing α. This can be done efficiently as specified in
the statement of Theorem 21. Now let us define Ṽ via the following coupling: for all i ∈ [n], set
ṽi = εα

4n4 if vi <
εα
2n4 , set ṽi = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set ṽi = vi otherwise.

Now let P be a price vector such that RP (Ṽ) ≥ (1 − ε + (4c+19)ε
n ) · ROPT (Ṽ). It follows from

Lemma 53 that we can efficiently construct a price vector P ′ ∈ [εα/n4, 2n2α/ε2]n, such that

RP ′(Ṽ) ≥
(

1− ε+
(4c+ 19)ε

n

)
·ROPT (Ṽ)− (c+ 9)ε

n
ROPT (Ṽ) ≥

(
1− ε+

(3c+ 10)ε

n

)
·ROPT (Ṽ).

Lemma 51 implies that there exists a price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ (V) ≥(
1− (c+9)ε

n

)
· ROPT (V). By Lemma 52, we know that

ROPT (Ṽ) ≥ RP̂ (Ṽ) ≥ RP̂ (V)− cε

n
ROPT (V) ≥

(
1− (2c+ 9)ε

n

)
· ROPT (V).

So RP ′(Ṽ) ≥ (1− ε+ cε
n ) · ROPT (V). We can now apply Lemma 52 again, and get

RP ′(V) ≥ RP ′(Ṽ)− cε

n
ROPT (V) ≥ (1− ε) · ROPT (V).

�
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H Algorithmic Results for MHR and Regular Distributions

The proofs of Theorems 3 and 4 follow immediately from Theorem 2 using our reductions to bounded
distributions (Theorems 18 and 20 of Sections 8 and 9 respectively). We restate the theorems and
prove them.

Theorem 3 [Restated] Suppose we are given a collection of MHR distributions {Fi}i∈[n]. Then,

for any constant ε > 0, there is an algorithm that runs in time polynomial in the input and n
1
ε7

and computes a price vector P such that

RP ≥ (1− ε)ROPT ,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independently distributed according to the distributions {F}i and ROPT is the revenue achieved
by the optimal price vector.

Proof of Theorem 3: We apply Theorem 18 to reduce the item pricing problem for MHR distri-
butions to the item pricing problem for bounded distributions. Then we use our algorithm from
Theorem 2 for bounded distributions. The resulting running time is polynomial in the input and

n
log4 1

ε
ε8 . Being a bit more careful in the application of our discretization lemmas we obtain running

time polynomial in the input and n1/ε7 . Recall that in the algorithm of Theorem 2 we employed
the reduction of Theorem 17 to discretize supports and prices into sets of bounded cardinalities.
To establish our reduction in Theorem 17 we employed Lemma 30, which in turn made use of
Lemma 28, where we set a = 2

3 . Setting instead a ≈ 1
2 would result in a different tradeoff of

parameters, improving our running time here. �

Theorem 4 [Restated] Suppose we are given a collection of regular distributions {Fi}i∈[n]. Then,
for any constant ε > 0, there exists an algorithm that runs in time polynomial in the input and

max

{
nlog11 n

ε
·log log n

ε , n
log3 nε ·log

1
ε

ε8

}
and computes a price vector P such that

RP ≥ (1− ε)ROPT ,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independently distributed according to the distributions {F}i and ROPT is the revenue achieved
by the optimal price vector.

Proof of Theorem 4: We apply Theorem 20 to reduce the item pricing problem for regular distri-
butions to the item pricing problem for bounded distributions. Then we use our algorithm from
Theorem 2 for bounded distributions. The resulting running time is polynomial in the input and

max

{
nlog11 n

ε
·log log n

ε , n
log3 nε ·log

1
ε

ε8

}
. �

I Proofs of Structural Results

Proof of Theorem 5: Let β be the anchoring point of Theorem 19. It follows from the properties of
the anchoring point that pricing all the items at price β/2 achieves revenue

β

2
· Pr[max

i
{Xi} ≥ β/2] ≥ β

2
·
(

1− 1√
e

)
= β · c1,
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where c1 = 1
2

(
1− 1√

e

)
. On the other hand, Lemma 39 shows that the optimal revenue is upper

bounded by

β · min
ε∈(0, 1

4
)

(
2 log2

1

ε
+ c2(ε)

