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Abstract

The seminal impossibility result of Myerson and Satterthwaite (1983) states that
for bilateral trade, there is no mechanism that is individually rational (IR), incentive
compatible (IC), weakly budget balanced, and efficient. This has led follow-up work
on two-sided trade settings to weaken the efficiency requirement and consider approx-
imately efficient simple mechanisms, while still demanding the other properties. The
current state-of-the-art of such mechanisms for two-sided markets can be categorized as
giving one (but not both) of the following two types of approximation guarantees on the
gains from trade: a constant ex-ante guarantee, measured with respect to the second-
best efficiency benchmark, or an asymptotically optimal ex-post guarantee, measured
with respect to the first-best efficiency benchmark. Here the second-best efficiency
benchmark refers to the highest gains from trade attainable by any IR, IC and weakly
budget balanced mechanism, while the first-best efficiency benchmark refers to the
maximum gains from trade (attainable by the VCG mechanism, which is not weakly
budget balanced).

In this paper, we construct simple mechanisms for double-auction and matching
markets that simultaneously achieve both types of guarantees: these are ex-post IR,
Bayesian IC, and ex-post weakly budget balanced mechanisms that 1) ex-ante guar-
antee a constant fraction of the gains from trade of the second-best, and 2) ex-post
guarantee a realization-dependent fraction of the gains from trade of the first-best, such
that this realization-dependent fraction converges to 1 (full efficiency) as the market
grows large.
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1 Introduction

In a two-sided trade setting, some agents (sellers) are endowed with items, while other
agents (buyers) are interested in purchasing items. Each seller has a cost for parting with
her item, and each buyer has a value for obtaining an item. In such settings, a mechanism
designer may wish to create a mechanism that ensures that the items end up belonging to
the agents (whether buyers or sellers) that value them the most. An important property of
such a mechanism is being budget balanced, that is, not running a deficit for the mechanism
designer.

The seminal impossibility result of Myerson and Satterthwaite (1983) shows that for
bilateral-trade, that is, for the setting where a single seller wishes to sell a single item to a
single buyer, there is no mechanism that is individually rational (IR), incentive compatible
(IC), weakly budget balanced (BB) and efficient (i.e., maximizes welfare).1 This impossibility
result clearly extends from the special case of bilateral trade to any two-sided trade setting.

In light of the above impossibility result, follow-up work in the two-sided trade literature
has looked at IR, IC, and BB mechanisms that are approximately efficient, rather than
precisely efficient. Two definitions of approximate efficiency have emerged: on the one hand,
approximately maximizing welfare2 (Blumrosen and Dobzinski, 2016; Colini-Baldeschi et al.,
2016; Colini-Baldeschi et al., 2017), and on the other hand, approximately maximizing the
gains from trade (GFT), that is, the increase in total welfare due to the trade (McAfee, 1992;
Babaioff et al., 2009; Blumrosen and Mizrahi, 2016; Dütting et al., 2017; Brustle et al., 2017).
This paper discusses the latter, more challenging benchmark.3 The current state-of-the-art
mechanisms in the literature can be categorized as giving one of two guarantees:

1. A constant ex-ante guarantee, measured with respect to the “second-best” efficiency
benchmark, that is, the (possibly very complex) mechanism obtaining the highest
expected GFT of any IR and IC mechanism that is weakly budget balanced, or

2. An asymptotically optimal ex-post guarantee, measured with respect to the “first-best”
efficiency benchmark, that is, the mechanism obtaining full efficiency (VCG).

In this paper, we aim to construct simple mechanisms that simultaneously achieve both
guarantees. We study settings in which each seller is endowed with precisely one item, all
items are identical, and each buyer is interested in buying one item. In the double-auction
setting, any seller can trade with any buyer, while in the more general matching setting,
trade between some buyer-seller pairs is disallowed. Before describing our results, we first
survey the state-of-the-art mechanisms giving each guarantee in more depth.

1In particular, note that the VCG mechanism, while being IR, dominant-strategy incentive compatible,
and efficient, has a budget deficit.

2These papers consider the cost of a seller as a value for keeping the item rather than a cost for parting
with the item, so the no-trade welfare is the cost (or rather value) of the seller, while the post-trade welfare
(if trade occurs) is the value of the buyer.

3While maximizing the gains from trade coincides with maximizing welfare, obtaining a constant ap-
proximation to the optimal gains from trade is considerably more demanding than obtaining a constant
approximation to the optimal welfare. Consider, for instance, a buyer who values an item by 9 dollars and a
seller whose value for keeping the item is 8 dollars. The optimal welfare (of 9), and the optimal gains from
trade (of 1), are both obtained by having the seller trade with the buyer. While not trading results in a
welfare of 8 (a 8/9 fraction of the optimal welfare), it results in zero gains from trade.
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Ex-Ante Guarantees Brustle, Cai, Wu, and Zhao (2017) (henceforth BCWZ) present
a simple mechanism that is IR, IC, and weakly BB, and obtains, in expectation, at least
half of the expected GFT of the (possibly very complex) second-best efficiency benchmark.
More specifically, they have proposed two mechanisms – a buyer offering and a seller offering
mechanism – and have showed that the total GFT of these two mechanisms is at least the
GFT of the second-best mechanism, implying that a random one obtains at least half the
GFT of the second-best mechanism. For bilateral trade, in their seller offering mechanism,
the seller simply posts a take-it-or-leave-it price to the buyer, which maximizes the seller’s
utility in expectation, taking into account the seller’s cost for the item and the buyer’s value
distribution. In their buyer offering mechanism, the buyer makes a similar take-it-or-leave-it
purchase offer to the seller.

BCWZ also generalize their results beyond bilateral-trade settings, to more complex two-
sided trade scenarios including double-auctions and matching settings. Their mechanism for
these settings generalizes the seller-offering mechanism by maximizing the total Myerson
virtual surplus of the sellers for the given buyers’ distributions, and similarly for the buyer-
offering mechanism. While the mechanism that they present obtains at least half of the
second-best GFT in expectation, we observe that it does not give any ex-post efficiency
guarantees, and moreover, even its expected GFT does not asymptotically converge to the
GFT of the second-best (let alone the first-best) mechanism as the market grows large. This
holds even for the very simple double-auction market with n sellers, each selling an identical
item, and n buyers, each interested in buying a single item, with the values (or costs) of
the agents sampled i.i.d. from the uniform distribution over [0, 1]. Even when n is large,
the mechanism of BCWZ will only give in expectation a constant fraction (strictly smaller
than 1) of the second-best GFT, and no more than that (see Example 3.1 in Section 3). In
particular, even in a large market, the efficiency of their mechanism does not converge to
full efficiency.

Ex-Post Guarantees The Trade Reduction mechanism4 of McAfee (1992), which is de-
fined for the double-auctions setting, does not suffer from the above drawback and is asymp-
totically efficient. The mechanism circumvents the impossibility result of Myerson and Sat-
terthwaite (1983) for bilateral trade, by providing an ex-post efficiency guarantee only when
more than one trade is possible in the double-auction market. The mechanism works as
follows: it first finds the efficient trade — denote the size (number of pairs) of this trade by
q. It then removes the least efficient trade (one buyer-seller pair), and only allows for the
remaining trades (the q−1 most efficient trades) to realize, charging the winning buyers the
value of the removed buyer, and paying the winning sellers the cost of the removed seller.
This creates an IR and ex-post incentive compatible (IC) mechanism. As the value of the re-
moved buyer is at least the cost of the removed seller, each trade is weakly budget-balanced.
The mechanism obtains at least a 1−1/q fraction5 of the realized optimal (first-best) GFT.
In the double-auction example above, as n grows q will also grow, and this fraction will tend
to 1. Unfortunately, when q = 1 this mechanism performs no trade and provides no guaran-

4McAfee’s original mechanism is slightly more involved. We use a simplified version that provides the
same worst-case guarantees.

5Recall that q is a function of the valuation profile.
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tees at all. (Failing to provide an ex-post guarantee unconditionally is of course inevitable
in light of the impossibility result of Myerson and Satterthwaite (1983).6) We note that the
Trade Reduction mechanism, while asymptotically efficient, fails to give any unconditional
approximation to the GFT, even with respect to the GFT of the second-best mechanism (as
the mechanism of BCWZ does give).

The Best of Both Worlds In this work we aim to design simple mechanisms that are IR,
IC, and weakly BB, and simultaneously provide both types of efficiency guarantees discussed
above. First, in the spirit of the guarantee of BCWZ, we aim to guarantee for the expected
GFT to be at least a constant fraction of the expected GFT of the second-best mechanism.
Second, in the spirit of the guarantee of McAfee (1992), we aim to guarantee for the ex-post
GFT to be at least a realization-dependent fraction of the realized optimal GFT (first-best),
such that this fraction tends to 1 “as the market grows large” and the efficient trade size
grows7 to infinity.

1.1 Our Results

We present results both for the double-auction setting and for the more involved matching-
market setting, which extends the double-auction setting by adding constraints on the pairs
of agents who can trade with each other. Providing a result for this more involved scenario
is considerably more challenging than for the double-auction setting, and is the main result
of this paper.

1.1.1 Double Auctions

We first consider the double-auction setting in which each seller has a single item, all items
are identical, and each buyer desires a single item. Each value (for obtaining an item) of
each buyer, and each cost (for parting with her item) of each seller is drawn from a known
agent-specific distribution, independently from all other values and costs. We first present
our result for double auctions.

Theorem 1.1 (See Theorem 5.1). For the double-auction setting, there exists a simple
mechanism that is ex-post IR, Bayesian IC and ex-post weakly budget balanced, and satisfies
both of the following.

• The expected GFT of this mechanism is at least 1/4 of the expected GFT of the second-
best mechanism.

• This mechanism guarantees at least 1− 1/q of the realized optimal (first-best) GFT,
where q is the size of the most efficient trade. Thus the mechanisms is asymptotically
efficient (converges to full efficiency as the trade size q grows large).

6Ex-post approximation to the GFT requires the mechanism to trade whenever there is positive gain, but
the impossibility result implies that for some of these profiles trade will not occur.

7The condition on the efficient trade size ensures that the growth in the market size does not, for example,
come from adding agents that are “irrelevant,” such as buyers with 0 value and sellers with very high costs,
since in such a case it would not be possible to provide any guarantee that is better for large markets than
for small ones (such as bilateral trade markets).
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Note that the asymptotic efficiency that is obtained is with respect to the most demand-
ing benchmark of the realized optimal GFT (the first-best and not only the second-best),
providing the same guarantee as the one provided by the Trade Reduction mechanism of
McAfee (1992). The concurrent ex-ante guarantee is with respect to the second-best, simi-
larly to the result of BCWZ.

Before examining the problem thoroughly, one might be tempted to think that it is trivial
to come up with such a mechanism for double auctions. Here is a natural näıve candidate for
such a mechanism: first, the mechanism computes the efficient trade size q. If q > 1, it runs
McAfee’s Trade Reduction mechanism. Otherwise, it runs the mechanism of BCWZ. This
näıve approach turns out to fail miserably as the allocation is not even monotone: it may
well be the case that the two agents that trade when q = 1 (i.e., those that trade according
to the mechanism of BCWZ) are not the highest-value buyer and the lowest-cost seller, and
so in certain scenarios an agent that is reduced in the q > 1 case (by the Trade Reduction
mechanism) may be able to reduce her bid to move to the q = 1 case and trade (for more
details see Section 3).

