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Abstract

Automata on infinite words (ω-automata) have wide ap-
plications in formal language theory as well as in modeling
and verifying reactive systems. Complementation of ω-
automata is a crucial instrument in many these applications,
and hence there have been great interests in determining the
state complexity of the complementation problem. However,
obtaining nontrivial lower bounds has been difficult. For the
complementation of Rabin automata, a significant gap exists
between the state-of-the-art lower bound 2Ω(N lg N) and upper
bound 2O(kN lg N), where k, the number of Rabin pairs, can be
as large as 2N. In this paper we introduce multidimensional
rankings to the full automata technique. Using the im-
proved technique we establish an almost tight lower bound
for the complementation of Rabin automata. We also show
that the same lower bound holds for the determinization of
Rabin automata.

1 Introduction

Automata on infinite words (ω-automata) have
wide applications in formal language theory as well
as in modeling and verifying reactive systems. In
many these applications a crucial instrument is com-
plementation, which is to construct an automaton CA
from a given an automatonA, such thatCA accepts an
infinite word if and only ifA does not accept. For in-
stance, in automata-theoretic model checking, to find
out whether a system represented by an automaton
B satisfies a specification represented by another au-
tomaton A, one checks if L (B) ⊆ L (A), which re-
duces to L (B) ∩ L (CA) = ∅ [Kur94, VW94]. Thus,
determining the state complexity of the complementa-
tion problem of ω-automata has a significant value in
practice and it has attracted great interests in the last
four decades [Var07].

Büchi first invented a kind of ω-automata (now

called Büchi automata) as a tool to study decision
problems of second-order arithmetic [Büc62]. Over
the years many variants of ω-automata have been
proposed, including Rabin automata and Streett au-
tomata. These common variants only differ at the
definition of acceptance conditions and they all rec-
ognize ω-regular languages. Although equivalent in
expressiveness, ω-automata with rich acceptance con-
ditions, such as Streett automata and Rabin automata
can express properties more easily and succinctly than
Büchi automata. For example, the strong fairness con-
dition [FK84, Fra86] that every infinitely enabled tran-
sition in a run is also taken infinitely often, can be ex-
pressed straightforwardly by a Streett acceptance con-
dition. On the other hand, Rabin condition, defined as
the dual of Streett condition, can directly express un-
fairness. The fair termination problem [Fra86, KK91],
that is, whether all fair computations terminate, can
be easily encoded into a Rabin condition that requires
all infinite computations be either unfair or eventu-
ally forever idling. For these reasons, tightening the
bounds for the complementation problem of other
types of ω-automata also has great practical value.

The complementation problem of Büchi automata
have been investigated for over 40 years. The current
best algorithm has O(N2((0.76+ c0)N)N) state blow-up
(for a fixed c0 ∈ (0, 1)) [Sch09], which tightly matches
the best lower bound Ω(((0.76 + c0)N)N) (for the same
c0 ∈ (0, 1)) [Yan06]. However, for the complementa-
tion of Rabin automata, a huge gap still exists between
the state-of-the-art lower bound 2Ω(N lg N) [Yan06] and
upper bound 2O(kN lg N) [KV05a], where k, the num-
ber of Rabin pairs, can be as large as 2N. A similar
huge gap exists for the complementation of Streett au-
tomata [KV05a, Yan06].

In this paper we generalize the full automata tech-
nique [Yan06] to incorporate multiple dimensional
ranking functions. Using the generalized method we
show that for any ǫ > 0, the lower bound for the com-



plementation of Rabin automata with N states, k Ra-
bin pairs, and an alphabet of size N2 is 2Ω(kN lg N) if

k ≤ 2N(1−ǫ), and is 2Ω(2N(1−ǫ)N lg N) if k > 2N(1−ǫ). For a
Rabin automaton with N states, the number of effec-
tive Rabin pairs can be at most 2N because we can
merge two Rabin pairs (G0,B) and (G1,B) into one pair
(G0∪G1,B) without changing the recognized language.
In this sense, our lower bound is almost tight in terms
of big-O notation.

The condition of using alphabets of unbounded car-
dinality can be removed via an encoding trick. We
show that for any ǫ > 0, a constant d exists such that
the above lower bound holds for any alphabet of size d.
We can further reduce the alphabet size to a fixed small
constant (independent of ǫ) with the lower bound ad-

justed to 2Ω(kN lg N) for k ≤ 2
N
2 (1−ǫ) and to 2Ω(2

N
2

(1−ǫ)N lg N)

for k > 2
N
2 (1−ǫ). We also show that these lower bound re-

sults apply to the determinization of Rabin automata.
Note that all lower bounds in this paper apply to any
complementation or determinization algorithm which
outputsω-automata of common types (see Acceptance
Conditions in Section 2).

Related Work and Comparison. The first com-
plementation construction for Büchi automata was

given by Büchi and that construction requires 22O(N)

states [Büc62]. The construction was improved to

2O(N2) states by Sistla, Vardi and Wolper [SVW87].
Safra gave a determinization construction for Büchi
automata, from which a complementation construc-
tion with 2O(N lg N) states was obtained [Saf88]. This
upper bound matches well with the lower bound N! ≈
(0.36N)N = 2Ω(N lg N) proved by Michel [Mic88, Löd99].
Klarlund later gave a construction with 2O(N lg N) states
without using determinization [Kla91]. Klarlund’s
construction relies on quasi co-Büchi measure, which
is a ranking function on states in a run graph, mea-
suring the progress of a run toward being accepted.
Kupferman and Vardi proposed a complementation
construction that uses co-Büchi ranking (similar to
quasi co-Büchi measure). The construction is essen-
tially the same as Klarlund’s, but provides a better
lower bound O((6N)N) = 2O(N lg N) [KV01]. With re-
fined constructions, the upper bound was further im-
proved to O((0.9624N)N) by Friedgut, Kupferman and
Vardi [FKV06], and then most recently to O(N2(((0.76+
c0)N)N)) (for a fixed c0 ∈ (0, 1)) by Schewe [Sch09].
In 2006, Yan introduced rankings into full automata
technique and obtained a sequence of sharper lower
bounds for complementation and determinization of
ω-automata [Yan06]. In particular, Yan sharpened the
lower bound for the complementation of Büchi au-

tomata to Ω(((0.76 + c0)N)N) (for the same c0 ∈ (0, 1)),
which now is only quadratically smaller than the best
upper bound obtained by Schewe. In [Yan06], Yan
also showed that the lower bound holds for any com-
plementation construction whose output automata are
of common types. This immediately gives a 2Ω(N lg N)

lower bound for the complementation of Rabin au-
tomata because a Büchi automaton can be viewed as
a Rabin automaton by simply reinterpreting the Büchi
condition as a Rabin condition. In the contrast, the
state-of-the-art complementation construction for Ra-
bin automata, introduced by Kupferman and Vardi
in [KV05a], requires 2O(kN lg N) states.

Sakoda and Sipser introduced the full automata1

technique and used it to obtain several completeness
and lower bound results on transformations involv-
ing 2-way finite automata [SS78]. Full automata op-
erate on unconventional and large alphabets; in a full
automaton of N states, every possible unit transition
graph (bipartite graph with 2N vertices) is identified
with a letter, and words are nothing but potential runs
of the automaton. Using this technique, in [SS78]
Sakoda and Sipser also proved the classic result that
the lower bound of complementing finite automata
(on finite words) is 2N. In the proof, the difficult word
serving as the witness of this lower bound is just a dif-
ficult run that cannot be accepted by any automaton
with less than 2N states. The power of full automata
technique, however, does not rely on using alphabets
of unbounded cardinality; by an encoding trick, a large
alphabet can be mapped to a small alphabet contain-
ing only a few letters, with little comprise to the lower
bound results [Sip79, Yan06].

To the best of our knowledge, although the full
automata technique offers a systematic way for con-
structing difficult witnesses, it has never been ap-
plied to obtain lower bounds for transformations of
ω-automata until Yan extended the technique with
rankings [Yan06]. Rankings used in [Yan06] bear cer-
tain similarities to those used in the work of Klarlund,
Friedgut, Kupferman and Vardi [Kla91, KV01, FKV06,
KV05a]. However, these two kinds of rankings are de-
signed for different purposes. In [Kla91, KV01, FKV06,
KV05a], a word is in the complementary language of
a Büchi automaton if and only if there exists an odd
co-Büchi ranking (or quasi co-Büchi measure) on the
run graph of the word. A complementary automa-
ton is so constructed to recognize run graphs with
odd co-Büchi rankings (or quasi co-Büchi measures).
In [Yan06], the rankings are designed to show that for
a family of full automata {FAn}, a family of difficult

1The term was first coined in [Yan06] where the definition is
slightly different from that used in [SS78].
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words (difficult runs) {αn} exists such that for each n,
αn is not recognized by FAn nor by any “small” com-
plementary automaton of FAn. Our lower bound
proof relies on rankings in the same vein as Yan’s.
To obtain tighter lower bounds, however, we use a
type of multi-dimensional rankings, which result in
a construction considerably more sophisticated than
that used in [Yan06]. Our rankings are also different
from the old Streett rankings that were used in [KV05a]
for the complementation of Rabin automata.

Our generalization relies on two key notions: (1)
Qk-rankings and (2) Υ-graphs. A Qk-ranking is k-
dimensional function mapping states to k-tuples of
integers. In fact a Qk-ranking can be viewed as k in-
dependent bijective functions on states. A transition
graph is called Qk-ranked if every level of the graph is
associated with a Qk ranking. A Υ-graph is a special
Qk-ranked transition graph that satisfies four proper-
ties designed for constructing difficult words. These
properties are parameterized with a pair of states and
an index value in between 1 and k. It is not hard to con-
struct a Υ-graph that satisfies the four properties for a
specific instantiation of the parameters. The technical
difficulty, however, lies in how to accommodate the
four properties for each pair of states and for each in-
dex simultaneously. Our solution is to use “bypasses”
(called Refuge and Tunnel) to concatenate a sequence
of Υ-graphs each of which satisfies the four properties
for a specific pair of states and for a specific index. The
bypasses make the concatenation behaves like a par-
allel composition so that properties satisfied by each
fragment are all preserved in the final concatenation.