)
,

where c2(ε) = 36ε log2(1
ε ). So pricing all items at β/2 achieves a constant factor approximation to

the optimal revenue. �

Proof of Theorem 6: Suppose that the buyer’s values are {vi}i∈[n] where the vi’s are mutually
independent, MHR random variables. We can apply Lemma 40 to restrict the price-vectors to
[ε · β, 2 log2(1

ε ) · β]n, where β = β({vi}i) is the anchoring point of Theorem 19 computed from
the distributions of the variables {vi}i. The loss in revenue from this restriction is bounded by
Lemma 40. Having this restriction in place, we may now modify the variables {vi}i∈[n] into a new
collection of random variables {ṽi}i as follows: for all i ∈ [n], set ṽi = ε

2 · β if vi < ε · β, set
ṽi = 2 log2(1

ε ) · β if vi ≥ 2 log2(1
ε ) · β, and set ṽi = vi otherwise. Lemmas 43 and 44 show that

the expected revenue of any price vector P ∈ [ε · β, 2 log2(1
ε ) · β]n is approximately the same for

{vi}i∈[n] and for {ṽi}i. Now we can apply Lemma 25 to discretize [ε · β, 2 log2(1
ε ) · β]n. The chain

of reductions we used guarantees that a nearly-optimal among discretized prize-vectors for {ṽi}i is
also nearly-optimal among all possible price-vectors for {vi}i. �

Proof of Theorem 7: Suppose that the buyer’s values are {vi}i∈[n] where the vi’s are mutually
independent, regular random variables. We can apply Lemma 51 to restrict the price-vectors to
[εα/n4, 2n2α/ε2]n where α is chosen as in Appendix G.2. The loss in revenue from this restriction is
bounded by Lemma 51. Having this restriction in place, we may now modify the variables {vi}i∈[n]

into a new collection of random variables {ṽi}i as follows: for all i ∈ [n], set ṽi = εα
4n4 if vi <

εα
2n4 , set

ṽi = 4n4α/ε3, if vi ≥ 4n4α/ε3, and ṽi = vi otherwise. Lemma 52 shows that the expected revenue
of any price vector P ∈ [εα/n4, 2n2α/ε2]n is approximately the same for {vi}i∈[n] and for {ṽi}i.
Now we can apply Lemma 25 to discretize [εα/n4, 2n2α/ε2]n. The chain of reductions we used
guarantees that a nearly-optimal among discretized prize-vectors for {ṽi}i is also nearly-optimal
among all possible price-vectors for {vi}i. �

I.1 Proof of Theorem 8: A Single Price Suffices for I.I.D. MHR Distributions

We improve the running time of Theorem 3 for when the buyer’s values are i.i.d. according to
some MHR distribution. The main technical idea that goes into the algorithm is establishing our
structural result for i.i.d. MHR distributions described by Theorem 8. In particular, we show that,
if the number of items is a sufficiently large function of 1/ε, then using a single price suffices to get
an (1− ε)-fraction of the optimal revenue. Theorem 56 below summarizes the improvement on the
running time as well as the structural result for i.i.d. MHR distributions.

We proceed to the details of our algorithm. To simplify our notation, let us assume that all
the vi’s are independent copies of the random variable v, and denote the cumulative distribution
function of v by F . Moreover, let αn = inf

{
x|F (x) ≥ 1− 1

n

}
(as in Definition 33). We start by

showing an analogue of Lemma 37.

Lemma 54. If S = Con[v ≥ (1 + ε)αn], then S ≤ 6(1+ε)αn
n1+ε .
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Proof. By Lemma 34, we know that (1 + ε)αn ≥ αn1+ε . Thus, S ≤ Con[v ≥ αn1+ε ]. But Lemma 36
gives Con[v ≥ αn1+ε ] ≤ 6αn1+ε/n1+ε. Hence,

S ≤ 6αn1+ε

n1+ε
≤ 6(1 + ε)αn

n1+ε
.

Using Lemma 54 and Lemma 42, we deduce that if we constrain our prices to be ≤ (1 + ε)αn,

we lose no more than 6(1+ε)αn
nε revenue. Given that the optimal revenue with the restriction that

all prices be ≤ (1 + ε)αn is at most (1 + ε)αn, it follows that the optimal revenue without the

restriction is at most (1 + ε)αn + 6(1+ε)αn
nε = (1 + ε)(1 + 6

nε )αn. This is very close to αn if n is a
sufficiently large function of ε. If that’s the case, it suffices to find a price vector achieving revenue
close to αn.

Lemma 55. If we use the price vector P = ((1− ε)αn, (1− ε)αn, . . . , (1− ε)αn), we receive revenue
at least

(
1− e(−nε) − ε

)
αn.