To present our mechanism, let us first very roughly review the behavior of the mechanism
of BCWZ in the bilateral-trade case: in this special case, their mechanism flips a coin; with
probability 50%, the seller offers a take-it-or-leave-it price to the buyer (calculated so as
to maximize the expected utility of the seller), and with probability 50%, the buyer offers
a take-it-or-leave-it price to the seller (calculated so as to maximize the expected utility
of the buyer). In order to obtain the mechanism that we seek, we carefully make two
main modifications to the näıve “compound” mechanism described above: first, in order to
address the above-discussed source of non-monotonicity, instead of running the mechanism
of BCWZ on the entire market, we run their bilateral-trade mechanism only on the (unique)
pair in the efficient trade. To make the resulting mechanism truthful, we need to make an
additional adjustment: in the seller-offering case (the adjustment to the buyer-offering case
is analogous), we on the one hand force the seller to set a price that is at most the threshold
bid that puts her in the efficient (first-best) trade, and on the other hand notify her of the
values of all buyers except the one that she is facing, and calculate the price that she offers
to maximize her expected utility conditioned upon the fact that the buyer that she is facing
has value larger than all of these values. Both adjustments, and in particular the first one,
make the proof of the ex-ante guarantee, as well as the proof that the mechanism is IC, quite
subtle.

The main challenge in obtaining the approximation guarantee for the case where q = 1
is to reconcile the fact that the pair that our mechanism attempts to trade on is determined
by maximizing the realized GFT (first-best) and might not be the same as the pair that
would have traded according to the mechanism of BCWZ. The main hurdle to obtaining the
approximation guarantee for this case is therefore that for some valuation profiles, an offer
between the unique pair in the efficient trade will be rejected, resulting in no trade in our
hybrid mechanism, while in the mechanism of BCWZ an offer will be made — and accepted
— between a different pair. To overcome this, we have to carefully charge such losses in
GFT to gains in GFT by other parts of our hybrid mechanism.
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1.1.2 Matching Markets

As stated above, the mechanism of BCWZ does not converge to the efficient outcome in
large double-auction markets, and thus will clearly not do so in the more general matching
market setting. Our goal is to present a mechanism for matching market that is IR, IC
and ex-post weakly BB, but also provide ex-ante guarantees for the GFT as well as ex-
post guarantees that converges to full efficiency “as the market grows large”. While in the
double auction setting, every buyer can trade with every seller, this is no longer the case in a
matching market. Our notion of a large matching market aims to generalize the fact that in
a large market there are many agents that are “equivalent” up to their values. The sense of
agents being equivalent in a matching market is that they can trade with exactly the same
set of agents. So, we can naturally partition agents to equivalence classes, with every two
agents of the same class being interchangeable in any matching (up to their valuations). We
consider matching markets with a fixed set of such classes, and think about a large market
as a market in which the number of agents of each class is growing large, yet the number of
different classes that any agent can trade with remains bounded by some constant d.

Recall that the Trade Reduction mechanism of McAfee (1992) is defined for a double-
auction setting. We first present a generalization for matching markets of the Trade Reduc-
tion mechanism (Section 6.1) and prove that it is ex-post asymptotically efficient “as the
market grows large” in the above sense. To our knowledge, this nontrivial generalization
of the Trade Reduction mechanism, which may also be of separate interest, is novel. Simi-
larly to the Trade Reduction mechanism of McAfee (1992) for double-auction settings, this
mechanism does not give any ex-ante approximation guarantee.

As with the double-auction case, we cannot directly combine our Trade Reduction mech-
anism for matching markets with the mechanism of BCWZ while maintaining truthfulness.
Therefore, we present a novel mechanism (Section 6.2), which we call the Offering Mecha-
nism for Matching Markets. Like the mechanism of BCWZ, this mechanism does not provide
the ex-post guarantee we are after, but we manage to carefully define it in a way that allows
us to combine it with the Trade Reduction mechanism for matching markets to obtain a
truthful mechanism that provides both types of guarantees that we are after. The precise
definition of the Offering Mechanism that allows for both the truthfulness and the efficiency
guarantees of the hybrid mechanism has been quite elusive to pin down, and the proofs of
truthfulness, and in particular of the ex-ante guarantee, are considerably more subtle than
in the double-auction setting. To prove the ex-ante guarantee of the Offering Mechanism,
we compare it to the mechanism of BCWZ, showing that it attains at least half of the GFT
of their mechanism, resulting in an ex-ante guarantee of at least 1/4 of the expected GFT of
the second best mechanism. Proving the ex-ante guarantee of the Offering Mechanism is the
most technically challenging part of our analysis. To prove this guarantee, we show that it is
possible to carefully “charge” every edge of the matching of BCWZ to edges of the first-best
matching that will be traded in our Offering Mechanism, proving that the expected GFT
of our Offering Mechanism is at least half the expected GFT of the mechanism of BCWZ.
The combination of the Offering Mechanism for matching markets with the Trade Reduc-
tion mechanism for matching markets creates the Hybrid Mechanism for Matching Markets
(Section 6.3), giving us our main result.

Theorem 1.2 (See Theorem 6.5). For the matching market setting, there exists a simple
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mechanism that is ex-post IR, Bayesian IC and ex-post weakly budget balanced, and satisfies
both of the following.

• The expected GFT of this mechanism is at least 1/4 of the expected GFT of the second-
best mechanism.

• When 1−d/q ≥ 1/2, this mechanism guarantees at least 1−d/q of the realized optimal
(first-best) GFT where d denotes the maximum number of classes that any agent can
trade with, and q denotes the minimal positive number of trading agents of the same
class in the welfare maximizing outcome. Thus the mechanism is asymptotically effi-
cient in the sense that it converges to full efficiency as the number of trading agents in
every class grows large, as long as d is fixed.

We remark that while our mechanism ex-ante guarantees a quantitatively smaller frac-
tion of the second-best GFT than the 1/2 fraction guaranteed by the mechanism of BCWZ,
our mechanism has two qualitative advantages over their mechanism: first, we addition-
ally obtain an ex-post guarantee on the GFT that is asymptotically efficient; and moreover,
while both mechanisms ensure that a truthful agent never regrets participating (ex-post IR),
our mechanism is guaranteed to never lose money, while theirs gives this guarantee only in
expectation and sometimes runs a deficit.

1.2 Additional Related Work

The Trade Reduction Mechanism of McAfee (1992) was generalized to different settings to
provide similar asymptotic efficiency guarantees as well as ex-post guarantees as a function of
the trade size with IR, IC mechanisms that are budget balanced. Babaioff and Walsh (2005)
have presented Trade Reduction mechanisms for Supply Chain settings, while Babaioff et al.
(2009) presented such a mechanism for a Spatially Distributed Market. In Section 6.1 we
generalize the Trade Reduction mechanism to matching markets.

Recent papers (Blumrosen and Dobzinski, 2016; Blumrosen and Mizrahi, 2016) have
focused on IR and Bayesian IC mechanisms that guarantee approximate efficiency while
maintaining budget balance. Blumrosen and Dobzinski (2016) have presented a mechanism
for bilateral-trade that is strongly budget balanced and obtains in expectation at least a
constant fraction of the optimal welfare (the optimal welfare is the higher of the values of the
two agents for the item). Blumrosen and Mizrahi (2016) have considered the more challenging
goal of approximately maximizing the GFT, and have presented a mechanism that obtains
in expectation at least 1/e of the first-best GFT when the buyer’s valuation is drawn from
a distribution satisfying the monotone hazard rate condition. Dütting et al. (2017) have
studied the prior-free setting and have designed ex-post IC mechanisms that approximate the
GFT and are budget-balanced for two-sided markets with constraints on each side separately,
but leave open the design problem when there are cross-market constraints, which we study
in our paper. Recently, Colini-Baldeschi et al. (2016) have showed how to design an IR,
ex-post IC and strongly BB mechanism for the double auction setting where there may
be matroid feasibility constraint on the set of buyers who can trade simultaneously. Their
mechanism achieves a constant fraction of the ex-ante optimal social welfare, but provides no
guarantee on the GFT. Moreover, their mechanism is not asymptotically efficient even when
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the market grows large. Finally, Colini-Baldeschi et al. (2017) have considered a two-sided
combinatorial auctions, where the market has multiple types of items for sale. Each seller
might own multiple items and she has additive valuation over her items. Every buyer has
XOS valuation over the items. They have showed that a variant of a sequential posted price
mechanism can achieve a constant fraction of the optimal social welfare. Their mechanism
neither provides any ex-post guarantees nor converges to efficiency in large market. Indeed,
their mechanism may not trade a single pair of buyer and seller even when there are many
tradeable pairs 8.

2 Preliminaries

2.1 Model and Definitions

Agents and Utilities In a market for identical goods, there is a finite set S of sellers with
one good each, and a finite set B of unit-demand buyers, with |S| ≥ 2 and |B| ≥ 2. Each
seller j ∈ S has a cost sj > 0 that she incurs if she sells her item, and each buyer i ∈ B
has a value bi > 0 that she derives if she purchases an item. We assume that an agent who
does not trade does not incur any cost or derive utility from this. Let s be the vector of
sellers’ costs and b be the vector of buyers’ values. The costs and values are sampled from
agent-specific (but not necessarily identical) nonnegative distributions DB

i for each buyer
i ∈ B and DS

j for each seller j ∈ S, each independent of all other distributions. Agents have
quasi-linear utilities and are risk neutral.

Trading Constraints In a matching market setting, an undirected bipartite graph G =
(S,B,E) with the sellers on one side and the buyers on the other constraints transactions.
A set of trading agents K is a set of buyers and of sellers that can be partitioned into pairs,
each of one buyer and one seller that are neighbors in G (this is equivalent to a matching
of the set K in G) — the set K corresponds to each seller selling her item, and each buyer
buying one of the items sold from one of its neighbors in G. The size of trade of K is defined
to be |K ∩ S| = |K ∩B|.

Gains from Trade The gains from trade (GFT) when the set K (of trading agents) is
trading is defined to be

∑
i∈K∩B bi −

∑
j∈K∩S sj. Given a valuation profile (b, s), a set of

trading agents is efficient if it maximizes the gains from trade from (b, s) among all sets of
trading agents.

Mechanisms We consider direct-revelation mechanisms in which each agent reports a type
(value for buyers, cost for sellers), so the mechanism is a function from reported valuation
profiles to a set of trading agents and to payments from each agent to the mechanism. A
mechanism is Bayesian incentive compatible (BIC) if each agent, by being truthful, maxi-
mizes her expected utility (over the randomization of the mechanism and the types of the

8This could happen when every item’s expected contribution to the social welfare is not much bigger than
its expected cost.
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others, assuming that they are truthful9.) A mechanism is ex-post IC if being truthful maxi-
mizes the agent’s utility for any actions (reports) of the others. A mechanism is (ex-post) IR
if the utility for a truthful agent is non-negative, independent of the strategies of others. A
mechanism is interim IR if the expected utility for a truthful agent is non-negative, when the
expectation is over the randomization of the mechanism and the types of the other agents,
when truthful. Clearly, if a mechanism is ex-post IR, then it is also interim IR. As all the
mechanisms in this paper are ex-post IR and BIC (or even ex-post IC), then unless otherwise
stated, we assume that the reports are equal to the true values/costs.

A mechanism is ex-post weakly budget balanced (BB) if for any valuation profile, the
sum of payments to the mechanism is non-negative. A mechanism is ex-post strongly budget
balanced if for any valuation profile, the sum of total payments to the mechanism is zero.
A truthful mechanism is ex-ante weakly budget balanced if the expected sum of payments to
the mechanism is non-negative, where the expectation is over the types of all agents and the
randomness of the mechanism. Clearly, if a mechanism is ex-post weakly budget balanced,
then it is also ex-ante weakly budget balanced. Following Colini-Baldeschi et al. (2017) we
say that one of the above budget balance properties holds for direct trade if that budget
balance property (weak or strong) holds for each of the trades separately.