Paper Organization. Section 2 presents notations
used in this paper and basic terminology in automata
theory. Section 3 generalizes the full automata tech-
nique and proves the lower bound. Section 4 presents
the detailed construction with examples. Section 5
concludes with a discussion of future work. Due to
space limitation, figures and the proofs for technical
lemmas and theorems are omitted. They are available
in the full version of this paper, which is available on
authors’ webpages.

2 Preliminaries

Basic Notations. N denotes natural numbers. We
write [i.. j] for {k ∈ N | i ≤ k ≤ j} and [n] to mean
[0..n − 1]. If u be a sequence, we use |u| to denote
the length of u, u(i) (i ∈ [|u|]) to denote the object at
the i-th position, and u[i.. j] (i, j ∈ [|u|]) to denote the
subsequence of u from position i to position j. We
use u ◦ v to denote the concatenation of u and v and

when little confusion is present, we simply use the
juxtaposition uv.

ω-automata. A finite automaton on infinite words
is a tuple A = (Σ, S, I,∆,F ) where Σ is an alpha-
bet, S is a finite set of states, I ⊆ S is a set of initial
states, ∆ ⊆ S × Σ × S is a set of transition relations,
and F is an acceptance condition. We say that A is
deterministic when |I| = 1 and for all p ∈ S, σ ∈ Σ,
|{q ∈ S | 〈p, σ, q〉 ∈ ∆}| ≤ 1. Unless stated otherwise, all
automata we consider in this paper are nondetermin-
istic ω-automata.

Run of Automata. An infinite word (ω-words) over
Σ is an infinite sequence of letters in Σ. A run of A
on an ω-word w is an infinite sequence of states in
S such that ρ(0) ∈ I and, 〈ρ(i),w(i), ρ(i+ 1)〉 ∈ ∆ for
i ∈ N. We use ρ[v1, v2] to denote the subsequence
ρ(v1)ρ(v1+1) · · ·ρ(v2). Let Occ(ρ) be the set of states
occurring in ρ and Inf (ρ) the set of states that occur
infinitely many times in ρ. A finite run ofA from state
p to state q over a finite word w is a finite sequence of
states ρ = ρ(0)ρ(1) · · ·ρ(|w|) such that ρ(0) = p, ρ(|w|) =
q and 〈ρ(i),w(i), ρ(i+ 1)〉 ∈ ∆ for all i ∈ [|w|].

Acceptance Conditions. Automata on infinite words
are classified according to acceptance conditions. We
say that a type of ω-automata is common if the accep-
tance condition of this type is defined solely with re-
spect to Inf (ρ). Below we list some common types of
ω-automata relevant to this paper.

• Büchi automata, where F ⊆ S, and ρ is accepting
iff Inf (ρ) ∩ F , ∅.

• Rabin automata, where F = {〈G1,B1〉, . . . , 〈Gk,Bk〉},
and ρ is accepting iff for some i ∈ [1..k], we have
that Inf (ρ)∩Gi , ∅ and Inf (ρ)∩Bi = ∅. States in Gi

and Bi are called, respectively, reconfirming states
and invalidating states.

• Streett automata, whereF = {〈G1,B1〉, . . . , 〈Gk,Bk〉},
and ρ is accepting iff for all i ∈ [1..k], if Inf (ρ)∩Gi ,

∅, then Inf (ρ) ∩ Bi , ∅.

We say that an ω-word w is accepted by A if there
exists an accepting run of A over w. By L (A) we
denote the set of ω-words accepted byA.

∆-Graph. LetA = (Σ, S, I,∆,F ) be an automaton. A
∆-graph2 of an ω-word w under A is a directed graph
Gw = (V,E) where V = S×N and E = {〈〈p, i〉, 〈q, i+1〉〉 ∈
V × V | p, q ∈ S, i ∈ N, 〈p,w(i), q〉 ∈ ∆ }. By the i-th
level, we mean the vertex set S × {i}. The ∆-graph of
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a finite word is defined similarly. Let w be a finite
word. By |Gw|we denote the length of Gw, which is the
same as |w|. We call a path in Gw| a full path if the path
goes from level 0 to level |Gw|. By Gw ◦ Gw′ , we mean
the concatenation of Gw and Gw′ , which is the graph
obtained by merging the last level of Gw with the first
level of Gw′ . Note that Gw ◦ Gw′ = Gw◦w′ .

Gw is a visualization of the complete behavior of A
over w. It is easily seen that ∆ can be identified with
a function ∆′ : Σ → 2S×S such that 〈p, q〉 ∈ ∆′(σ) iff
〈p, σ, q〉 ∈ ∆ for any σ ∈ Σ. With indices dropped,
Gσ, the ∆-graph of a letter σ, is a just the graph of
the relation ∆′(σ). By abusing notation, we identify
∆
′(σ) with Gσ and Gw (where w = σ0σ1 . . .) with ∆′(w) =
∆′(σ0) ◦ ∆′(σ1) ◦ · · · .

Let w be a finite word. For v0, v1 ∈ N, p0, p1 ∈ S we

write (p0, v0)
w
−→ (p1, v1) to mean that there exists a run

ρ ofA such that ρ[v0, v1] is a finite run ofA from p0 to

p1 over w. For S0, S1 ⊆ S, we use (p0, v0)
w

−−−−→
〈S0 ,S1〉

(p1, v1)

to mean, in addition, that ρ[v0, v1] contains an S0-state

but no S1-state. We write (p0, v0)
w
−−→
∼S1

(p1, v1) to mean

that ρ[v0, v1] does not contain an S1-state. In case the
indices of a run are of no importance, we simply drop

them and write p0
w
−→ p1, p0

w
−−−−→
〈S0,S1〉

p1, and p0
w
−−→
∼S1

p1.

Full Automata. A full automaton A = (Σ, S, I,∆,F )
is an automaton such that Σ = 2(S×S), ∆ ⊆ S× 2(S×S) × S,
and for all p, q ∈ S, σ ∈ Σ, 〈p, σ, q〉 ∈ ∆ if and only if
〈p, q〉 ∈ σ [SS78, Yan06].

For a full automaton, Σ and ∆ are completely deter-
mined by S. Now ∆′ is just the identity function on
2(S×S) and hence there is no difference between words
and their corresponding ∆-graphs. From now on we
use two terms interchangeably.

3 Lower Bound

In this section we extend the full automata tech-
nique with multidimensional ranking functions and
we use the generalized technique to obtain an almost
tight lower bound for the complementation of Rabin
automata.

Proof Plan. The key of this lower bound proof is to
construct a family of full Rabin automata {F Rn} and a
corresponding family of difficult words {αn} such that

2The ∆-Graphs defined in this paper are slightly different from
the run graphs (or run dags) used in [Kla91, KV01, KV05a, FKV06].
We do not require that any vertex in a ∆-graph be reachable from an
initial state at the first level.

for each n, αn < L (FRn), yet no ω-regular language
that separates αn from L (FRn) can be recognized by
a “small” ω-automaton of any common type. We first
construct FRn (Definition 1) with respect to which we
define Qk-rankings (Definition 2) and Υ-graphs (Defi-
nition 3). A Qk-ranking is a function on the state set of
FRn into a set of k-tuples of integers. A∆-graph is said
to be Qk-ranked if its every level is associated with a
Qk-ranking. Υ-graphs are special Qk-ranked ∆-graphs
that satisfy several properties that are consequences
of Properties (3.1)-(3.4) (Definition 3). First and most
importantly, for any pair of Qk-rankings 〈 f , g〉, there
exists a Υ-graph G〈 f ,g〉 whose first level ranking is f
and last level ranking is g (Theorem 1). Such a G〈 f ,g〉 is
said to be R-compatible with 〈 f , g〉 (Definition 4). The-
orem 1 is the most difficult technical part of this paper
and we leave its proof to Section 4. Second, for any
Qk-rankings f , g, h, if G〈 f ,g〉 is R-compatible with 〈 f , g〉
and G〈g,h〉 is R-compatible with 〈g, h〉, then G〈 f ,g〉 ◦ G〈g,h〉

is R-compatible with 〈 f , h〉 (Lemma 2). By this tran-
sitivity property, we can construct αn by repeatedly
enumerating Qk-rankings. Property (3.1) guarantees
that αn < L (FRn), and Properties (3.2) and (3.3) im-
ply that for any ω-automata A that accepts αn, if
L (A) ∩ L (FRn) = ∅, then the number of states of
A must exceed the number of distinct Qk-rankings.
Our lower bound is so obtained.

Definition 1 (Full Rabin Automata). We define a family
of full Rabin automata FRn = (Σ, S, I,∆,F ) such that

1.1 S = I ∪ R ∪ T ∪ G ∪ B where I, R, T, G and B are
pairwise disjoint and assume the following forms:

I = {s0, · · · , sn−1}, T = {t0, · · · , tn−1},

R = {r0, · · · , rn−1}, B = {b1, · · · , b2γ}, G = {g̈};

1.2 F = {〈G,B1〉, . . . , 〈G,Bk〉} where Bi ⊆ B, |Bi| = γ and
Bi , B j if i , j.

Note that FRn is defined with three parameters: n,
γ and k, all required to be positive integers. Thus all
notions derived from FRn should also be parameter-
ized with the three. But for notation simplicity, we
selectively omit all or some of them unless there is a
chance of confusion. Now let N denote the number of
states of FRn.
FRn is designed to accommodate sophisticated

properties of Υ-graphs (Definition 3) to be introduced
below. To reduce the construction complexity, we di-
vides the state set S to five pairwise disjoint subsets I,
R, T, G and B, each designated for a different task. I
is intended to be the domain of Qk-rankings. R and
T, called Refuge and Tunnel, respectively, are solely for
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building bypasses. G and B are pools from which re-
confirming states and invalidating states are chosen to
form Gi’s and Bi’s, respectively. The exact lower bound
actually is the number of total Qk-rankings which will
be shown to be (n!)k

= 2Ω(nk lg n) (Lemma 1). To get the
desired lower bound 2Ω(kN lg N), we want n to be as close
to N as possible and k to be as close to 2N as possible.
It turns out that it suffices to let G be a singleton and
then let all Gi’s be the same as G. To make k close to
2N, we require that Bi’s be pairwise unequal subsets of
B, all with the cardinality |B|/2. In this way, k can be as

large as
(2γ
γ

)

.