Proof. Let p = (1− ε)αn. By Lemma 34, we know that
αn1−ε
(1−ε) ≥ αn. Hence, for all i,

Pr[vi < p] ≤ Pr[vi < αn1−ε ] ≤ 1− 1

n1−ε .

It follows that

Pr[∃i, vi ≥ p] ≥ 1−
(

1− 1

n1−ε

)n
≥ 1− e(−nε).

Hence, with probability at least 1 − e(−nε), the buyer will purchase an item and will pay p.
Hence, the revenue is at least (1− e(−nε))(1− ε)αn ≥ (1− e(−nε) − ε)αn.

Notice that, when n ≥ (1/ε)1/ε, nε ≥ 1/ε. In this case, we have shown that OPT ≤ (1 + ε)(1 +
6ε)αn ≤ (1 + 8ε)αn. On the other hand, Lemma 55, says that we can achieve revenue at least
(1 − 1

e1/ε
− ε)αn using a single price. Since e1/ε ≥ 1/ε, this revenue is at least (1 − 2ε)αn. Given

that (1 + 8ε)(1 − 10ε) ≤ (1 − 2ε), we have (1 − 2ε)αn ≥ (1 − 10ε)OPT . So if we set the price for
every item to be (1− ε)αn, we achieve a revenue that is at least (1− 10ε)OPT .

Theorem 56. If the values of the buyer are i.i.d. according to a MHR distribution, there is a PTAS
for finding a price vector that achieves a (1−ε)-fraction of the optimal revenue. The algorithm runs

in time polynomial in log( logn
ε ), 2

log(1/ε)

ε8 and the size of the input. Moreover, if n ≥ (12/ε)12/ε, there
exists an efficiently computable price such that, if all items are priced at this price, the resulting
revenue is at least (1− ε)OPT .

Proof. Let ε′ = ε/12. Depending on the value of n our algorithm proceeds in one of the following
ways:

• If n ≥ (1/ε′)1/ε′ , we do binary search starting at an anchoring point of the distribution (see
Appendix B) to find some p ∈ [1 − ε′, 1 + ε′]αn. This takes time polynomial in O(log( logn

ε′ ))
and the size of the input, since αn ≤ α2 · log2 n. We then set every item’s price to (1− 2ε′)p.
Since (1− 2ε′)p ≤ (1− ε′)αn,

Pr[∃ i, vi ≥ (1− 2ε′)p] ≥ Pr[∃ i, vi ≥ (1− ε′)αn].
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On the other hand, (1− 2ε′)p ≥ (1− 2ε′)(1− ε′)αn. Thus, the revenue we obtain if we price
all items at (1 − 2ε′)p is at least (1 − 2ε′) times the revenue under price vector P = ((1 −
ε′)αn, (1− ε′)αn, . . . , (1− ε′)αn). Hence, the revenue is at least (1− 12ε′)OPT = (1− ε)OPT .

• If n < (1/ε′)1/ε′ , we simply use the algorithm for the non-i.i.d. case (Theorem 3).

J An interesting example

A natural property than one would expect to hold is that, when the value distributions are discrete,
there always exists an optimal solution that uses prices from the support of the value distributions.
It turns out that this is not true. Here is an example:

Suppose that the seller has two items to sell, and the buyer’s values for the items are v1, which
is uniform on {1, 5}, and v2, which is uniform on {3, 3.5}. Moreover, assume that, if there is a
tie between the value-minus-price gap for the two items, the buyer tie-breaks in favor of item 1.
We claim that in this case the price vector P = (4.5, 3) achieves higher revenue than any price
vector that uses prices from the set {1, 3, 3.5, 5} (where the values are drawn from.) Let us do the
calculation. All our calculations are written in the form

RP = p1 × Pr[item 1 is the winner] + p2 × Pr[item 2 is the winner].

1. When P = (4.5, 3)

RP = 4.5× (1/2× 1) + 3× (1/2× 1) = 30/8

2. When P ∈ {1, 3, 3.5, 5}2:

• If P = (5, 3.5) then

RP = 5× (1/2× 1) + 3.5× (1/2× 1/2) = 27/8 < 30/8

• If P = (5, 3) then

RP = 5× (1/2× 1/2) + 3× (1× 1/2 + 1/2× 1/2) = 28/8 < 30/8

• For any other price vector, the maximum revenue is bounded by 3.5 = 28/8 < 30/8.
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