Benchmarks Given a valuation profile (b, s), let M(b, s) be the first-best matching, or the
maximum-weight matching in G, where ties between agents are broken by the “lexicographic
order by IDs” formally defined in Definition 6 in Appendix D.2.10 Slightly abusing notation,
we use M(b, s) to also denote the set of agents in the matching M(b, s). Let OPT (b, s) be
the GFT of the “first-best” M(b, s), that is OPT (b, s) =

∑
(i,j)∈M(b,s)(bi − sj). Note that

the VCG mechanism (which is not budget balanced) attains a GFT of OPT (b, s) on every
valuation profile (b, s).

A mechanism is called second-best if it maximizes the expected gains from trade among
all BIC, interim IR and ex-ante weakly budget balanced mechanisms.

Special Cases The case where G is the complete bipartite graph (i.e., any seller can trade
with any buyer) is called the double-auction setting. In the double-auction setting, for every
valuation profile (b, s) we denote the size of the efficient set of trading agents by q(b, s).
The case where |S| = |B| = 1 and the buyer and the seller are connected by an edge in G
(so this is also a special case of double-auction) is called the bilateral-trade setting.

2.2 The Trade Reduction Mechanism

In the double-auction setting, the Trade Reduction (TR) mechanism (McAfee, 1992) is a
mechanism that finds the most efficient trade of only q(b, s) − 1 items,11 and charges each
agent his critical value for winning. That is, the q(b, s)−1 highest-value buyers trade and

9Our BIC mechanisms will actually satisfy a slightly stronger truthfulness property, being truthful for
every realization of the coins of the mechanism, yet only in expectation over the types of the other agents.

10This tie breaking rule satisfies two properties we use extensively: 1) it does not depend on weights, and
2) it is subset consistent in the sense that when removing an edge (i, j) from some matching M and picking
a matching on the remaining nodes M \ {i, j}, it will pick the matching of M on these nodes.

11If q(b, s) = 0 there is no trade in the TR mechanism, and no payments are made.
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pay the bid of the reduced buyer (the q(b, s)-highest buyer); they trade with the q(b, s)−1
lowest-cost sellers, each seller getting paid the cost of the reduced seller (the q(b, s)-lowest
seller).

Theorem 2.1 (McAfee, 1992). In the double-auction setting, the TR mechanism is ex-post
IC, ex-post IR, and ex-post (direct trade) weakly budget balanced. For every valuation profile
(b, s), the gains from trade of this mechanism are at least an 1− 1

q(b,s)
fraction of OPT (b, s).

Note that if q(b, s) = 1, then no ex-ante approximation to the GFT is achieved by the
TR mechanism, while for q(b, s) ≥ 2, Theorem 2.1 guarantees at least half the efficient GFT
for (b, s), ex-post.

2.3 The Random Virtual-Welfare Maximizing Mechanism of
Brustle et al. (2017)

Brustle et al. (2017) present a mechanism for trading with downward-closed constraints
(which subsume matching constraints), which we will refer to throughout this paper as
the Random Virtual-Welfare Maximizing (RVWM) mechanism. We will first describe this
mechanism, and then distill from this description the information that will be required for
our analysis. The mechanism is described in terms of the ironed virtual value and virtual
cost functions of the agents. For any buyer i, the ironed virtual value function12 (Myerson,
1981) of buyer i is denoted by ϕ̃i(·) and for the purposes of our analysis it is enough to
observe that it is a non-decreasing function such that for every value bi we have ϕ̃i(bi) ≤ bi.
For any seller j, the ironed virtual cost function13 of seller j is denoted by τ̃j and for the
purposes of our analysis it is enough to observe that it is a non-decreasing function such that
for every cost sj we have τ̃j(sj) ≥ sj.

This RVWM mechanism flips a coin to uniformly pick one of the following two mecha-
nisms to run:

• Generalized Seller-Offering Mechanism (GSOM): Given valuation profile (b, s), let
M∗

1 (b, s) be the maximum weight matching14 of G when the weight of every edge
(i, j) ∈ E is ϕ̃i(bi) − sj. For every pair (i, j) ∈ M∗

1 (b, s), trade buyer i with seller j.
The allocation rule is monotone and every agent pays (or receives) her critical value
to trade in the mechanism.

12When the CDF of DB
i is differentiable, then the (non-ironed) virtual value ϕi(bi) of seller i with value

bi is defined as bi − 1−DB
i (bi)

dB
i (bi)

, where DB
i and dBi are the CDF and PDF of the distribution DB

i from which

buyer i’s value is drawn. If the virtual value function ϕi is not non-decreasing, then we perform an ironing
procedure to make it monotone, resulting in the ironed virtual value function ϕ̃i. We refer the reader, e.g.,
to Brustle et al. (2017) for more details.

13This function is defined symmetrically to Myerson’s ironed virtual value function. When the CDF of

DS
j is differentiable, then the (non-ironed) virtual cost τj(sj) of seller j with cost sj is defined as sj +

DS
j (sj)

dS
j (sj)

,

where DS
j and dSj are the CDF and PDF of the distribution DS

j from which seller j’s cost is drawn. If the
virtual cost function τj is not non-decreasing, then we perform an ironing procedure to make it monotone,
resulting in the ironed virtual cost function τ̃j . We refer the reader to Brustle et al. (2017) for more details.

14Follow the same breaking tie rules as the first-best matching.
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• Generalized Buyer-Offering Mechanism (GBOM): Given valuation profile (b, s), let
M∗

2 (b, s) be the maximum weight matching15 of G when the weight for every edge
(i, j) ∈ E is bi − τ̃j(sj). For every pair (i, j) ∈ M∗

2 (b, s), trade buyer i with seller j.
The allocation rule is monotone and every agent pays (or receives) her critical value
to trade in the mechanism.

The only additional properties of the ironed virtual value and cost functions that our
analysis will require will be used through the following observation.

Observation 2.2. Let (b, s) be a valuation profile. If trade occurs with some positive prob-
ability on a given edge (i, j) in the RVWM mechanism, then trade would occur on the same
edge with at least the same probability in the mechanism that runs one of the following, with
probability 50% each:

• Seller j offers a price to buyer i that maximizes the utility of seller j in expectation
over the distribution DB

i from which buyer i’s valuation was drawn, and trade occurs
if and only if this price is at most buyer i’s valuation bi.

• Buyer i offers a price to seller j that maximizes the utility of buyer i in expectation
over the distribution DS

j from which seller j’s valuation was drawn, and trade occurs
if and only if this price is at least seller j’s cost sj.

To see why Observation 2.2 follows from the above definition, note that if for a valuation
profile (b, s) there is trade with positive probability on an edge (i, j), then either GSOM or
GBOM traded that edge. If GSOM traded that edge, then it means that ϕ̃i(bi)−sj ≥ 0. So,
ϕ̃−1
i (sj) ≤ bi. Myerson (1981) shows that ϕ̃−1

i (sj) is a price that when offered, maximizes
the expected utility of seller j with cost sj from buyer i (the ironed virtual value function
ϕ̃i encodes the valuation distribution of buyer i). So, since this price is at most bi, it would
have been accepted in the seller-offering mechanism described in Observation 2.2. If GBOM
traded this edge, then similarly an offer would have been accepted in the buyer-offering
mechanism described in Observation 2.2.

BCWZ prove that the RVWM mechanism guarantees at least half of the GFT of the
second-best ex-ante:

Theorem 2.3 (Brustle et al., 2017). The RVWM mechanism for downward-closed con-
straints of Brustle et al. (2017) is ex-post IC, ex-post IR, and ex-ante weakly budget balanced,
and in expectation gets a 1/2-fraction of the gains from trade of the second-best mechanism.

Note that while the ex-ante guarantee on the GFT of the RVWM mechanism (Theo-
rem 2.3) is with respect to the second-best mechanism, the ex-post guarantee on the GFT of
the TR mechanism (Theorem 2.1) is with respect to the more demanding benchmark of the
(realized) first-best gains from trade. Also note that while the RVWM mechanism is ex-post
IC like the TR mechanism, it is only ex-ante, rather than ex-post, weakly budget balanced.
While our main result will be stated to guarantee that our mechanism is BIC and ex-post
weakly budget balanced, we will note that our mechanism can also be made ex-post IC for
the price of being only ex-ante weakly budget balanced, thus matching these guarantees of
the RVWM mechanism (while adding an asymptotically efficient ex-post guarantee on the
GFT).

15Follow the same breaking tie rules as the first-best matching.
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3 Shortcomings of the RVWM Mechanism and of

Näıve Modifications thereto

In this section, we demonstrate the shortcomings of the RVWM mechanism that motivate our
work, as well as the ineffectiveness of näıve modifications to this mechanism in overcoming
these shortcomings. We first show that the RVWM mechanism of Brustle et al. (2017) is not
asymptotically efficient, even ex-ante, and then show that two näıve strategies to combine
this mechanism with the Trade Reduction mechanism of McAfee (1992) are not monotone,
even interim, and therefore there is no hope in coupling them with a payment rule so as to
make them Bayesian IC.

3.1 Asymptotic Inefficiency of the RVWM Mechanism

We first observe that the the RVWM mechanism of Brustle et al. (2017) is not asymptotically
efficient for double auctions, even ex-ante and compared to the second-best.

Example 3.1. Consider a double-auction market with n seller and n buyers, with agents’
values and costs sampled i.i.d. from the uniform distribution over [0, 1]. We claim that even
when n is large, the RVWM mechanism will only give in expectation a constant fraction
(strictly smaller than 1) of the expected GFT of the second-best mechanism. In particular,
even in a large market, and even in expectation, the efficiency of the RVWM mechanism
with respect to the second best (and thus also with respect to the first-best) does not converge
to full efficiency.

Proof sketch. We prove Example 3.1 in Appendix A, and here we give some intuition. When
n is large, it is easy to observe that in an efficient trade roughly the n/2 lowest-cost sellers
(essentially distributed uniformly in [0, 1/2]) will sell their items to roughly the n/2 highest-
value buyers (essentially distributed uniformly in [1/2, 1]), increasing the welfare by about
1/2 in expectation in each trade, resulting in the first-best having asymptotic expected GFT
of about n/4. The second-best mechanism gets GFT that is in expectation at least the
expected GFT of the Trade Reduction mechanism, so it has asymptotic expected GFT of
about n/4−1, asymptotically the same as the first-best mechanism. On the other hand, when
a buyer offers an optimized price facing a uniform distribution as in the RVWM mechanism,
she offers only half of her value (and similarly, a seller offers a price that is half-way between
her cost and 1). This results in only roughly the n/3 lowest-cost sellers (essentially distributed
uniformly in [0, 1/3]) selling their items to roughly the n/3 highest-value buyers (essentially
distributed uniformly in [2/3, 1]), increasing the welfare by about 2/3 in expectation in each
trade, resulting with asymptotic expected GFT of about 2n/9 < n/4.

3.2 Nonmonotonicity of Näıve Modifications to the
RVWM Mechanism

If one were not interested in incentive compatibility, then getting the “best of both worlds”
would have been extremely simple: compute the outcome of both the RVWM and the TR
mechanisms, and choose the outcome with higher realized GFT. As we now observe, this
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allocation rule is not monotone, even in an interim sense. Thus, there is no hope to couple
this allocation rule with payments that will make it even Bayesian IC.

Example 3.2. Consider a double-auction setting with two buyers and two sellers. The value
of buyer 1 is drawn from U([0, 90]), the value of buyer 2 is drawn from U([0, 30]), the cost
of seller 1 is fixed to be 0 with probability 1, and the cost of seller 2 is 0 with probability 1/5

and is 25 with probability 4/5. For the allocation rule that chooses the outcome with higher
realized GFT among the outcomes of RVWM and TR, buyer 2 with valuation b2 = 24 trades
with higher probability (over the distributions of all other values and costs, and over the
randomness of the mechanism) than buyer 2 with valuation b2 = 26.