Now we introduce Qk-ranking, a function that asso-
ciates a k-tuple of integers with each state in I.

Definition 2 (Qk-Ranking). A Qk-ranking for FRn is a
function f : I → [n]k such that for each i ∈ [1..k], f (i) :
I → [n], the projection of f on the i-th coordinate (i.e.,
f (i)(p) = f (p)(i) for p ∈ I), is bijective.

A Qk-ranking can be viewed k independent bijective
functions from I into [n]. Let N denote the number of
Qk-rankings (again, for simplicity we omit the param-
eters n and k). We have

Lemma 1. N = 2Ω(nk lg n).

Proof. By N1 we denote the number of Q1-rankings.
By definition, a Q1-ranking is a bijective function from
I to [n], and therefore N1 = n! = 2Ω(n lg n). Note that
a Qk-ranking consists of k independent Q1-rankings.
Therefore N = (N1)k = 2Ω(nk lg n). �

A ∆-graph is called Qk-ranked if its every level is
associated with a Qk-ranking. We write rank j to denote

the Qk-ranking at level j and rank
(i)
j

to denote the i-th

projection of rank j at level j. Let X be a subset of S.
We call a vertex (p, v) in a ∆-graph of FRn X-vertex if
p ∈ X. When there is no confusion, we just write p for
(p, v). We are interested in a special kind of Qk-ranked
∆-graphs.

Definition 3 (Υ-Graph). We say that a Qk-ranked ∆-
graph G is an Υ-graph if the following conditions hold.

3.1 For any p, q ∈ I, if in G there exists a path l from (p, v0)
to (q, v1) (for some v0, v1) such that l contains no other
I-vertex, then for each i ∈ [1..k],

3.1a if l contains a G-vertex, then rank(i)
v0

(p) >

rank
(i)
v1

(q);

3.1b if rank(i)
v0

(p) < rank(i)
v1

(q), then l contains a Bi-
vertex.

3.2 For any p, q ∈ I, i ∈ [1..k], if rank
(i)
0

(p) > rank
(i)

|G |
(q),

then p
G
−−−−→
〈G,Bi〉

q.

3.3 For any p, q ∈ I, i ∈ [1..k], if rank
(i)
0

(p) = rank
(i)

|G |
(q),

then p
G
−−→
∼Bi

q.

3.4 In G only I-vertices have outgoing edges at the first
level and incoming edges at the last level, and for every
I-vertex at the first level there exists an outgoing path
from that vertex to an I-vertex at the last level. In

particular, for any p, q ∈ S, if p
G
−→ q, then p, q ∈ I.

Property (3.1) is of local and universal nature; it re-
quires that all paths in between I-vertices satisfy cer-
tain conditions, which induces a Streett condition on
any infinite path inαn so that αn < L (FRn) (Lemma 3).
In the contrast, Property (3.2) is of global and existential
nature; it ensures that in αn, from a vertex with higher
rank to a vertex with lower rank (with respect to some
index), there exists a “bad” finite path which, if re-
peated forever, generates an infinite path that satisfies
the dual Rabin condition. This property is intended to
show that it is hard to separate αn from L (FRn), in the
sense that we can construct a wordα′n fromαn such that
α′n is accepted by FRn and no “small” automaton can
distinguish α′n from αn. Property (3.3) is also of global
and existential nature; it ensures that in αn, in between
two vertices of the same rank (with respect to certain
index i), there is a path that does not visit Bi. This
makes sure that Property (3.2) can be maintained dur-
ing concatenation. Property (3.4) is mainly technical;
it guarantees graph connectivity under concatenation.

Definition 4 (R-Compatibility). We say that a word G ∈

(Σ)∗ is R-compatible with an ordered pair of Qk-rankings
〈 f , g〉 forFRn if there exists aΥ-graph of w in which the first
level and the last level are ranked by f and g, respectively.

Theorem 1. For any pair of Qk-rankings 〈 f , g〉, there exists
a Υ-graph G that is R-compatible with 〈 f , g〉.

This is the key theorem of this paper. We leave its
proof to Section 4.

Lemma 2 (Transitivity). Let f , g, h be Qk-rankings for
FRn, and G〈 f ,g〉 and G〈g,h〉 beΥ-graphs that are R-compatible
with 〈 f , g〉 and 〈g, h〉, respectively. Then G〈 f ,g〉 ◦ G〈g,h〉 is
R-compatible with 〈 f , h〉.

Theorem 1 and Lemma 2 allow us to construct anω-
word which does not belong to L (FRn). Let f0, f1, . . .
be a repeated enumeration of Qk-rankings such that
(1) for any i, j < N , fi , f j and for any i, j ∈ N,
fi = fN j+i. Now define αn to be the ω-word G0G1G2 · · · ,
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such that for i ≥ 0, Gi = G〈 fi , fi+1〉, the word compatible
with 〈 fi, fi+1〉.

Lemma 3. We have αn < L (FRn).

Proof. Suppose that αn ∈ L (FRn). Let ρ be a success-
ful run of FRn over αn. By Property (3.4), infinitely
many I-vertices occurs in ρ. So we can assume ρ to
be of the form ρ(k0) · · ·ρ(k1) · · ·ρ(k2) · · · where k0 = 0,
and for any i ∈ N, ρ(ki) ∈ I and no intermediate states
from ρ(ki) to ρ(ki+1) belong to I. Since ρ is accepted by
FRn, there is an i′ ∈ [1..k] and a sufficiently large j,
such that for any j′ ≥ j, ρ( j′) < Bi′ . According to Prop-

erty (3.1b), we have rank(i′)

k j
(ρ(k j)) ≥ rank(i′)

k j+1
(ρ(k j+1)) ≥

rank
(i′)

k j+2
(ρ(k j+2)) ≥ · · · , in which strict inequality can

only occur finitely many times. As a consequence, by
Property (3.1a), the G-vertex can only appear finitely
often in ρ, a contradiction. �

Although αn is not recognized by FRn, it closely
“resembles” a word in L (FRn) in the sense that any
ω-regular language that separates αn from L (FRn)
cannot be recognized by an automaton with less than
N states. This is established by the following lemma
which is tailored for Rabin automata from Lemma 5
in [Yan06]. The proof relies on a counting argument
similar to that of Pumping Lemma.

Lemma 4. LetA be an ω-automaton of any common type
defined on the same alphabet as FRn such that αn ∈ L (A)
and L (A) ∩L (FRn) = ∅. ThenA must have more than
N states.

Proof. Suppose the contrary. Let A = (Σ, S′, I′,∆′,F ′)
be an ω-automaton such that |S′| < N , and ρ =
ρ(0)ρ(1) · · · ∈ (S′)ω be an accepting run of A over αn.
We shall show that L (A) ∩L (FRn) , ∅.

By the construction of αn, we know there exists an
infinite sequence of indices k0, k1, . . . such that k0 = 0,

and for any i ≥ 0, ki+1 − ki = |Gi| and ρ(ki)
Gi
−→ ρ(ki+1).

For each i < N , let

Si = { s
⋆ ∈ S′ | ρ(kN j+i) = s⋆ for infinitely many j ∈N } .

Obviously, for each i < N , Si , ∅. Since A has less
than N states, there exist two different indices µ, ν <
N such that Sµ ∩ Sν , ∅.

Since fµ , fν, without loss of generality, we as-
sume that for some state q ∈ I and t ∈ [1..k], we have

f (t)
µ (q) > f (t)

ν (q). Let s⋆ ∈ Sµ ∩ Sν. Because there are
infinitely many l satisfying ρ(kN l+µ) = s⋆, there exists
a sufficiently large ζ ∈ N, such that (1) ρ(kN ζ+µ) = s⋆,
(2) for every l > N ζ + µ, ρ(l) ∈ Inf (ρ). For the same
reason we can find a sufficiently large η such that (1)

kN η+ν > kN ζ+µ, (2) ρ(kN η+ν) = s⋆ and (3) Inf (ρ) =
Occ(ρ[kN ζ+µ, kN η+ν−1]). Let Gu = G0G1 · · ·GN ζ+µ−1,
Gv = GN ζ+µGN ζ+µ+1 · · ·GN η+ν−1, and α′n = Gu(Gv)ω. It
is easily seen that Inf (ρ) = Inf ((ρ[kN ζ+µ, kN η+ν−1])ω).
Therefore, ρ′ = ρ[0..kN ζ+µ−1] ◦ (ρ[kN ζ+µ..kN η+ν−1])ω

is a run of A over α′n such that Inf (ρ′) = Inf (ρ). So
α′n ∈ L (A).

Next we show that α′n ∈ L (FRn). Recall that there

exists t ∈ [1..k] such that f (t)
µ (q) > f (t)

ν (q). By Lemma 2,
Gu is R-compatible with 〈 f0, fN ζ+µ〉 = 〈 f0, fµ〉, and Gv

is R-compatible with 〈 fN ζ+µ, fN η+ν〉 = 〈 fµ, fν〉. Since

f (t)
0

is bijective, there is a state q0 ∈ I such that

f
(t)
0

(q0) = f
(t)
µ (q). By Property (3.3), we have q0

Gu
−−→ q.

Also, because f
(t)
µ (q) > f

(t)
ν (q), Property (3.2) gives us

q
Gv
−−−−→
〈G,Bt〉

q. Now q0
Gu
−−→ q

Gv
−−−−→
〈G,Bt〉

q
Gv
−−−−→
〈G,Bt〉

q · · · gives us an

accepting run ofFRn over α′n. Thus α′n ∈ L (FRn). �

Note that in Lemma 4, A only needs to be an au-
tomaton of a common type.

Now we are ready for the lower bound proof.

Theorem 2. For any ǫ > 0, the lower bound for the comple-
mentation problem of Rabin automata with N states and k

Rabin pairs is 2Ω(kN lg N) if k ≤ 2N(1−ǫ), and is 2Ω(2N(1−ǫ)N lg N)

if k > 2N(1−ǫ).

Proof. By Lemmas 1 and 4, the lower bound of comple-

menting FRn is 2Ω(kn lg n) if k ≤
(2γ
γ

)

. Let c be a constant

and γ = cn. So N = 3n + 2cn + 1 = O(n) and we are
left to show that if k ≤ 2N(1−ǫ), then k ≤

(2γ
γ

)

. It follows

from Stirling’s inequality ([Rob55]) that for any m > 0,
(2m

m

)

> 22m

2πm . So for a sufficiently large c we indeed have

k ≤ 2N(1−ǫ) <
2

(N−1)2c
3+2c

2π
(N−1)c
3+2c

<

( (N−1)2c
3+2c

(N−1)c
3+2c

)

=

(

2γ

γ

)

. �

As stated in the introduction, no generality is lost by
using alphabets of unbounded cardinalities. We can
map large alphabets to an alphabet of constant size,
with little compromise to our lower bounds.

Theorem 3. For any ǫ > 0, there exists a constant d > 0
such that the lower bound for the complementation problem
of Rabin automata over an alphabet of size d and with N
states and k Rabin pairs is 2Ω(kN lg N) if k ≤ 2N(1−ǫ), and

is 2Ω(2N(1−ǫ)N lg N) if k > 2N(1−ǫ). For an alphabet of small

constant size, the lower bound is 2Ω(kN lg N) if k ≤ 2
N
2 (1−ǫ),

and is 2Ω(2
N
2

(1−ǫ)N lg N) if k > 2
N
2 (1−ǫ).

As Lemma 4, Theorems 2 and 3 apply to any com-
plementation algorithm that outputs automata of com-
mon types. The same lower bounds hold for the de-
terminization of Rabin automata.

6



Corollary 1. The lower bounds in Theorems 2 and 3 apply
to the determinization of Rabin automata.

Proof. Suppose the contrary. LetA be a Rabin automa-
ton and B a deterministic ω-automaton of a common
type T such that L (A) = L (B) and the state size of B
is below our lower bounds. Let Tc denote the dual type
of T such that the acceptance condition of Tc is just the
negation of the acceptance condition of T. Obviously,
Tc is also a common type. Since B is deterministic,
we can obtain an automaton C of type Tc that comple-
ments B by simply negating the acceptance condition
of B. Now C complements A with state size below
our lower bounds, a contradiction. �

4 Construction of Difficult Words

In this section we prove Theorem 1. We shall show
that for any pair of Qk-rankings 〈 f , g〉, there exists a
Υ-graph G〈 f ,g〉 that is R-compatible with 〈 f , g〉.

Proof Plan. We need a construction to simultane-
ously satisfy all properties in Definition 3. The key
challenge lies in making Property (3.2) in harmony
with other properties. Our solution is to divide G〈 f ,g〉

into two sequential subgraphs G f and G f ,g. G f is a
Υ-graph with respect to 〈 f , f 〉 while G f ,g is almost Υ-
graph with respect to 〈 f , g〉 except that it does not sat-
isfy Property (3.2). However, it turns out that Prop-
erty (3.2) will hold in G f ◦ G f ,g as follows.

For any p, q ∈ I, i ∈ [1..k], suppose that rank
(i)
0

(p) >

rank
(i)

|G〈 f ,g〉 |
(q). Since G f is a Υ-graph for 〈 f , f 〉, we have

rank(i)
0
= rank(i)

|G f |
. So we can find a vertex r ∈ I in

the boundary of G f and G f ,g such that rank
(i)
0

(p) >

rank
(i)

|G f |
(r) = rank

(i)

|G〈 f ,g〉 |
(q). By Property (3.2), there ex-

ists a path l f from (p, 0) to (r, |G f |) such that l f visits G
but no Bi. By Property (3.3), there exists a path l f ,g from
(r, |G f |) to (q, |G〈 f ,g〉|) such that l f ,g visits no Bi-vertices
either. Therefore, l f [0..|l f |)◦l f ,g is the desired path from
(p, 0) to (q, |G〈 f ,g〉|).

G f and G f ,g are constructed in a similar manner.
First, we construct a sequence of graph fragments,
each of which has a portion for building bypasses, and
satisfies the corresponding properties with respect to
a specific combination of i ∈ [1..k], p, q ∈ I. Second,
we concatenate these fragments in such a way that
bypasses are in place to guarantee properties of these
fragments are all preserved under concatenation. Let
us take a look at an example before going into the de-
tails. (The reader should refer to the full version of
this paper for the figures used in this example and the
examples to follow.)

Example 1 (Υ-Graph G〈 f ,g〉). Consider FR4 where γ = 1,
k = 2, and

I = {s0, s1, s2, s3}, R = {r0, r1, r2, r3}, B1 = {b1},

T = {t0, t1, t2, t3}, G = {g̈}, B2 = {b2}.

Consider the following pair of Q2-rankings f and g.

f (s0) = (3, 3) f (s1) = (1, 2) f (s2) = (2, 0) f (s3) = (0, 1)

g(s0) = (0, 3) g(s1) = (3, 2) g(s2) = (1, 1) g(s3) = (2, 0)

The first subgraph G f is shown in Figure 1 where we omit
state sets R and T as they have no use. The second sub-
graph G f ,g has two parts, which are shown, respectively, as
G1 in Figure 2 and G2 in Figure 3. The complete graph
G〈 f ,g〉 has 45 levels (0..44) in total. Since f ((s0, 0)) = (3, 3)

and g((s2, 44)) = (1, 1), we have (s0, 0)
G〈 f ,g〉

−−−−→
〈G,B1〉

(s2, 44) and

(s0, 0)
G〈 f ,g〉
−−−−→
〈G,B2〉

(s2, 44). We mark a red (double dotted) path

that satisfies the former and a green (double lined) path that
satisfies the latter.

The existence of the first subgraph and the second
subgraph is established, respectively, by Lemma 5 and
Lemma 6. Due to space limitation, for each lemma,
we only present a construction for FRn with γ = 1

(denoted by FR(1)
n ) and leave the generalization and

detailed proof to the appendix.

Lemma 5. For any Qk-rankings f , there exists a Υ-graph
G f that is R-compatible with 〈 f , f 〉.

Proof Sketch. We show the construction of G f forFR(1)
n .

Since γ = 1, we have k ≤ 2, but we keep k as a param-
eter for the sake of later generalization. Also in this
setting Bi’s (i ∈ [1..k]) are singletons, and hence with
no loss of generality we assume that Bi = {bi}.

As mentioned before, G f is obtained by concate-
nating a sequence of graph fragments, each of which
satisfies Properties (3.1)-(3.4) with respect to a specific
combination of i ∈ [1..k], p, q ∈ I. It turns out that I
suffices for building bypasses and so there is no need
of R or T in G f .

The construction uses the following letters:

Id(I) = { 〈p, p〉 | p ∈ I } ToG(p) = Id(I) ∪ { 〈p, g̈〉 }

GtoB j = Id(I) ∪ { 〈g̈, b j〉 } BitoB j = Id(I) ∪ { 〈bi, b j〉 }

FrG(p) = Id(I) ∪ { 〈g̈, p〉 } FrBi(p) = Id(I) ∪ { 〈bi, p〉 }

where p ∈ I and i, j ∈ [1..k]. For i ∈ [1..k], p, q ∈ I we
define d(i)(p, q) to be

ToG(p) ◦ GtoBk ◦ · · · ◦ Bi+1toBi−1 ◦ · · · ◦ B2toB1 ◦ FrB1(q)
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Note that d(k)(p, q) = ToG(p) ◦ GtoBk−1 ◦ · · · ◦ B2toB1 ◦

FrB1(q) and similar adjustment for d(1)(p, q). It is not
hard to verify that for fixed i, p, q, if f (i)(p) > f (i)(q),
then d(i)(p, q) satisfies Properties (3.1)-(3.4). Indeed,
since G is visited in d(i)(p, q), Property (3.2) is satisfied.
Property (3.3) holds trivially because Bi is not visited
in d(i)(p, q). Property (3.1) also holds trivially because
of the assumption f (i)(p) > f (i)(q). Property (3.4) obvi-
ously holds because all letters contain Id(I).