Proof sketch. We prove Example 3.2 in Appendix A, and here show only that this mechanism
is not ex-post (rather than interim) monotone. So, fix s2 = 25 and b1 = 30 (and s1 = 0).
So, τ̃1(s1) = τ1(s1) = 0, τ̃2(s2) = τ2(s2) = 25 + 25

4
> 30, ϕ̃1(b1) = ϕ1(b1) = 2b1 − 90 = −30,

and ϕ̃2(b2) = ϕ2(b2) = 2b2 − 30.
Regardless of whether b2 = 26 or b2 = 24, since τ̃2(s2) > b2 and since b1 > b2, GBOM

chooses neither buyer 2 nor seller 2 as traders. Furthermore, since s2 > ϕ̃1(b1) and since
ϕ̃2(b2) ≥ ϕ̃2(24) = 18 > ϕ̃1(b1), GSOM chooses neither buyer 1 nor seller 2 as traders, and so
since ϕ̃2(b2) = 18 > 0 = s1, in GSOM buyer 2 and seller 1 trade. So, regardless of whether
b2 = 26 or b2 = 24, buyer 2 trades in RVWM with probability 50%.

If b2 = 26, then the first-best matches all agents and so in TR buyer 1 and seller 1 trade
(so buyer 2 does not trade). So, in this case the GFT of TR is higher than the expected
GFT (over the randomness of the mechanism) of RVWM, and so the TR outcome is chosen
and buyer 2 does not trade. Conversely, if b2 = 24, then the first-best matches only buyer 1
and seller 2 (since b2 < s2) and so there is no trade in TR and the RVWM outcome is chosen
and buyer 2 trades with probability 50%.

Another näıve way to combine the RVWM and TR mechanisms may be based on the
value of q: if q(b, s) ≥ 2 (TR gives an ex-post guarantee), then choose the TR outcome,
and otherwise choose the RVWM outcome. As we now observe, this allocation rule is not
monotone either, even in an interim sense. Thus, there is also no hope to couple this
allocation rule with payments that will make it even Bayesian IC.

Example 3.3. Consider a double-auction setting with two buyers and two sellers. The
value of buyer 1 is drawn from U([0, 90]), the value of buyer 2 is drawn from U([0, 30]),
the cost of seller 1 is fixed to be 0 with probability 1, and the cost of seller 2 is 0 with
probability 1/5 and is 25 with probability 4/5. For the allocation rule that chooses the TR
outcome if q(b, s) ≥ 2 and the RVWM outcome otherwise, buyer 2 with valuation b2 = 24
trades with higher probability (over the distributions of all other values and costs, and over
the randomness of the mechanism) than buyer 2 with valuation b2 = 26.

Proof sketch. We prove Example 3.3 in Appendix A, and here only note that the above proof
that the mechanism from Example 3.2 is not ex-post monotone in fact also shows that the
mechanism from Example 3.3 is not ex-post monotone, as these two mechanism coincide on
the two valuation profiles used in the above proof of the lack of ex-post monotonicity.
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As can be seen from the analysis of both Examples 3.2 and 3.3 (even already from the
proof of lack of ex-post monotonicity), a main source of the issues described in these examples
is that the RVWM mechanism may choose as traders agents who are not in the first-best.
Our approach in this paper will indeed offer an alternative to the RVWM mechanism that
only chooses as traders agents who are in the first-best, and despite this added restriction
still gives a qualitatively similar ex-ante guarantee to that of the RVWM mechanism. While
in double auctions settings this alternative to RVWM can be considered modification of
the RVWM mechanism (see Section 4), in matching settings this alternative is substantially
different than the RVWM mechanism (see Section 6.2).

4 The Seller-Offering, Buyer-Offering, and

Randomized-Offerer Mechanisms

Before we turn to our main results, in this section we present a slightly modified version of
the bilateral-trade construction of Brustle et al. (2017), which we will use as a building block
in the construction of our hybrid mechanisms, and prove several properties thereof.

Definition 1 (SO, BO, RO Mechanisms). Fix Ds and Db to be nonnegative distributions,
and fix s̄ ≥ sup SupportDs and b̄ ≤ inf SupportDb s.t. s̄ ≥ b̄. We define three mechanisms
for trade between a seller with cost s ∼ Ds and a buyer with value b ∼ Db.

• The Seller-Offering (SO) mechanism with offer constraint s̄ and target distribution Db

is the mechanism in which a seller with cost s offers to the buyer the lowest price p
among the prices that maximize the utility of the seller in expectation over b ∼ Db,
under the constraint p ≤ s̄. That is, the offered price is min

{
p
∣∣ p ∈ arg maxp≤s̄(p−s) ·(

1−Db(p)
)}

. The buyer accepts this price if it is no greater than the realized value b
of the buyer. If the buyer accepts this price, then trade occurs at this price; otherwise,
no trade occurs.

• The Buyer-Offering (BO) mechanism with offer constraint b̄ and target distribution
Ds is the mechanism in which a buyer with value b offers to the seller the highest
price p among the prices that maximize the utility of the buyer in expectation over
s ∼ Ds, under the constraint p ≥ b̄. That is, the offered price is max

{
p
∣∣ p ∈

arg maxp≥b̄(b− p) ·
(
1−Ds(p)

)}
. The seller accepts this price if it is no less than the

realized cost s of the seller. If the seller accepts this price, then trade occurs at this
price; otherwise, no trade occurs.

• The (Bilateral) Randomized Offerer (RO) mechanism with SO parameters s̄ and Db

and BO parameters b̄ and Ds is the mechanism that flips a coin, with probability
1/2 it runs the SO mechanism with offer constraint s̄ and target distribution Db, and
otherwise it runs the BO mechanism with offer constraint b̄ and target distribution Ds.

We slightly strengthen the special case of the incentive and budget guarantees of Theo-
rem 2.3 for bilateral trade, and prove that they still hold even with offer constraints as in the
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RO mechanism.16 We furthermore show that whenever trade occurs, the trading happens at
a price that indeed lies between the seller’s and the buyer’s constraint.

Lemma 4.1. Fix Ds and Db to be nonnegative distributions and fix s̄ ≥ sup SupportDs and
b̄ ≤ inf SupportDb s.t. s̄ ≥ b̄ ≥ 0. Consider the RO mechanism with SO parameters s̄ and
Db and BO parameters b̄ and Ds.

1. When valuations are drawn from Ds×Db, this mechanism is a BIC17, ex-post IR, and
ex-post (direct trade) strongly budget balanced mechanism.

2. Whenever trade occurs in this mechanism, it holds that the price p that the seller pays
the buyer satisfies b̄ ≤ p ≤ s̄.

The proof of Lemma 4.1 is given in Appendix B. To conclude this section, we will prove
two more properties of the RO mechanisms that will allow us to lower-bound its GFT
guarantee: the first will allow us to compare its GFT to that of the first-best, and the
second will allow us to compare its GFT to that of the RVWM mechanism.

Lemma 4.2. Fix Ds and Db to be nonnegative distributions and fix s̄ ≥ b̄ ≥ 0. Fix s ≤ s̄ to
be a cost for the seller and fix b ≥ b̄ to be a value for the buyer. Consider the RO mechanism
with SO parameters s̄ and Db|≥b̄ and BO parameters b̄ and Ds|≤s̄.18

1. If b̄ ≥ s or s̄ ≤ b, then the probability that trade occurs in this mechanism is at least 1/2.

2. If b̄ ≤ s and s̄ ≥ b, then the probability that trade occurs in this mechanism is at least
as high as the probability that trade occurs in the RO mechanism with SO parameters
∞ and Db and BO parameters 0 and Ds.

The proof of Lemma 4.2 is given in Appendix B. In a nutshell, Part 1 holds since if, e.g.,
b̄ ≥ s, then an offer by the buyer will always be accepted by the seller, and Part 2 holds
since under the given assumptions, if trade occurs in the unconstrained and unconditioned
RO mechanism, then the price offered there also satisfies all of the extra restrictions of the
constrained and conditioned RO mechanism, and therefore the same price will be offered in
that mechanism as well, resulting in trade there as well.

16We note that each of the SO and BO mechanisms is a deterministic and ex-post monotone mechanism,
and so can be made ex-post IC (and ex-post IR) by charging the threshold winning prices. The resulting
modified mechanisms, however, are not ex-post (even weakly) budget balanced, but only ex-ante (strongly)
budget balanced.

17Since the allocation rule of the RO mechanism is ex-post monotone, by charging threshold prices we could
strengthen the incentive-compatibility property from BIC to ex-post IC (while maintaining ex-post IR), but
then the weak-budget-balance guarantee would only hold ex-ante and not ex-post (similarly to the guarantee
of Theorem 2.3). Moreover, once we settle for ex-ante budget balance, we could get ex-ante strong budget
balance “for free” by equally dividing our ex-ante expected profits (assuming truthful bidding) among the
agents, (see, e.g., Brustle et al., 2017).

18For a distribution D and a value c, we use D|≤c to denote this distribution conditioned upon the drawn
value being at most c, and use D|≥c to denote this distribution conditioned upon the drawn value being at
least c.
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5 Double Auctions

In this section, we present our results for the double-auction setting, in which there are no
constraints on which seller can trade with which buyer (i.e., the graph G is the full bipartite
graph). Namely, we will present our hybrid mechanism for double auctions, which is an
ex-post IR, BIC, ex-post weakly budget balanced mechanism, which ex-ante guarantees a
constant fraction of the second-best, and is ex-post asymptotically efficient.

5.1 A Hybrid Mechanism for Double Auctions

While the RVWM mechanism is not asymptotically efficient, the Trade Reduction (TR)
mechanism of McAfee (1992) is asymptotically efficient as it guarantees, ex-post, an 1− 1

q(b,s)

fraction of the efficient GFT, where q(b, s) is the size of the most efficient trade (Theorem
2.1).19 As this mechanism gives no ex-ante guarantee (when q(b, s) = 1), we create a hybrid
mechanism that runs the TR mechanism when q(b, s) > 1 and run the RO mechanism with
some constraints and conditional distributions otherwise. These constraints and condition-
ings of the distributions are needed both for incentive compatibility and for the ex-ante GFT
guarantee. We now present this mechanism.

Definition 2 (Hybrid Mechanism for Double Auctions). Our hybrid mechanism for double
auctions is a direct revelation mechanism. Given the reports b and s (that are assumed
to be truthful), we use b(1) to denote the buyer20 with maximum value (when breaking ties
lexicographically by IDs), i.e., b(1) ≥ bi for every i ∈ B, and use b(2) to denote the buyer with
maximum value after removing buyer b(1). Similarly, we use s(1) to denote the seller with
minimal cost, and s(2) to denote the seller with the second-minimal cost.21 The mechanism
computes q(b, s) and runs as follows.

• If q(b, s) ≤ 1,22 the mechanism computes the set of trading agents and payments
by running the RO mechanism with SO parameters s̄ = s(2) and DB

b(1)
|≥b(2) and BO

parameters b̄ = b(2) and DS
s(1)
|≤s(2) .23

• If q(b, s) ≥ 2, the mechanism computes the set of trading agents and payments by
running the TR mechanism on b and s.

We will now sketch the intuition behind our choice, in the case where q(b, s) = 1, of
the constraints s̄, b̄ and the conditioned distributions DS

s(1)
|≤s(2) and DB

b(1)
|≥b(2) for which the

offered prices are optimized. First, we would never want to allow b(1) to pay a price p such
that if b(1) had valuation p then she would not be in the first-best. This is since such a

19If there is a trade with GFT of 0, then there are efficient trades with different sizes. In this case trading
according to the largest size will give full efficiency.

20Somewhat abusing notation, we use b(1) to refer both to this buyer and to his value, and similarly for
other agents.

21Note that the maximal efficient set of trading agents is
{
s(1), . . . , sq(b,s), b(1), . . . , bq(b,s)

}
.

22Recall that in this case, if there is any trade with positive gains, then the maximal efficient set of trading
agents is

{
s(1), b(1)

}
.

23We note that in this case since q(b, s) = 1, we have that b̄ = b(2) < s(2) = s̄ and therefore indeed also

s̄ ≥ sup Support
(
DS

s(1)
|≤s(2)

)
and b̄ ≤ inf Support

(
DB

b(1)
|≥b(2)

)
.
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possibility would create an incentive for her to manipulate her bid if her valuation really
were slightly higher than p but still not high enough for her to be in the first-best: in this
case, raising her bid would place her in the first-best, and she may end up paying p, which
would give her positive utility. So, we have to make sure that b(1) never offers, nor is ever
offered, such a p that is lower than b̄ = b(2). (In fact, the threshold bid of b(1) to be in the
first-best is max{b(2), s(1)}, but by definition of the RO mechanism, she would never pay less
than s(1) as this would result in negative GFT, so we only need to make sure that she never
pays less than b̄ = b(2).) To make sure that b(1) never offers such a price p, we constrain
her to offer at least b̄ in the BO mechanism. To make sure that she is never offered such
a price p in the SO mechanism, we have s(1) optimize her offer under the assumption that
the value of b(1) is drawn from DB

b(1)
|≥b̄, which is equivalent to disclosing to s(1) that she has

no point in offering a price lower than b̄ since an offer of b̄ will always be accepted. To see
why the mechanism is truthful once we have set b̄ (and s̄) this way, consider the following
hypothetical scenario. Say that after calculating that q(b, s) = 1, the mechanism notifies s(1)

and b(1) that they are the lowest-cost seller and highest-cost bidder, and furthermore notifies
each of them of the values (and costs) of all other agents except the one that they are facing.
In this case, the posterior distribution of s(1) regarding b(1) is DB

b(1)
|≥max{b(2),s(1)}, so her best

action is to optimize the price that she offers under this assumption, which is equivalent to
optimizing the price that she offers for the distribution DB

b(1)
|≥b(2) (but optimizing for the

latter is easier to analyze, as it does not depend on the cost of s(1)).

Theorem 5.1. For the double auction setting the above simple hybrid mechanism for dou-
ble auctions is ex-post individually rational, Bayesian incentive compatible24, ex-post (direct
trade) weakly budget balanced, and has both of the following efficiency guarantees:

• It gets at least a 1/4-fraction of the efficient gains from trade ex-ante (second-best).

• It gets at least a q(b,s)−1
q(b,s)

-fraction of the efficient gains from trade ex-post (first-best).

Note that the mechanism is asymptotically efficient: as the trade size q(b, s) goes to
infinity, the fraction of the efficient gains from trade that it gets ex-post (first-best)
goes to 1.

5.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Recall that by Theorem 2.1 and Lemma 4.1, both the TR and the RO
mechanisms are each ex-post IR, BIC, and ex-post (direct trade) weakly budget balanced.

Ex-post IR Ex-post IR holds since both the TR and the RO mechanisms are ex-post IR.

24Once again, since the allocation rule of the hybrid mechanism is ex-post monotone, by charging threshold
prices we could strengthen the incentive-compatibility property from BIC to ex-post IC (while maintaining
ex-post IR), but then the weak-budget-balance guarantee would only hold ex-ante and not ex-post (similarly
to the guarantee of Theorem 2.3). Moreover, once we settle for ex-ante budget balance, we could get ex-ante
strong budget balance “for free” by equally dividing our ex-ante expected profits (assuming truthful bidding)
among the agents, (see, e.g., Brustle et al., 2017).
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Bayesian IC We will show that our hybrid mechanism is BIC for any buyer.25 A similar
argument holds for truthfulness of the sellers.

We first claim that if a manipulation by a buyer does not change the choice of the
mechanism that is run (TR or an instance of RO, where we consider each such instance to
be a separate mechanism) by our hybrid mechanism, then it is nonbeneficial in expectation.
For TR this follows since TR is ex-post IC. To show this for RO, we will show that that the
region of the space of valuation/cost profiles where our hybrid mechanism for double auctions
runs each instance of the RO mechanism can be partitioned into disjoint subsets where our
hybrid mechanism is BIC on each such subset under the profile distribution conditioned
upon being in that subset.

Fix a choice of the identity (but not the cost) of seller s(1) and the identity (but not
the value) of bidder b(1), and fix a profile of costs and valuations for all other sellers and
buyers (so in particular the cost s(2) and value b(2) are fixed). We first claim that either our
hybrid mechanism runs the same instance of RO on all possible profiles b, s that agree with
these fixed choices, or does not run any instance of RO on any of these profiles. Indeed, if
s(2) ≤ b(s) (a conditioned fully determined by these fixed choices) then TR is run on all such
profiles, and otherwise the RO mechanism with SO parameters s̄ = s(2) and DB

b(1)
|≥b(2) and

BO parameters b̄ = b(2) and DS
s(1)
|≤s(2) (note that all of these parameters are fully determined

by the above fixed choices and do not depend on the cost s(1) or the value b(1)) is run on all
such profiles.

We will next show that our hybrid mechanism is BIC on the subset of all profiles that
agree with these fixed choices. Note that when conditioning the distribution of all profiles to
those that agree with such fixed choices, the cost of the seller s(1) (conditioned to agree with
these fixed choices) is distributed precisely according to s(1) ∼ DS

s(1)
|≤s(2) and the value of the

buyer b(1) (conditioned to agree with these fixed choices) is distributed precisely according
to b(1) ∼ DB

b(1)
|≥b(2) . By Lemma 4.1(1), we therefore have that our hybrid mechanism is BIC

for the offering agent (and ex-post IC for any other agent) over all profiles that agree with
these choices. We have therefore shown that if a manipulation by a buyer does not change
the choice of the mechanism that is run by our hybrid mechanism, then it is nonbeneficial
in expectation.

We now claim that a buyer who is in the efficient trading set cannot change the efficient
trading set while remaining in this set. Indeed, to see that this is the case, suppose a buyer
in the efficient trading misreports by adding x (positive or negative) to his bid. The gains
from trade from any trading set that includes this buyer therefore increase by x (while the
gains from trade of any other trading set remains the same); therefore, since we break ties
in the same manner without and with the deviation, no other trading set that includes this
buyer other than the true efficient trading set can “become” (as a result of the misreport)
the new efficient trading set.

Since (1) agents outside the efficient trading set never win, (2) a buyer in the efficient
trading set cannot change the efficient trading set while remaining in this set, (3) the choice
of the mechanism to run is completely determined by the efficient trading set and by the

25In fact, when our hybrid mechanism runs TR, then it is ex-post IC for every agent, and when a price p is
offered by an agent in the RO mechanism, then our hybrid mechanism is Bayesian IC for the agent making
the offer, and ex-post IC for all other agents including the agent who receives the offer.
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values/costs of the agents outside the efficient trading set, and (4) a manipulation that does
not change the choice of the mechanism to run is nonbeneficial in expectation, we conclude
that there are no strategic opportunities (in expectation) for any buyer who is in the efficient
trading set.

To complete the proof that our hybrid mechanism is BIC, it is therefore enough to show
that there is no beneficial manipulation by a buyer who is not in the efficient trading set. We
will in fact show that the mechanism is ex-post IC for such agents; we do so by considering
several cases.

• If q(b, s) ≥ 2, then a buyer who is not in the efficient trading set cannot cause a move
to q(b, s) < 2. Any manipulation by such a buyer is therefore nonbeneficial since the
TR mechanism (which is run prior to, and following, the manipulation) is ex-post IC.

• If q(b, s) = 1, then we consider two possible manipulations by some buyer b(j) who is
not in the efficient trading set (and is therefore not the true b(1)):

– First, consider a manipulation by b(j) that causes a move to q(b, s) ≥ 2 and causes
her to win. We claim that in this case, this buyer, who was previously not in the
efficient trading set, must pay at least her true value whenever she wins. Indeed,
by definition of TR and since truly q(b, s) = 1, since this buyer wins following the
manipulation (and so is not reduced by the TR mechanism), she pays at least the
original b(1), which is at least her true value. Therefore, she incurs non-positive
utility.

– We next consider a manipulation by b(j) that maintains q(b, s) = 1 and causes her
to win (with some positive probability). We will show that whenever this buyer
wins, she incurs non-positive utility. Since q(b, s) = 1 is maintained following the
manipulation, we must have that b(j) raised her bid to be higher than the original
b(1), who is now in the role of b(2). By Lemma 4.1(2), if the manipulating buyer
wins, then she pays at least the new b(2), i.e., the original b(1), which is at least
her true value, and so she incurs non-positive utility.

• Finally, consider the case q(b, s) = 0 and consider a manipulation by any buyer that
causes her to win. Such a manipulation can only result in q(b, s) = 1, so the manipu-
lator, if she wins, trades with s(1), and by definition of RO and since this mechanism
is ex-post IR for this seller, this buyer pays at least s(1). Since q(b, s) = 0, we have
that s(1) is larger than the true valuation of all buyers (including the manipulator), so
the manipulator incurs negative utility whenever she wins.

Ex-post (direct trade) weak budget balance Our hybrid mechanism is ex-post (direct
trade) weakly budget balanced since the two mechanisms TR and RO are both ex-post
(direct trade) weakly budget balanced (the one is in fact ex-post (direct trade) strongly
budget balanced).

Ex-post efficiency guarantee When q(b, s) = 1, then the guarantee vacuously holds,
while when q(b, s) ≥ 2, the guarantee follows from the same guarantee by the TR mechanism.
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Ex-ante efficiency guarantee We will show that for each valuation profile (b, s), our
hybrid mechanism achieves at least half of the gains from trade of the RVWM mechanism
for the same valuation profile. Fix a valuation profile (b, s). We consider several cases.

• Consider the case where s(2) ≤ b(2). Note that this is precisely the case where q(b, s) ≥
2. In this case, our hybrid mechanism runs the TR mechanism, which by Theorem 2.1
guarantees at least a q(b,s)−1

q(b,s)
≥ 1/2 fraction of the realized optimal gains from trade

ex-post, and so at least a 1/2 fraction of the gains from trade of the RVWM mechanism.

• Consider the case where s(1) > b(1). Note that this is precisely the case where q(b, s) =
0. In this case, it is efficient to have no trade for (b, s), and this is what both our
hybrid mechanism and the RVWM mechanism do, so our hybrid mechanism has the
same gains from trade as the RVWM mechanism.

• Consider the case where b(2) < s(2), and in addition either b(2) ≥ s(1) or s(2) ≤ b(1).
In this case, since q(b, s) = 1, we run the RO mechanism. By Lemma 4.2(1), in this
case s(1) and b(1) trade with probability at least 1/2, so our hybrid mechanism achieves
at least a 1/2 fraction of the realized optimal gains from trade, and so at least a 1/2

fraction of the gains from trade of the RVWM mechanism.