Formally, G f is a concatenation of subgraphs
G1, . . . ,Gk where each Gi in turn is a concatenation of
graphs of the form d(i)(p, q) where p, q satisfy f (i)(p) >
f (i)(q). Every level of G f is ranked by f . By the defini-
tion of Qk-rankings, for each i ∈ [1..k], j ∈ [n], there is

one and only one state p
(i)
j
∈ I, such that f (i)(p

(i)
j

) = j. So

the set { (p
(i)
j1
, p

(i)
j2

) | j1, j2 ∈ [n], j1 > j2 } contains all the

combinations of (p, q) that we need. It is not hard to see

that the set { (p(i)
j+1
, p(i)

j
) | j ∈ [n−1] } just serves our pur-

pose as long as we let a path go down through ranks
step by step. Put all together, we have G = G1 ◦ · · · ◦Gk

where for i ∈ [1..k], Gi is

d(i)(p(i)
n , p

(i)
n−1

) ◦ d(i)(p(i)
n−1
, p(i)

n−2
) ◦ · · · ◦ d(i)(p(i)

2
, p(i)

1
). �

We show how to select a path l f from (p, 0) to (q, |G f |)
that satisfies Property (3.2) for a fixed index i. Be-
ginning from (p, 0), l f takes horizontal edges passing
through G0, . . . , Gi−1 until it enters Gi and reaches
d(i)(p, p′) for some p′ ∈ I such that f (i)(p) = f (i)(p′) + 1.
Then l f takes the only path that leads to p′ in another
horizontal track, decreasing the i-th rank by 1. Re-
peating this process, each step going to a vertex whose
i-th rank is one less, eventually l f reaches q at some
level and from there it only takes horizontal edges till
reaching (q, |G f |).

Example 2 (Υ-Graph G f ). Let us revisit Example 1 and
take a close look at G f which is shown in Figure 1. Every
level of G f is ranked by f and G f has two parts: G1 and
G2. In G1, after a path leaves an I-vertices, it visits G, then
B2 and comes back to an I-vertex whose 1-st rank is 1 less
than that of the last visited I-vertex. Similarly, in G2, after
a path leaves an I-vertices, it visits G, then B1 and comes
back to an I-vertex whose 2-nd rank is 1 less than that of
the last visited I-vertex. Property (3.1) therefore holds for
both indices 1 and 2. The red (double dotted) path is a
witness for Property (3.2) with respect to (s0, 0), (s1, 18)
and index 1, and the green (double lined) path is a witness
for Property (3.2) with respect to (s0, 0), (s3, 18) and index
2. Property (3.3) is satisfies by any horizontal path from
level 0 to level 18. Property (3.4) is obvious.

Lemma 6. For any pair of Qk-rankings 〈 f , g〉, there exists
a Qk-ranked ∆-graph G f ,g such that the first level and the

last level of G is ranked by f and g respectively, and G f ,g

satisfies Properties (3.1), (3.3), and (3.4).

Proof Sketch. We show the construction of G f ,g for

FR
(1)
n . As before we keep k as a parameter for the

later generalization and we assume that Bi = {bi} for
i ∈ [1..k].

The idea underlying the construction is the same as
before. The desired graph G f ,g is a concatenation of
subgraphs G1, . . . ,Gk where each Gi fulfills the require-
ments with respect to the i-th index. In each Gi, two
kinds of bypasses help preserve properties of all sub-
graphs under concatenation. T (Tunnel) is intended to
build paths that satisfy Property (3.3) for this index i,
while R (Refuge) is to let pass through Gi those paths
that are obliged to satisfy Property (3.3) for indices
other than i.

To simplify the construction of each Gi, we intro-
duce a sequence of k − 1 transitional Qk-rankings that
gradually bridges the difference between f and g, in
such a way that any two adjacent rankings differ at
exactly one coordinate. In each Gi, the Qk-rankings of
all levels but the last one are the same and they differ
from the Qk-ranking of the last level only at the i-th
coordinate. Formally, we define, for each i ∈ [k],

〈 f , g〉i = (g(1), . . . , g(i), f (i+1), . . . , f (k)) .

Note that 〈 f , g〉0 = f , 〈 f , g〉k = g, and 〈 f , g〉
( j)

i−1
= 〈 f , g〉

( j)

i
for j , i. We will assign 〈 f , g〉i to the last level of Gi and
〈 f , g〉i−1 to all other levels of Gi.

We also need to satisfy other properties. Prop-
erty (3.4) is easily seen satisfied once the whole con-
struction is given. Property (3.1a) is also easy to accom-
modate because no other properties require that the G-
vertex be visited. So we simply do not use the G-vertex
and Property (3.1a) trivially holds. Property (3.1b) in-
deed needs more care (see below).

Now we begin the formal construction. For i, j ∈
[1..k], we define the following letters.

S′ = I ∪ T ∪ R Id(S′) = { 〈p, p〉 | p ∈ S′}
SitoB j = Id(S′) ∪ { 〈si, b j〉 } SitoR j = Id(S′) ∪ { 〈si, r j〉 }

SitoT j = Id(S′) ∪ { 〈si, t j〉 } BiToB j = Id(S′) ∪ { 〈bi, b j〉 }

BitoR j = Id(S′) ∪ { 〈bi, r j〉 } BitoT j = Id(S′) ∪ { 〈bi, t j〉 }

Converge = { 〈t j, s j〉 | j ∈ [n] } ∪ { 〈r j, s j〉 | j ∈ [n] }

As mentioned before, each Gi is to fulfill Prop-
erty (3.3) for index i. That means that for every pair of

states (p, q) (p, q ∈ I) such that 〈 f , g〉
(i)
i−1

(p) = 〈 f , g〉
(i)
i

(q),
Gi should contain a full path from (p, 0) to (q, |Gi|) such
that no Bi-vertex appears on the path. This is done by
using Tunnel. For each j ∈ [n], there exists one and

exactly one j′ ∈ [n] such that 〈 f , g〉
(i)
i−1

(s j) = 〈 f , g〉
(i)
i

(s j′).
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So let ~ : [n] → [n] be such a bijective function and

then let toTunnel(i)
j

be

S jtoBi1 ◦ Bi1 ToBi2 ◦ · · · ◦ Bit−1
ToBit ◦ Bit toT~i( j),

where i1, . . . , it is a decreasing enumeration of

I(i)
j
= { l ∈ [n] | 〈 f , g〉(l)

i−1
(s j) < 〈 f , g〉

(l)
i

(s~i( j)) }.

Note that if I
(i)
j
= ∅, we have toTunnel

(i)
j
= S jtoT~i( j). In

toTunnel(i)
j

, no Bi-vertex is visited, and before a path

jumps to the ~i( j)-th track in toTunnel
(i)
j

, the path first

visits a Bl-vertex for every l ∈ I
(i)
j

, which is to respect

Property (3.1b) for indices other than i. These visits
surely do not violate Property (3.3) for this i because

i < I
(i)
j

. Now let

ToTunnel(i) = toTunnel(i)
0
◦ toTunnel(i)

1
◦ · · · ◦ toTunnel(i)

n−1
,

which contains a tunnel for each j ∈ [n].
We are done if we only consider Properties (3.1) and

(3.3) for Gi. However, to guarantee these properties
hold for G f ,g, we need to create a bypass in each Gi such
that a full path in G f ,g that is obliged to satisfy these
properties for coordinate i will take the corresponding
bypass in every G j with j , i. This is achieved by using

Refuge. We define toRefuge(i)
j

to be

S jtoBi ◦ BitoR j if 〈 f , g〉
(i)
i−1

(s j) < 〈 f , g〉
(i)
i

(s j)
S jtoR j otherwise

which makes sure that there is a bypass from s j to

s j that visits Bi if 〈 f , g〉
(i)

i−1
(s j) < 〈 f , g〉

(i)

i
(s j). Therefore,

Property (3.1b) for this i is respected. Obviously Prop-
erty (3.1b) for other indices are not violated because

〈 f , g〉
( j)

i−1
= 〈 f , g〉

( j)

i
for i , j. Now let ToRefuge(i) be

toRefuge(i)
0
◦ toRefuge(i)

1
◦ · · · ◦ toRefuge(i)

n−1
,

which contains a refuge for each j ∈ [n].
Put all together we define

Gi = Id(I) ◦ ToRefuge(i) ◦ToTunnel(i) ◦Converge ,

where Id(I) is to force paths to enter Gi only through I-
vertices, and Converge is to synchronize both T-vertices
and R-vertices with the corresponding I-vertices before
they leave Gi. Note that in each Gi, Converge forces that
any full path from s j to s j′ either goes through Tunnel
or goes through Refuge. In the former case, we have

〈 f , g〉(i)
i−1

(s j) = 〈 f , g〉
(i)
i

(s j′), and in the latter case, we have
j = j′. �

We show how to select a path l f ,g from (s j, 0) to
(s j′ , |G f ,g|) that satisfies Property (3.3) for a fixed index
i. Beginning from (p, 0), l f ,g uses Refuge to pass through
G0, . . . , Gi−1 until it enters Gi. Insides Gi, l f ,g takes the

horizontal track to reach toTunnel
(i)

j
and from there it

takes a path to enter Tunnel. It continues to move
through Tunnel until it reaches s j′ at the last level of
Gi. Then again l f ,g uses Refuge to pass through the
remaining Gi+1, . . . ,Gk until reaching (s j′ , |G f ,g|).

Example 3 (Υ-Graph G f ,g). Let us revisit Example 1 to
have a close look at G f ,g, which has two parts, G1, shown in
Figure 2, and G2, shown in Figure 3. All levels but the last
one of G1 and G2 are ranked, respectively, by f and 〈 f , g〉1.
The last levels of G1 and G2 are ranked, respectively, by
〈 f , g〉1 and g. In G1, a path starting from (si, 18) (i ∈ [1..k])
has to go through either Refuge or Tunnel. In the former
case, the path ends at (si, 32) and in the latter case, the
path ends at (s j, 32) for some j ∈ [1..k] such that f (1)(si) =

〈 f , g〉
(1)
1

(s j). Similarly for paths in G2.
A short path from (s3, 23) to (r3, 25) via (b1, 24) (in

toRefuge
(1)
3

) is intended for any path passing through

Refuge to respect Property (3.1b) because f (1)((s3, 20)) <

〈 f , g〉
(1)
1

(s3, 32). Similarly for the path from (s1, 20) to

(r1, 22) via (b1, 21) (in toRefuge
(1)
1

) and the path from (s2, 35)

to (r2, 37) via (b2, 36) (in toRefuge
(2)
2

).
The red (double dotted) path from (s1, 18) to (s2, 44) sat-

isfies Property (3.3) for index 1 and the green (double lined)
path from (s3, 18) to (s2, 44) satisfies Property (3.3) for in-
dex 2. The former path uses the Tunnel in G1 and Refuge
in G2 while the latter uses Refuge in G1 and Tunnel in
G2. Property (3.1b) holds for the reason stated above. Prop-
erty (3.1a) holds vacuously because no G-vertex is visited.
Property (3.4) is obvious as usual.