• Finally, consider the case where b(2) < s(1) ≤ b(1) < s(2). In this case, the only pos-
sible trading pair with positive gains is of s(1) with b(1), so if the RVWM mechanism
achieves positive gains from trade, then it trades this pair with positive probability.
By Observation 2.2, in this case the GFT of the RVWM mechanism are therefore at
least those of the RO mechanism with SO parameters ∞ (no constraint) and DB

b(1)

(unconditioned distribution) and BO parameters 0 (no constraint) and DS
s(1)

(uncondi-

tioned distribution) on that edge. Since s(1) > b(2) = b̄ and b(1) < s(2) = s̄, we have by
Lemma 4.2(2) that the probability that trade occurs between s(1) and b(1) is at least as
high in our hybrid mechanism (which runs the appropriate RO mechanism, constrained
and conditioned) as it is in the unconstrained and unconditioned RO mechanism (that
upper-bounds RVWM in this case). Therefore, in this case our hybrid mechanism
achieves at least the gains from trade of the RVWM mechanism.

Combining all of the above, we have that the expected gains from trade of our hybrid mech-
anism are at least a 1/2-fraction of those of the RVWM mechanism, and so by Theorem 2.3
at least a 1/4-fraction of the expected optimal gains from trade ex-ante (second-best).

5.2.1 Why The Proof of the Ex-Ante Guarantee Gives a Factor of 1/4 and Not 1/2

Having read the proof of the ex-ante guarantee of Theorem 5.1, we note that at first glance,
one may be tempted to consider the following näıve adaptation of this proof into a “proof”
of an ex-ante guarantee of 1/2 (rather than 1/4) of the second-best:

In each case analyzed above, the hybrid mechanism attains either at least the
GFT of the RVWM mechanism, or at least half of the GFT of the first-best,
which in turn is at least half of the GFT of the second-best. Since the GFT of
the RVWM mechanism is in turn also at least half of the GFT of the second-best,
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we get that in either case our hybrid mechanism attains half of the GFT of the
second-best.

The problem with this “proof” is that it mixes ex-ante and ex-post guarantees. While indeed
the hybrid mechanism attains, on each profile (b, s), either at least the GFT of the RVWM
mechanism or at least half of the GFT of the (first-best and therefore of the) second-best,
it is wrong to assume that on each profile (b, s) the GFT of the RVWM mechanism is at
least half of the GFT of the second-best, as we only know that the expected GFT of the
RVWM mechanism, over all profiles, is at least half of the expected GFT, over all profiles,
of the second-best. In other words, it may hypothetically be that the RVWM mechanism
performs poorly on the profiles on which our hybrid mechanism attains at least the GFT of
the RVWM mechanism, and that the RVWM mechanism performs very well, surpassing half
of the GFT of the second-best, and even half of the GFT of the first-best, on the profiles on
which our hybrid mechanism attains at least half of the GFT of the first-best (so on average,
the RVWM mechanism would indeed attain its guarantee), and in such a case, the above
“proof” obviously fails.

6 Main Results for Matching Markets

In this section we will generalize the results of Section 5 to matching markets. Recall that
a matching market is given by an undirected bipartite graph G = (S,B,E) with nodes on
one side representing the sellers and nodes on the other side representing the buyers, with
edges indicating possible trades. Recall that a profile (b, s) assigns a value bi for each buyer
i ∈ B and a cost sj for each seller j ∈ S.

6.1 A Trade Reduction Mechanism for Matching Markets

We first present a generalized Trade Reduction mechanism for matching markets. Like
the Trade Reduction mechanism of McAfee (1992) for double-auctions, the Trade Reduction
Mechanism for matching markets that we define below picks a subset of the “first-best” trade,
and determines the payments based on the values and costs of the agents that it removed
from the first-best. The details are, however, more subtle than in the double-auction setting.

Recall from Theorem 2.1 that for every valuation profile (b, s), the TR mechanism for
double auctions attains GFT of at least a 1 − 1

q(b,s)
fraction of OPT (b, s). We note that

giving the same guarantee for matching markets, with q(b, s) remaining total the size of
trade in the market, is not possible — just consider a matching market that consists of
two connected components, each a double auction. So, to phrase our TR mechanism for
matching markets, we will first have to define some notation that will eventually help us
phrase its GFT guarantee (which will still generalize the 1− 1

q(b,s)
of TR for double auctions,

but in a slightly different way).
We say that the classes of buyer i and i′ are the same if for any seller j it holds that

(i, j) ∈ E if and only if (i′, j) ∈ E. Similarly, we define classes for sellers.26 That is, two

26Note that the classes that we define depend neither on the values of the buyers nor on the costs of the
sellers (nor on the distributions from which these values/costs are drawn).
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agents are of the same class if in any case that one of them can trade with some agent x,
it also holds that the other agent can trade with agent x. Thus, nodes in the graph can
be partitioned into equivalent classes, where each equivalent class consists of all agents of
some fixed class. Each such class either includes only buyers, or only sellers, but never both.
Let Tt denote the set of agents of class t. For each class t we denote by qt = qt(M(b, s))
the number of agents of class t that are matched in M(b, s), that is qt = |Tt ∩M(b, s)|.
Additionally, we denote by dt = dt(M(b, s)) the number of distinct classes t′ such that there
is an edge in M(b, s) between an agent of class t and an agent of class t′.

Definition 3 (Trade Reduction Mechanism for Matching Markets). Fix a matching market
G = (S,B,E). The Trade Reduction mechanism for G gets as input a profile (b, s) and
outputs an allocation and payments as follows.

• Given profile (b, s), let M(b, s) be the “first-best” matching. Any agent not in M(b, s)
is marked as a loser and does not trade, paying 0.

• For each class t, recall that qt is the number of agent of class t that are matched in
M(b, s) and dt is the number of different classes that trade with agents of class t in
M(b, s).

– For each buyer class t, the set of trading buyers will be the set of qt − dt highest-
value buyers of class t (breaking ties lexicographically by IDs).27 We say that
dt buyers of class t were reduced. Each buyer of class t pays the highest value
reported by any reduced buyer of class t.

– For each seller class t, the set of trading sellers will be the set of qt−dt lowest-cost
sellers of class t (breaking ties lexicographically by IDs).28 We say that dt sellers
of class t were reduced. Each buyer of class t is paid the lowest cost reported by
any reduced seller of class t.

We denote the set of agents that are trading under this mechanism by TR(b, s).

The following theorem presents the properties of the Trade Reduction Mechanism for
matching markets. In particular, it shows that the mechanism provides some ex-post GFT
guarantees which is a function of the maximum weight matching M(b, s). As with the TR
mechanism for double auctions, this mechanism does not provide any ex-ante guarantees,
though, even with respect to the second-best mechanism. In particular, with a single trade
in OPT (b, s), there will be no trade in this mechanism.

Theorem 6.1. The Trade Reduction Mechanism for matching markets is ex-post IR, ex-post
IC, ex-post (direct trade) weakly budget balanced, and for any (b, s) the fraction of the gains
from trade of OPT (b, s) that it attains is at least min

{
1− dt

qt

∣∣ class t s.t. qt > 0
}

.29

27Note that the number of trading buyers is non-negative, as for every class t it holds that qt ≥ dt.
28Note that the number of trading sellers is non-negative, as for every class t it holds that qt ≥ dt.
29Note that dt, qt and rt,t′ are all function of M(b, s), so they are functions of the profile (b, s). This is

similar to q(b, s) being a function of (b, s) for Trade Reduction in double auctions.
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We note that guarantee from Theorem 6.1 of the TR mechanism attaining a fraction-
of-OPT (b, s) of at least α(b, s) = min

{
1 − dt

qt

∣∣ class t s.t. qt > 0
}

coincides in the double-

auction setting with the guarantee of at least 1 − 1
q(b,s)

from Theorem 2.1, and naturally

generalizes it. Another generalization for matching markets of the fraction 1 − 1
q(b,s)

that

one may find natural, which also coincides with it in the double-auction setting, is β(b, s) =
min

{
1 − 1

rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}
, where for any buyers’ class t and sellers’ class t′,

we use rt,t′ to denote the number of buyers of class t that are matched with sellers of class t′

in M(b, s). While this alternative generalization is conceptually interesting in its own right,
we in fact show that for every valuation profile it holds that β(b, s) ≤ α(b, s), and so a GFT
guarantee of β(b, s) follows from the GFT guarantee of α(b, s) from Theorem 6.1:

Corollary 6.2. For any (b, s), the fraction of the GFT of OPT (b, s) that the TR mechanism
for matching markets attains is at least min

{
1− 1

rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}
.

The proofs of Theorem 6.1 and Corollary 6.2 are given in Appendix C.

6.2 The Offering Mechanism for Matching Markets

Before defining our hybrid mechanism for matching markets, we first define an offering
mechanism for matching markets, analogous to the specific instance of the RO mechanism
(including the specific offer constraints and conditioned distributions) that our hybrid mech-
anism for double auctions runs whenever q(b, s) = 1 in that setting. In this mechanism,
agents not in M(b, s) never trade, and agent in a pair (i, j) ∈ M(b, s) either trades in that
pair or does not trade at all. This mechanism is defined as follows.

Definition 4 (Offering Mechanism for Matching Markets). The mechanism iterates over all
edges (i, j) ∈M(b, s), and for each such edge acts as follows.

• Let s̄ = s̄(i,j)(b, s) be the minimal bid of buyer i such that any higher bid causes i to
be in the first-best in the market (S \ {j}, B), i.e., the market without seller j. We set
s̄ =∞ if no such bid exists.

• Let b̄ = b̄(i,j)(b, s) be the maximal bid (reported cost) of seller j that causes j to be in
the first-best in the market (S,B \ {i}), i.e., the market without buyer i. We set b̄ = 0
if no such bid exists.

Now, to decide whether trade occurs between i and j and at which price, run the RO
mechanism on this edge with SO parameters s̄ and DB

i |≥b̄ and BO parameters b̄ and DS
j |≤s̄.

We note that the above offer constraints s̄ and b̄ precisely generalize the offer constraints
from our hybrid mechanism for double auctions from Section 5. Indeed, in a double auction,
the minimal bid of buyer b(1) that causes her to be in the first-best in the market (S\{s(1)}, B)
without s(1) is max{b(2), s(2)}, and when q(s, b) = 1 in the double-auctions setting (this is the
case where we run the RO mechanism) it must be that b(2) < s(2) and so max{b(2), s(2)} = s(2),
which how we set the constraint s̄ in that mechanism. The choice of b̄ is similar. The careful
definition of s̄ and b̄ above guarantees the two properties of these thresholds that our double-
auction constraints readily satisfied: first, both b̄ and s̄ are completely independent of bi and
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of sj, and second, as we will see in our analysis, b̄ coincides with the minimal winning bid of
buyer i in the original market whenever this constraint is binding. (And similarly for s̄ and
seller j.)

To show that the Offering Mechanism is well-defined, we have to make sure that the SO
and BO parameters that we specify for the RO mechanism meet the conditions imposed in
the definition of that mechanism. The following lemma does precisely this.

Lemma 6.3. For every (i, j) ∈M(b, s), it holds that (1) s̄ ≥ sj, (2) b̄ ≤ bi, and (3) s̄ ≥ b̄.

We next prove that the Offering Mechanism is truthful, budget balanced, and has an ex-ante
guarantee.

Theorem 6.4. The Offering Mechanism is BIC, ex-post IR, ex-post (direct trade) strongly
budget balanced, and ex-ante guarantees at least a 1/4 of the expected GFT of the second-best
mechanism.

The proofs of Lemma 6.3 and Theorem 6.4 is given in Appendix E. As noted in the
introduction, proving the ex-ante guarantee of the Offering Mechanism for matching markets
is the most technically challenging part of our analysis. The main ideas behind this proof
are surveyed in Section 7.

6.3 The Hybrid Mechanism for Matching Markets

We are now ready to define our hybrid mechanism for matching markets. It combines the TR
mechanism and the Offering Mechanism in a proper way. We note that for double auctions,
the mechanism defined below reduces precisely to our hybrid mechanism for double auctions
from Section 5.

Definition 5 (Hybrid Mechanism for Matching Markets). Let G = (S,B,E) be the con-
straints graph. Our hybrid mechanism is a direct revelation mechanism. Given the the
reports (b, s) (which is assumed to be truthful), the mechanism computes M(b, s) and

α(b, s) = min
{

1− dt
qt

∣∣∣ class t s.t. qt > 0
}

and runs as follows.

• If α(b, s) ≥ 1/2, the mechanism computes the set of trading agents and payments by
running the Trade Reduction Mechanism for matching markets defined above.

• Otherwise, the mechanism computes the set of trading agents and payments by running
the Offering Mechanism for matching markets defined above.

We are now ready to formally state the main result of this paper.

Theorem 6.5. The Hybrid Mechanism for matching markets is ex-post IR, BIC30. and
ex-post (direct trade) weakly budget balanced, which satisfies both of the following.

30As in the double-auction setting, since the allocation rule of the hybrid mechanism for matching markets
is ex-post monotone, by charging threshold prices we could strengthen the incentive-compatibility property
from BIC to ex-post IC (while maintaining ex-post IR), but then the weak-budget-balance guarantee would
only hold ex-ante and not ex-post (similarly to the guarantee of Theorem 2.3). Moreover, once we settle
for ex-ante budget balance, we could get ex-ante strong budget balance “for free” by equally dividing our
ex-ante expected profits (assuming truthful bidding) among the agents, (see, e.g., Brustle et al., 2017).
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• The expected GFT of this mechanism are at least 1/4 of those of the second-best mech-
anism.

• For any (b, s) with α(b, s) ≥ 1/2, the fraction of the gains from trade of OPT (b, s)
that this mechanism attains is at least α(b, s) ≥ 1/2.

The hybrid mechanism for matching markets inherits from the Trade Reduction mecha-
nism for matching markets also the ex-post guarantee of Corollary 6.2:

Corollary 6.6. Let β(b, s) = min
{

1− 1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}

. For any (b, s) with

β(b, s) ≥ 1/2, the fraction of the gains from trade of OPT (b, s) that the Hybrid Mechanism
for matching markets attains is at least β(b, s) ≥ 1/2.

The proofs of Theorem 6.5 and Corollary 6.6 are given in Appendix F.

7 Sketch of the Proof of Ex-Ante Guarantee of the

Offering Mechanism for Matching Markets

In this section, we sketch the proof of the ex-ante guarantee of the Offering Mechanism,
which has been stated in Theorem 6.4. The full proof is relegated to Appendix E. To prove
that the Offering Mechanism ex-ante guarantees at least a 1/4-fraction of the gains from
trade of the second-best mechanism, we compare the Offering Mechanism to the RVWM
mechanism of Brustle et al. (2017). Due to Theorem 2.3, it suffices to show the following
lemma.

Lemma 7.1. For any valuation profile (b, s), the gains from trade of the Offering Mechanism
for matching markets is at least half of the gains from trade of the RVWM mechanism for
that profile.

We first provide the intuition behind Lemma 7.1. Fix a valuation profile (b, s). Let
M∗

1 = M∗
1 (b, s) be the maximum-weight matching of G when edge weight is ϕ̃i(bi) − sj for

(i, j) ∈ E and M∗
2 = M∗

2 (b, s) be the maximum-weight matching of G when edge weight
is bi − τ̃j(sj) for (i, j) ∈ E.31 Recall that the RVWM mechanism runs the Generalized
Seller Offering Mechanism (GSOM) with probability 1/2 and in that case obtains the GFT
of the matching M∗

1 , and it runs the Generalized Buyer Offering Mechanism (GBOM) with
probability 1/2 and in that case obtains the GFT of the matching M∗

2 . It suffices to show
that the GFT of each of the two matchings M∗

1 and M∗
2 can be bounded by twice the GFT

of the Offering Mechanism for the valuation profile (b, s). We will show how to bound the
GFT of M∗

1 . A similar argument can bound the GFT of M∗
2 .

Consider the first-best matching M = M(b, s) together with the matching M∗
1 . Each

connected component of the union of the two matchings M ∪M∗
1 is either a maximal alter-

nating path32 or an alternating cycle33. We will show that all alternating cycles consist of

31Recall that ϕ̃i and τ̃j are the ironed virtual value functions of buyer i and seller j, respectively.
32A path is called an alternating path if the edges of the path alternate between the two matchings. A

path is maximal if it is not a subpath of any other path.
33An alternating cycle is an alternating path whose two endpoints coincide.
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(a) (b) (c)

Figure 1: Example of the three different cases considered in the proof of the ex-ante guar-
antee: (a) alternating cycle; (b) maximal alternating path with even number of edges; (c)
maximal alternating path with odd number of edges.

two edges between the same seller and buyer (see Figure 1 (a) ) due to our tie-breaking rules
(proved in Corollary E.12) and that the GFT of the Offering Mechanism from that buyer-
seller pair is at least the GFT of the RVWM mechanism from that pair. For an alternating
path, we will consider the cases of an even or an odd number of edges of the alternating
path separately, and show that in either case, the GFT of our Offering Mechanism from the
path is at least half of the GFT of the matching M∗

1 from that path. Given the fact that M
and M∗

1 are each a maximum-weight matching w.r.t. the edge weights bi− sj and ϕ̃i(bi)− sj
respectively, we prove that any maximal alternating path that is not a cycle, starts with a
buyer and an edge from M . See Corollary E.14 for more details. Figure 1 illustrates the
three different cases in our proof.

The following lemma plays a central role in our proof of Lemma 7.1. It provides a
sufficient condition for a buyer-seller pair to trade in that mechanism.

Lemma 7.2. Fix valuation profile (b, s). For every (i, j) ∈ M(b, s), if j is in M−i(b, s)
then buyer i will trade with seller j in the BO Mechanism, and if i is in M−j(b, s) then buyer
i will trade with seller j in the SO Mechanism. Thus, in either case i and j will trade with
probability at least 1/2 in the Offering Mechanism.

The next lemma shows that any seller who is not at the end of any alternating path,
must still be in the first-best matching if we remove the buyer that is matched to her.

Lemma 7.3. Let A be an acyclic maximal alternating path of M(b, s)∪M∗
1 (b, s). For every

seller j ∈ A who is not at the end of the path, it holds that j ∈ M−i(b, s), where i is the
buyer such that (i, j) ∈M(b, s).

Combining Lemmas 7.2 and 7.3, we show that all sellers in a maximal alternating path
of even length will trade in the BO mechanism with the buyers that are matched to them in
the first-best matching.

Next, we consider maximal alternating paths with odd length and present another useful
characterization. We assume w.l.o.g. that any maximal alternating path of M ∪M∗

1 starts
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with a buyer and an edge in M (by Corollary E.14). Let GFTM ′(U) be the GFT of all edges
of M ′ that are contained in U .

Lemma 7.4. For K > 3, let A = (i1j1i2j2...iL−1jL−1iLjL), be a maximal alternating path
of odd number of edges of M ∪M∗

1 with il denoting buyers and jl denoting sellers, and with
(i1, j1) ∈M . It holds that

• if biL > bi1 then iL ∈M−jL.

• if biL ≤ bi1 then GFTM(A \ {iL, jL}) ≥ GFTM∗1 (A).

Proof of Lemma 7.1. By Corollary E.12, any alternating cycle of M and M∗
1 has only two

(identical) undirected edges (i, j) ∈M∩M∗
1 . If j ∈M−i(b, s) or i ∈M−j(b, s), by Lemma 7.2

buyer i will trade with seller j in the Offering Mechanism with probability at least 1/2, which
obtains at least half of the GFT that the RVWM mechanism obtains on (i, j) ∈ M∗

1 when
the profile is (b, s). Otherwise, since i /∈ M−j we have that s̄ ≥ bi, and since j /∈ M−i
we have that b̄ ≤ sj. Since trade occurs with positive probability on (i, j) in the RVWM
mechanism, then similarly to the double-auction case, by Observation 2.2 and Lemma 4.2(2),
our Offering Mechanism achieves at least the gains from trade of the RVWM mechanism on
this edge (and therefore, on any alternating cycle).

Consider any maximal alternating path of even number of edges. By Lemmas 7.2 and 7.3,
every pair (i, j) ∈M trades in the BO mechanism, so whenever the BO mechanism runs, the
maximal GFT (first-best) of the agents in the alternating path, which is at least the GFT
of M∗

1 from these agents, is obtained. The Offering Mechanism runs the BO mechanism is
probability 1/2, so in expectation it obtains at least 1/2 the GFT of M∗

1 from this path.
Now consider any maximal alternating path (i1j1i2j2...iL−1jL−1iLjL) of odd number of

(at least 3)34 edges, which starts with buyer i1 and an edge from M . Here L ≥ 2. By
Lemmas 7.2 and 7.3, for every l = 1, 2, . . . , L− 1, buyer il will trade with seller jl in the BO
mechanism. If bi1 ≥ biL , the claim holds since by Lemma 7.4 the GFT of M∗

1 from this path
is at most the GFT of the first L−1 pairs in the first-best matching M , and all these L−1
pairs will be traded in the BO mechanism, which happens with probability 1/2.

If bi1 < biL , by Lemmas 7.2 and 7.4, buyer iL will trade with seller jL in the SO mech-
anism, which happens with probability 1/2. Therefore, every pair (i, j) ∈ M is traded with
probability at least 1/2. This obtains half the maximal GFT (first-best) of this path, which
is at least half the GFT of M∗

1 in this path.
Similarly, we can show that the Offering Mechanisms obtains at least 1/2 of the GFT

of M∗
2 . Since the expected GFT of the RVWM mechanism is the average GFT of M∗

1 and
M∗

2 , we conclude that the Offering Mechanisms obtains at least 1/2 the GFT of the RVWM
mechanism.

8 Conclusion

One of the biggest pushbacks against constant-approximation mechanisms is that while they
provide some worst-case guarantee, they often do not provide any guarantee for significantly

34If there is a single edge, then it is only in M . We only need to cover edges in M∗1 .
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better performance “when the instances are easy to handle”. We believe that a mechanism
that not only provides a worst-case guarantee, but also provides a guarantee of performing
very well on “easy instances” is much more appealing and more likely to be used. In our
setting, we implement this agenda by postulating that “nice instances” are large-market
instances (for some formal sense of “large”), and we are able to achieve the best of both
worlds: a guaranteed constant approximation on one hand, and asymptotic optimality when
the markets are large on the other hand. We believe that presenting similar results in other
settings is an interesting research direction.

Mechanisms with such “worse-case and best-case guarantees” are of particular appeal
when the social planner needs to fix the mechanism well before the exact market character-
istics are known, for example, when the mechanism is defined by some laws or regulations
(e.g., FCC auctions) that are fixed well in advance.
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A Proof of Examples 3.1 through 3.3

Proof of Example 3.1. First consider the first-best mechanism. Fix buyer i. We’ll prove that
if her value bi > 1/2 + ε for some small ε that will be determined later, she will trade in the
first-best mechanism with high probability. Let S be the number of sellers whose cost is
smaller than 1/2 + ε, and let B be the number of buyers whose value is larger than 1/2 + ε.
Notice that there are at most B buyers with value larger than i. Thus if B < S, all buyers
with value > 1/2 + ε, including i, must have traded with a seller whose cost is smaller than
1/2 + ε in the first-best mechanism.