We are ready to prove the key theorem of this paper.

Theorem 1. For any pair of Qk-rankings 〈 f , g〉, there
exists a Υ-graph G〈 f ,g〉 that is R-compatible with 〈 f , g〉.

Proof. Let G f be anΥ-graph that satisfies Lemma 5, and
let G f ,g be a Qk-ranked ∆-graph that satisfies Lemma 6.
Let G〈 f ,g〉 = G f ◦G f ,g. We show that G〈 f ,g〉 satisfies Prop-
erties (3.1)-(3.4). Let p, q ∈ I, i ∈ [1..k].

Suppose that f (i)(p) = g(i)(q). By Lemma 5 (Prop-

erty (3.3)), p
G f

−−→
∼Bi

p and by Lemma 6 (Property (3.3)),

p
G f ,g

−−→
∼Bi

q. Therefore, p
G〈 f ,g〉
−−−→
∼Bi

q, which gives us Prop-

erty (3.3) for G〈 f ,g〉.

Suppose that f (i)(p) > g(i)(q). Because f (i) is bijective,
there exists r ∈ I such that f (i)(p) > f (i)(r) = g(i)(q). By

Lemma 5 (Property (3.2)), p
G f

−−−−→
〈G,Bi〉

r and by Lemma 6
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(Property (3.3)), r
G f ,g

−−→
∼Bi

q. Therefore, p
G〈 f ,g〉
−−−−→
〈G,Bi〉

q, which

proves Property (3.2) for G〈 f ,g〉.
Property (3.4) is easily seen as it is proved both in

Lemma 5 and in Lemma 6.
If a path starts and ends with I-vertices and has no

other I-vertices in between, then it must be confined
either in G f or in G f ,g. Property (3.1) then follows as it
is proved both in Lemma 5 and in Lemma 6. �

5 Conclusion

In this paper we generalized the full automata tech-
nique with multidimensional ranking functions. Us-
ing the improved technique we obtained an almost
tight lower bound for the complementation of Rabin
automata. We also showed that the same lower bound
holds for the determinization of Rabin automata. Note
that our lower bounds can be further improved. In the
proof, a Qk-ranking is defined to be a sequence of k
independent bijective functions from [n] to [n], and
hence the number of Qk-rankings is (n!)k ≈ (0.36n)kn.
Our proof can be adapted to use a new type of Qk-
rankings, each of which is a sequence of k indepen-
dent tight level rankings as defined in [FKV06, Yan06].
In this way, the number of new Qk-rankings is at least
(0.76n)kn. But this change does not affect the lower
bounds expressed in the big-O notation, and hence we
chose the current definition for simplicity of the proof.

We plan to use the improved technique to tighten
bounds for other types of automata transformations.
In particular, we are interested in investigating the
complementation problem of Streett automata. The
current best lower bound for this problem is (Ω(kN))N

([Yan06]) while the best upper bound is 2O(kN lg kN)

([KV05a]), where k, the number of Streett pairs, can
be as large as 2N.
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A Proofs and Figures

In this appendix we prove Lemmas 2, 5 and 6 and
Theorem 3, and present Figures 1-4 that were omitted
from the main text.

We first define a variant concatenation operator •
such that, u • v = u ◦ v if u(|u| − 1) , v(0) and u • v =
u ◦ v[1..|v| − 1] if u(|u| − 1) = v(0).

Lemma 2 (Transitivity). Let f , g, h be Qk-rankings for
FRn, and G〈 f ,g〉 and G〈g,h〉 be Υ-graphs that are R-
compatible with 〈 f , g〉 and 〈g, h〉, respectively. Then
G〈 f ,g〉 ◦ G〈g,h〉 is R-compatible with 〈 f , h〉.

Proof. Let G〈 f ,h〉 be G〈 f ,g〉 ◦ G〈g,h〉. We show that G〈 f ,h〉

satisfies Properties (3.1)-(3.4).
For Properties (3.2) and (3.3), let p, q ∈ I, i ∈ [1..k]

and suppose that f (i)(p) ≥ h(i)(q). Since f (i) is a bi-
jective function, there exists s ∈ I such that f (i)(p) ≥
g(i)(s) ≥ h(i)(q). By Properties (3.2) and (3.3)), we have

p
G〈 f ,g〉
−−−→
∼Bi

s
G〈g,h〉
−−−→
∼Bi

q, and hence p
G〈 f ,h〉
−−−→
∼Bi

q. If f (i)(p) > h(i)(q),

then either f (i)(p) > g(i)(s) or g(i)(s) > h(i)(q). By Prop-

erty (3.2), either p
G〈 f ,g〉
−−−−→
〈G,Bi〉

s or s
G〈g,h〉
−−−−→
〈G,Bi〉

q, and therefore

p
G〈 f ,h〉

−−−−→
〈G,Bi〉

q.

It is easy to verify Property (3.4) as both G〈 f ,g〉 and
G〈g,h〉 satisfy it.

Due to Property (3.4), if a path starts and ends with
I-vertices and has no other I-vertices in between, then
the path must be totally confined either in G〈 f ,g〉 or in
G〈g,h〉. Property (3.1) then follows as both G〈 f ,g〉 and
G〈g,h〉 both satisfy it. �

Lemma 5. For any Qk-rankings f , there exists a Υ-
graph G f that is R-compatible with 〈 f , f 〉.

Proof. We first prove the lemma for FR(1)
n and then we

show the generalization for FRn.

Proof for FR(1)
n . We show that G f satisfies Proper-

ties (3.1)-(3.4).
Property (3.1). Let l be a nonempty path in G f that goes
from p to q such that p, q are only I-vertices appearing
on l. If there exists no vertex in between p and q, then
Property (3.1) holds trivially. Suppose otherwise. For
each i ∈ [1..k], we define

l(i)(p, q) = p ◦ g̈ ◦ bk ◦ bk−1 ◦ · · · ◦ bi+1 ◦ bi−1 ◦ · · · ◦ b1 ◦ q

According to our construction, l must be l(i)(p, q) for
some i ∈ [1..k]. Property (3.1) then follows.

Property (3.2). Assume that f (i)(p) > f (i)(q) for some
p, q ∈ I. Let t = f (i)(p) − f (i)(q). Let p0, . . . , pt be a
sequence of I-states such that p0 = p, pt = q, and
f (i)(p j) = f (i)(p) − j for j ∈ [t]. The sequence is well-

defined because f (i) : I → [n] is bijective. Now let l(i)

be a path of the following form

(p)∗ ◦ l(i)(p, p1) • l(i)(p1, p2) • · · · • l(i)(pt−1, q) ◦ (q)∗ .

It is not hard to verify that l(i) visits the G-vertex but
no Bi-vertices. Hence Property (3.2) holds.

Property (3.3). Since rank(i)
0
= rank(i)

|G f |
is bijective, if

rank
(i)
0

(p) = rank
(i)

|G f |
(q), then p = q. It is easy to verify

that the horizontal path of the form (p)∗ does not visit
Bi-vertices.

Property (3.4). This is immediate from our construc-
tion.

Proof Adjustment for FRn. Let B̂i = {bi} for i ∈
[1..2γ]. We define the following letters for p ∈ I,
i, j ∈ [1..2γ].

Id(I) = { 〈p, p〉 | p ∈ I } ToG(p) = Id(I) ∪ { 〈p, g̈〉 }

GtoB̂ j = Id(I) ∪ { 〈g̈, b j〉 } B̂itoB̂ j = Id(I) ∪ { 〈bi, b j〉 }

FrG(p) = Id(I) ∪ { 〈g̈, p〉 } FrB̂i(p) = Id(I) ∪ { 〈bi, p〉 }

In the construction of G f , the only change we need

to make is d(i)(p, q). We let λi : ([1..k] \ {i}) → [1..γ]
be a choice function such that for any i′ ∈ ([1..k] \ {i}),
bλi(i′) < Bi but bλi(i′) ∈ Bi′ . Such λi is well-defined as for
any i′ ∈ ([1..k] \ {i}), |Bi| = |Bi′ | but Bi , Bi′ . We define

d(i)(p, q) = ToG(p) ◦ GtoB̂λi(k−1)

◦ · · · ◦ B̂λi(i+1)toB̂λi(i−1) ◦ · · · ◦ FrB̂λi(1)(q) .

In the proof, we need to update l(i)(p, q) to

p ◦ g̈ ◦ bλi(k) ◦ bλi(k−1)

◦ · · · ◦ bλi(i+1) ◦ bλi(i−1) ◦ · · · ◦ bλi(1) ◦ q . �

Lemma 6. For any pair of Qk-rankings 〈 f , g〉, there
exists a Qk-ranked ∆-graph G f ,g such that the first level
and the last level of G is ranked by f and g respectively,
and G f ,g satisfies Properties (3.1), (3.3), and (3.4).

Proof. Our proof strategy is the same as before. We

first prove the lemma for FR(1)
n and then we show the

generalization for FRn.
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Proof for FR(1)
n . We show that G f ,g satisfies Proper-

ties (3.1), (3.3) and (3.4).
Property (3.1). Let l be a nonempty path in G f ,g from
p to q such that p, q are only I-vertices appearing on
l. If the successor of p is an I-vertex, then q must be
that successor and hence Property (3.1) trivially holds.
Suppose the contrary. According to our construction,
except for p and q, every vertex on l has exactly one
successor. It is not hard to verify that l must be one of
the following forms:

s j ◦ bi1 ◦ bi2 ◦ · · · ◦ bit ◦ t~i( j) ◦ t~i( j) ◦ · · · ◦ t~i( j) ◦ s~i( j) ,

s j ◦ t~i( j) ◦ t~i( j) ◦ · · · ◦ t~i( j) ◦ s~i( j) ,

s j ◦ bi ◦ r j ◦ r j ◦ · · · ◦ r j ◦ s j ,

s j ◦ r j ◦ r j ◦ · · · ◦ r j ◦ s j ,

where, as defined in the construction, ~i( j) : [n] →

[n] is a bijective function such that 〈 f , g〉(i)
i−1

(s j) =

〈 f , g〉
(i)

i
(s~i( j)), and i1, . . . , it is a decreasing enumeration

of

I
(i)
j
= { i′ ∈ [n] | 〈 f , g〉

(i′)
i−1

(s j) < 〈 f , g〉
(i′)
i

(s~i( j)) }.

It is easy to verify that paths in any of these forms
satisfy Property (3.1).
Property (3.3). Define

LR
(i)
j
=

{

s j ◦ bi ◦ r j if 〈 f , g〉(i)
i−1

(s j) < 〈 f , g〉
(i)
i

(s j)
s j ◦ r j otherwise

LT
(i)
j
= s j ◦ bi1 ◦ bi2 ◦ · · · ◦ bit ◦ t~i( j)

where ~i( j), I
(i)
j

, and i1, . . . , it are defined as before. Now

let l
(R)
j

(Gi), l
(T)
j

(Gi), respectively, be full paths in Gi of the

following forms,

l
(R)
j

(Gi) = s j ◦ · · · ◦ s j • LR
(i)
j
• r j ◦ · · · ◦ r j ◦ s j ,

l
(T)
j

(Gi) = s j ◦ · · · ◦ s j • LT
(i)
j
• t~i( j) ◦ · · · ◦ t~i( j) ◦ s~i( j) .

Let l
(i)
j

be

l
(R)
j

(G1) • l
(R)
j

(G2) • · · · • l
(R)
j

(Gi−1) • l
(T)
j

(Gi)

• l
(R)

~i( j)
(Gi+1) • · · · • l

(R)

~i( j)
(Gk−1) • l

(R)

~i( j)
(Gk) .

which is a path that witnesses Property (3.3) with re-
spect to (s j, 0), (s~i( j), |G f ,g|) and index i. It is easily seen

that LT(i)
j

contains no Bi-vertex, and so neither does

l
(T)
j

(Gi). Also for any i′ , i, 〈 f , g〉
(i′)
i−1

(s j) = 〈 f , g〉
(i′)
i

(s j),

which implies that Bi-vertices do not appear on LR
(i)

j
,

and hence do not appear on l
(R)
j

(Gi). All in all, there is

no Bi-vertex on l
(i)
j

, and hence Property (3.3) holds.

Property (3.4). This is obviously seen from our con-
struction.

Proof Adjustment for FRn. Let B̂i = {bi} for i ∈
[1..2γ]. We define the following letters for i, j ∈ [1..2γ].

S′ = I ∪ T ∪ R Id(S′) = { 〈p, p〉 | p ∈ S′}

SitoB̂ j = Id(S′) ∪ { 〈si, b j〉 } SitoR j = Id(S′) ∪ { 〈si, r j〉 }

SitoT j = Id(S′) ∪ { 〈si, t j〉 } B̂iToB̂ j = Id(S′) ∪ { 〈bi, b j〉 }

B̂itoR j = Id(S′) ∪ { 〈bi, r j〉 } B̂itoT j = Id(S′) ∪ { 〈bi, t j〉 }

Converge = { 〈t j, s j〉 | j ∈ [n] } ∪ { 〈r j, s j〉 | j ∈ [n] }

In the construction part, we need to modify

toTunnel
(i)
j

and toRefuge
(i)
j

. We change toTunnel
(i)
j

in

a similar way as we change d(i)(p, q) in the proof of
Lemma 5. Let λi : ([1..k] \ {i}) → [1..γ] be the same as

in the proof of Lemma 5. Let ~i( j), I
(i)

j
, and i1, . . . , it be

defined as before. When we want to visit a Bi j
-vertex,

we choose a state from the set Bi j
\Bi in order to avoid

visiting Bi-vertices. Define toTunnel
(i)
j

to be

S jtoB̂λi(i1) ◦ B̂λi(i1)ToB̂λi(i2) ◦ · · · ◦ B̂λi(it)toT~i( j)

Note that as before if I
(i)
j
= ∅, we should have

toTunnel
(i)

j
= S jtoT~i( j).

The change to toRefuge
(i)
j

is a bit involved. On the

one hand, Gi needs to respect Property (3.3) for indices
other than i. This means that for each i′ , i, Refuge
contains a bypass that does not visit Bi′ -vertices. On
the other hand, such a bypass should not violate Prop-
erty (3.1) for this i, that is, it must visit a Bi-vertex if
the i-th rank increases. As a result, Refuge needs to
provide as many as γ different bypasses. Assume that

Bi = {bm1
, bm2
, . . . , bmγ}. We define toRefuge

(i)
j

to be

S jtoB̂m1
◦ B̂m1

toR j ◦ · · · ◦ S jtoB̂mγ ◦ B̂mγtoR j

if 〈 f , g〉
(i)
i−1

(s j) < 〈 f , g〉
(i)
i

(s j) and to be S jtoR j otherwise.

In the proof we change LT
(i)
j

to

s j1 ◦ bλi(i1) ◦ bλi(i2) ◦ · · · ◦ bλi(it) ◦ t j2 .

In stead of having LR
(i)
j

, we define LR
(i)(i′ )
j

for each i′ ∈

[1..k] as follows.

LR
(i)(i′ )
j
=

{

s j ◦ b℘i(i′) ◦ r j if 〈 f , g〉
(i)
i−1

(s j) < 〈 f , g〉
(i)
i

(s j)
s j ◦ r j otherwise

,
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where℘i : ([1..k]\ {i})→ [1..γ] is a choice function such
that for any i′ ∈ ([1..k]\{i}), b℘i(i′) ∈ Bi but b℘i(i′) < Bi′ . As
λi,℘i is well-defined. We define for each i′ ∈ ([1..k]\{i}),
a bypass in Gi as follows.

l
(R)(i′)
j

(Gi) = s j ◦ · · · ◦ s j • LR
(i)(i′ )
j
• r j ◦ · · · ◦ r j ◦ s j ,

Finally we change l
(i)
j

to

l
(R)(i)
j

(G1) • l
(R)(i)
j

(G2) • · · · • l
(R)(i)
j

(Gi−1) • l
(T)
j

(Gi)

• l
(R)(i)

~i( j)
(Gi+1) • · · · • l

(R)(i)

~i( j)
(Gk−1) • l

(R)(i)

~i( j)
(Gk) . �

Theorem 3. For any ǫ > 0, a constant d > 0 exists such
that the lower bound of the complementation problem
for Rabin automata over any alphabet of size d and
with N states and k Rabin pairs is 2Ω(kN lg N) if k ≤ 2N(1−ǫ),

and is 2Ω(2N(1−ǫ)N lg N) if k > 2N(1−ǫ). For an alphabet of
small constant size, the lower bound is 2Ω(kN lg N) if

k ≤ 2
N
2 (1−ǫ), and is 2Ω(2

N
2

(1−ǫ)N lg N) if k > 2
N
2 (1−ǫ).

Proof. It is not hard to verify that in the Υ-graphs we
constructed (see the constructions and proofs for Lem-
mas 5 and 6), there exists at most one edge between two
adjacent levels, excluding the horizontal edges defined
by Id(U) for U ⊆ S, and edges in Converge. Therefore
aforementioned results rely on using alphabets of size
O(N2) which is unbounded as N grows.

However, we can map a large alphabet to a small
one via an encoding trick consisting of two key opera-

tions: rotation and selection. We define F̂ Rn which only
differs from FRn with two additional new state sets B̃
and Ĩ. B̃ and Ĩ, respectively, have the same cardinali-
ties as B and I, and they are disjoint from each other
and from other state sets defined in FRn. B̃ and Ĩ are
intended, respectively, to be the shadows of B and I, to
safely carry out rotation and selection.

Suppose we want to have an edge going from bi

in B to s j in I (i ∈ [1..2γ], j ∈ [n]). First we let bi

go to its corresponding shadow state b̃i in B̃. Second,
through a sequence of rotations we force b̃i to go to
b̃1. At this position only b̃1 can go out and reach s̃0 in
Ĩ, which effectively means that we select bi and block
all other states in B. What happens next is symmetric.
Through another sequence of rotations we force s̃0 to
go to s̃ j (equivalent to the selection of s j) from which
s j is finally reached. Figure 4 shows the encoding of

FrB2(s1) assuming the setup for FR(1)
n . The effective

path from b2 to s1 is marked out using red (double
dotted) edges. We define the new alphabet as follows.

ItoĨ = Id(I) ∪ { 〈si, s̃i〉 ∈ I × Ĩ | i ∈ [n] }

ĨtoI = Id(I) ∪ { 〈s̃i, si〉 ∈ Ĩ × I | i ∈ [n] }

BtoB̃ = Id(I) ∪ { 〈bi, b̃i〉 ∈ B × B̃ | i ∈ [1...2γ] }

B̃toB = Id(I) ∪ { 〈b̃i, bi〉 ∈ B̃ × B | i ∈ [1...2γ] }

rotateĨ = Id(I) ∪ { 〈s̃i, s̃(i+1) mod n〉 ∈ Ĩ × Ĩ | i ∈ [n] }

rotateB̃ = Id(I) ∪ { 〈b̃i, b̃(i mod 2γ)+1〉 ∈ B̃ × B̃ | i ∈ [1...2γ] }

saveĨ0 = Id(I) ∪ { 〈s̃0, s̃0〉 }

saveB̃1 = Id(I) ∪ { 〈b̃1, b̃1〉 }

ĨtoR = Id(I) ∪ { 〈s̃i, ri〉 ∈ Ĩ × R | i ∈ [n] }

ĨtoT = Id(I) ∪ { 〈s̃i, ti〉 ∈ Ĩ × T | i ∈ [n] }

Ĩ0toB̃1 = Id(I) ∪ { 〈s̃0, b̃1〉 }

B̃1toĨ0 = Id(I) ∪ { 〈b̃1, s̃0〉 }

Ĩ0toG = Id(I) ∪ { 〈s̃0, g̈〉 }

GtoĨ0 = Id(I) ∪ { 〈g̈, s̃0〉 }

GtoB̃1 = Id(I) ∪ { 〈g̈, b̃1〉 }

For each letter L listed above, we define L = Id(R)∪
Id(T) ∪ L. Now all letters used in the construction for
FRn in Lemmas 5 and 6 can be mapped to letters in
the new alphabet as follows.

ToG(s j) = ItoĨ ◦ (rotateĨ)n− j ◦ saveĨ0 ◦ Ĩ0toG

GtoB̂ j = GtoB̃1 ◦ (rotateB̃) j−1 ◦ B̃toB

B̂itoB̂ j = BtoB̃ ◦ (rotateB̃)2γ−i+1 ◦ saveB̃1

◦ (rotateB̃) j−1 ◦ B̃toB

FrG(s j) = GtoĨ0 ◦ (rotateĨ) j ◦ ĨtoI

FrB̂i(s j) = BtoB̃ ◦ (rotateB̃)2γ−i+1 ◦ saveB̃1 ◦ B̃1toĨ0

◦ (rotateĨ) j ◦ ĨtoI

SitoB̂ j = ItoĨ ◦ (rotateĨ)n−i ◦ saveĨ0 ◦ Ĩ0toB̃1

◦ (rotateB̃) j−1 ◦ B̃toB

SitoR j = ItoĨ ◦ (rotateĨ)n−i ◦ saveĨ0 ◦ (rotateĨ) j ◦ ĨtoR

SitoT j = ItoĨ ◦ (rotateĨ)n−i ◦ saveĨ0 ◦ (rotateĨ) j ◦ ĨtoT

B̂iToB̂ j = BtoB̃ ◦ (rotateB̃)2γ−i+1 ◦ saveB̃1

◦ (rotateB̃) j−1 ◦ B̃toB

B̂itoR j = BtoB̃ ◦ (rotateB̃)2γ−i+1 ◦ saveB̃1 ◦ B̃1toĨ0

◦ (rotateĨ) j ◦ ĨtoR

B̂itoT j = BtoB̃ ◦ (rotateB̃)2γ−i+1 ◦ saveB̃1 ◦ B̃1toĨ0

◦ (rotateĨ) j ◦ ĨtoT

In the above encoding we have an alphabet of size
less than 40. Through a more complicated construction
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we can bring down the alphabet size to 4 (one for each
of four primitive operations: rotation, selection, map-
ping originals to shadows, and mapping shadows to
originals). But this have no effect to our lower bounds.

The proof of Theorem 2 needs a slight modification.
The introduction of Ĩ does no harm because the size of
Ĩ is just n. But with the addition of B̃, the size of B can
be at most N

2 . As a result, the lower bound is 2Ω(kN lg N)

if k ≤ 2
N
2 (1−ǫ), and is 2Ω(2

N
2 (1−ǫ)N lg N) if k > 2

N
2 (1−ǫ).

We can still have the lower bound as stated in The-
orem 2, because, for each ǫ > 0, we can find a fixed
alphabet to which any alphabet of size O(N2) can be
mapped. The trick is that we do not need to have a
bijection between B and B̃. Instead we can let B̃ be just
a set of size n, and reuse B̃ for different portion of B.
In the proof of Theorem 2, γ is set to cn and hence B
can be divided into 2c portions. The size of the new
alphabet will increase by 2c times, but the size of B can
still be as close to N as possible (by choosing a large
enough c). �
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| G |

| G1 | G2 |

| d(1)(s0,s2) | d(1)(s2,s1) | d(1)(s1,s3) | d(2)(s0,s1) | d(2)(s1,s3) | d(2)(s3,s2) |

|ToG(s0)| GtoB2 |FrB2(s2)|ToG(s2)| GtoB2 |FrB2(s1)|ToG(s1)| GtoB2 |FrB2(s3)| ToG(s0) | GtoB1 | FrB1(s1) | ToG(s1) | GtoB1 | FrB1(s3) | ToG(s3) | GtoB1 | FrB1(s2) |

s f

g̈ • • • • • • • • • • • • • • • • • • •

b2 • • • • • • • • • • • • • • • • • • •

b1 • • • • • • • • • • • • • • • • • • •

s0 (3, 3) • • • • • • • • • • • • • • • • • • •

s1 (1, 2) • • • • • • • • • • • • • • • • • • •

s2 (2, 0) • • • • • • • • • • • • • • • • • • •

s3 (0, 1) • • • • • • • • • • • • • • • • • • •

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 1. G f in Examples 1 and 2. All levels ( 0 to 18) are ranked by f . The red (double dotted) path is a witness for Property (3.2) with
respect to (s0, 0), (s1, 18) and index 1, and the green (double lined) path is a witness for Property (3.2) with respect to (s0, 0), (s3, 18)
and index 2.
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| G1 |

| ToRefuge(1) | ToTunnel(1) |

|toRefuge
(1)
0 | toRefuge

(1)
1 |toRefuge(1)

2 | toRefuge
(1)
3 |toTunnel

(1)
0 |toTunnel

(1)
1 | toTunnel(1)

2 | toTunnel
(1)
3 |

| Id(I) | S0toR0 | S1toB1 | B1toR1 | S2toR2 | S3toB1 | B1toR3 | S0toT1 | S1toT2 | S2toB2 | B2toT3 | S3toB2 | B2toT0 | Converge |

s f 〈 f , g〉1

t0 • • • • • • • • • • • • • • •

t1 • • • • • • • • • • • • • • •

t2 • • • • • • • • • • • • • • •

t3 • • • • • • • • • • • • • • •

g̈ • • • • • • • • • • • • • • •

b2 • • • • • • • • • • • • • • •

b1 • • • • • • • • • • • • • • •

s0 (3, 3) • • • • • • • • • • • • • • • (0, 3)

s1 (1, 2) • • • • • • • • • • • • • • • (3, 2)

s2 (2, 0) • • • • • • • • • • • • • • • (1, 0)

s3 (0, 1) • • • • • • • • • • • • • • • (2, 1)

r0 • • • • • • • • • • • • • • •

r1 • • • • • • • • • • • • • • •

r2 • • • • • • • • • • • • • • •

r3 • • • • • • • • • • • • • • •

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 2. G1 in Examples 1 and 3. Levels from 18 to 31 are all ranked by f , and level 32 is ranked by 〈 f , g〉1. The red (double dotted)
path is a witness for Property (3.3) with respect to (s1, 18), (s2, 32) and index 1. Extended with the red (double dotted) path from (s2, 32)
to (s2, 44), it becomes a witness for Property (3.3) with respect to (s1, 18), (s2, 44) and index 1.
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| G2 |

| ToRefuge(2) | ToTunnel(2) |

|toRefuge
(2)
0 |toRefuge

(2)
1 | toRefuge(2)

2 |toRefuge
(2)
3 |toTunnel

(2)
0 |toTunnel

(2)
1 | toTunnel(2)

2 |toTunnel
(2)
3 |

| Id(I) | S0toR0 | S1toR1 | S2toB2 | B2toR2 | S3toR3 | S0toT0 | S1toT1 | S2toB1 | B1toT3 | S3toT2 | Converge |

s 〈 f , g〉1 g

t0 • • • • • • • • • • • • •

t1 • • • • • • • • • • • • •

t2 • • • • • • • • • • • • •

t3 • • • • • • • • • • • • •

g̈ • • • • • • • • • • • • •

b2 • • • • • • • • • • • • •

b1 • • • • • • • • • • • • •

s0 (0, 3) • • • • • • • • • • • • • (0, 3)

s1 (3, 2) • • • • • • • • • • • • • (3, 2)

s2 (1, 0) • • • • • • • • • • • • • (1, 1)

s3 (2, 1) • • • • • • • • • • • • • (2, 0)

r0 • • • • • • • • • • • • •

r1 • • • • • • • • • • • • •

r2 • • • • • • • • • • • • •

r3 • • • • • • • • • • • • •

32 33 34 35 36 37 38 39 40 41 42 43 44

Figure 3. G2 in Examples 1 and 3. Levels from 32 to 43 are all ranked by 〈 f , g〉1, and level 44 is ranked by g. The green (double lined)
path is a witness for Property (3.3) with respect to (s3, 32), (s2, 44) and index 2. Prefixed with the green (double lined) path from (s3, 18)
to (s3, 32), it becomes a witness for Property (3.3) with respect to (s3, 18), (s2, 44) and index 2.
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| BtoB̃ | rotateB̃ | saveB̃1 | B̃1toĨ0 | rotateĨ | ĨtoI |

s

b1 • • • • • • •

b2 • • • • • • •

s0 • • • • • • •

s1 • • • • • • •

s2 • • • • • • •

s3 • • • • • • •

b̃1 • • • • • • •

b̃2 • • • • • • •

s̃0 • • • • • • •

s̃1 • • • • • • •

s̃2 • • • • • • •

s̃3 • • • • • • •

Figure 4. Encoding of FrB2(s1)
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