Both S and B are the sum of independent Bernoulli random variables, with expectation
(1/2 + ε)n and (1/2− ε)(n− 1) respectively. By Chernoff bound,

Pr

[
S < (1− ε)

(
1

2
+ ε

)
n

]
≤ exp
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2

2
·
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n
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12
ε2n
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Pr
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B > (1 + ε)
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(n− 1) ≥ B.
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In other words, if bi > 1/2 + ε, buyer i will trade in the first-best mechanism with proba-

bility at least
(
1− exp

(
− 1

12
ε2n
))2

, taking expectation over all other agents’ types.

Choose ε = n−1/3. The expected GFT contributed by buyer i is at least∫ 1

1
2

+n−
1
3

bidbi ·
(

1− exp
(
− 1

12
n

1
3

))2

=
3

8
+ o(1).

By linearity of expectation and the fact that all buyers are i.i.d., the expected GFT
contributed by all buyers is at most 3n/8 + o(n).

Similarly for every seller j, if her cost sj > 1/2 + ε for some small ε, she can only trade
in the first-best mechanism with small probability. The expected GFT contributed by all
sellers (a negative term) is at least −n/8 + o(n). Thus the first-best mechanism obtains GFT
at least n/4 + o(n). The second-best mechanism gets GFT that is in expectation at least the
expected GFT of the Trade Reduction mechanism, and as the GFT of the TR mechanism is
at least the GFT of the first best minus 1, the second-best mechanism obtains GFT at least
n/4 + o(n) as well.

For the mechanism of Brustle et al. (2017), we first refer the reader to Appendix D
for the formal definition of the mechanism. In the mechanism, with probability a half, the
mechanism implements GSOM that finds all the efficient trade based on buyers’ virtual value
and sellers’ cost. And probability a half, it implements GBOM that finds all the efficient
trade based on buyers’ value and seller’ virtual cost. We will only give the proof that the
expected GFT of GSOM is at most 2n/9 + o(n). An analogous proof shows that the expected
GFT of GBOM is at most 2n/9 + o(n).

For each buyer whose value is drawn from uniform distribution [0, 1], her virtual value
follows the uniform distribution [−1, 1]. Fix buyer i, we’ll show that if her value bi < 2/3− ε
(which means her virtual value ϕ̃i(bi) = ϕi(bi) < 1/3−2ε) for some small ε she can only trade
in the GSOM with exponentially small probability. Notice that buyer i can only trade in
GSOM with a seller whose cost is smaller than 1/3−2ε. Let S be the number of sellers whose
cost is smaller than 1/3−2ε, and let B be the number of buyers whose value is at least 2/3− ε.
Then if buyer i trades in GSOM, B ≤ S. This is because there are at least B buyers with
value larger than i (and thus have a larger virtual value since since all buyers are i.i.d.). If
B > S, those buyers will take away all the sellers with cost < 1/3 − 2ε. It contradicts with
the fact that buyer i must trade with a seller with cost < 1/3 − 2ε in GSOM. Notice that
again S and B are the sum of independent Bernoulli random variables. And the expectation
of S (1/3 − 2ε)n is smaller than the expectation of B, (1/3 + ε)(n − 1) when ε = n−

1
3 and n

sufficiently large. By Chernoff bound (and a similar calculation as above), B ≤ S happens
with exponentially small probability. The expected GFT contributed by each buyer i is at
most ∫ 1

2
3
−n−

1
3

bidbi + o(1) =
5

18
+ o(1).

Similarly, for each seller j whose value sj < 1/3 − ε for some small ε, she will trade in
GSOM with high probability. The expected GFT contributed by each seller (a negative
term) is at most −1/18 + o(1). Thus GSOM obtains GFT at most 2n/9 + o(n).

We conclude that the expected GFT the mechanism of Brustle et al. (2017) obtains is at
most 2n/9 + o(n), which is only a constant fraction of the second-best mechanism.
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Proof of Example 3.2. We first note that ϕ̃1(b1) = ϕ1(b1) = 2b1− 90, that ϕ̃2(b2) = ϕ2(b2) =
2b2 − 30, that τ̃1(s1) = τ1(s1) = s1 = 0, and that if s2 = 0 then τ̃2(s2) = τ2(s2) = 0 and else
(i.e., if s2 = 25, then) τ̃2(s2) = τ2(s2) = 25 + 25

4
> 30.

• We first analyze the case in which s2 = 25.

– If b2 = 24, then the first-best matches at only one pair (since b2 < s2), and so
there is no trade in TR and the RVWM outcome is chosen. Since b2 < s2 and
τ̃1(s1) = 0 < b2 we have that buyer 2 trades in GBOM if and only if b1 < b2 = 24,
i.e., with probability 24/90. Since b2 < s2 and ϕ̃2(b2) = ϕ̃2(24) = 18 > s1, we have
that buyer 2 trades in GSOM if and only if ϕ̃1(b1) < ϕ̃2(b2) = 18, i.e., if and only
if b1 < 54, i.e., with probability 54/90.

So, the overall interim probability of trade of buyer 2 when b2 = 24 and s2 = 25
is 39/90.

– If b2 = 26, then we consider a few cases.

∗ If b1 < 25, then the first-best matches only one pair (since b1 < s2) and so
there is no trade in TR and the RVWM outcome is chosen. Since b1 < s2

and τ̃1(s1) = 0 < b2 and b1 < b2, we have that buyer 2 trades in GBOM.
Since ϕ̃2(b2) = ϕ̃2(26) = 22 > s1 and ϕ̃2(b2) = 22 > −40 ≥ ϕ̃1(b1), we have
that buyer 2 trades in GSOM. So, in this case buyer 2 trades with overall
probability 1.

∗ If b1 ∈ [25, 26], then the first-best matches all agents and so TR will trade
buyer 2 and seller 1. As in the case where b1 < 25, buyer 2 trades with
probability 1 in with GBOM and GSOM. So, in this case buyer 2 trades with
overall probability 1 as well.

∗ If b1 > 26, then the first-best matches all agents and so TR will trade buyer 1
and seller 1 (so buyer 2 does not trade). Since τ̃2(s2) > 30 > b2, GBOM
trades only one edge, and since ϕ̃2(b2) = 22 < s2, GSOM trades at most one
edge, so the GFT of TR is at least that of RVWM (with equality if and only
if the TR and RVWM outcomes coincide), and so the TR outcome is chosen
and buyer 2 does not trade. So, in this case buyer 2 does not trade.

So, the overall interim probability of trade of buyer 2 when b2 = 26 and s2 = 25
is 26/90.

• We now analyze the case in which s2 = 0. In this case the first-best matches all agents,
and moreover, GBOM has all agents trading. Furthermore, regardless of whether
b2 = 24 or b2 = 26, since ϕ̃2(b2) ≥ 0 = s1 = s2, buyer 2 trades in GSOM. So, RVWM
has buyer 2 trading with probability 1.

– If b1 < b2, then b2 trades in the TR mechanism. So, buyer 2 trades with proba-
bility 1 in this case.

– If b2 < b1 < 45, then b2 does not trade in the TR mechanism. In this case,
since ϕ̃1(b1) < 0 = s1 = s2, only buyer 2 trades in GSOM. So, regardless of
whether b2 = 24 or b2 = 26, we have that GFT (TR) = b1 < b1+b2

2
+ b2

2
=
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GFT (GBOM) + GFT (GSOM), so the RVWM outcome is chosen and buyer 2
trades with probability 1.

– If b2 < b1 and b1 > 45, then since ϕ̃1(b1) > 0 = s1 = s2, all agents trades in
GSOM as well, regardless of whether b2 = 24 or b2 = 26. So, the RVWM outcome
is efficient and is chosen, and buyer 2 trades with probability 1.

So, the overall interim probability of trade of buyer 2 when s2 = 0, regardless of
whether b2 = 24 or b2 = 26, is 1.

Combining all of the above, we have that the overall interim probability of trade of buyer 2
with b2 = 24, over the distributions of all other values and costs and over the randomness
of the mechanism, is 4/5 · 39/90 + 1/5 · 1 and the overall interim probability of trade of buyer 2
with b2 = 26, over the distributions of all other values and costs and over the randomness of
the mechanism, is 4/5 · 26/90 + 1/5 · 1, which is strictly smaller.

Proof of Example 3.3. For the case in which s2 = 25, the analysis coincides with that of
Example 3.2. For the case in which s2 = 0, the first-best matches all agents and therefore
q = 2 and TR is chosen. So, buyer 2 trades if and only if b2 > b1. So, if b2 = 24 then this
occurs with probability 24/90 and if b2 = 26 then this occurs with probability 26/90.

Combining all of the above, we have that the overall interim probability of trade of buyer 2
with b2 = 24, over the distributions of all other values and costs and over the randomness
of the mechanism, is 4/5 · 39/90 + 1/5 · 24/90 = 36/90 and the overall interim probability of trade
of buyer 2 with b2 = 26, over the distributions of all other values and costs and over the
randomness of the mechanism, is 4/5 · 26/90 + 1/5 · 26/90 = 26/90, which is strictly smaller.

B Proofs of Lemmas 4.1 and 4.2

Proof of Lemma 4.1. We start by proving Part 1. We will show all of these properties
for the SO mechanism with the given parameters. Similar arguments show them for the
BO mechanism, and therefore for the RO mechanism. That the SO mechanism with the
given parameters is BIC for the seller is immediate since the the seller chooses a price that
maximizes her expected utility over the distribution from which the buyer is drawn. That
SO is ex-post IC and ex-post IR for the buyer is immediate from the buyer choosing whether
to accept or reject the offer in a way that maximizes her utility. Strong budget balance is
also immediate from definition. Finally, to show that that the SO mechanism with the given
parameters is ex-post IR for the seller, we note that since the seller’s cost is drawn from Ds,
and since s̄ ≥ sup SupportDs, we have that s̄ is at least the seller’s cost. Therefore, seller j
can always ask for a price equal to his cost (without violating the constraint s̄), which will
result in zero utility for her (regardless of whether the buyer accepts or rejects this price),
and in particular guarantees nonnegative utility for her.

We move on to prove Part 2. We will show that any offered price is at least b̄. An
analogous proof shows it to be at most s̄. In case of the BO mechanism, this holds by
definition since any offer by the buyer is constrained to be at least b̄. We note that any offer
by the seller will also be at least b̄, since this seller knows that the buyer will buy at this
price with probability 1 since b̄ ≤ inf SupportDb (and since this price is at least s̄, offering
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it does not violate this seller’s constraint), and therefore the seller will never make a lower
offer, and the proof is complete.

Proof of Lemma 4.2. We start by proving Part 1. If s̄ ≤ b, then any price offered by the
seller in the SO part of the RO mechanism with the given parameters will be accepted by
the buyer (as it will be at most s̄ and therefore at most b). Similarly, if b̄ ≥ s, then any price
offered by the buyer in the BO part of the RO mechanism with the given parameters will
be accepted by the seller (as it will be at least b̄ and therefore at least s). Either way, trade
will occur in the RO mechanism with probability at least 1/2.

We move on to prove Part 2. It is enough to show that if trade occurs in the SO part of
the latter mechanism, then trade occurs also in the SO part of the former mechanism. (The
BO part is handled analogously.) If trade occurs in the SO part of the latter mechanism
(unconstrained and unconditioned), then it means that in that mechanism, the price p that
maximizes the revenue of the seller from Db (unconstrained and unconditioned), which is the
price that was offered, is at most b (since the offered price is accepted) and at least s (since
the mechanism is ex-post IR). Therefore, since b ≤ s̄ and s ≥ b̄, we have s̄ ≥ b ≥ p ≥ s ≥ b̄,
and so p is also the price that maximizes the revenue of the seller from Db|≥b̄ constrained
upon the price being at most s̄, and so this is also (at most, in case of multiple utility-
maximizing prices) the price offered in the SO mechanism with parameters s̄ and Db|≥b̄, and
so the price offered by the seller is accepted in this mechanism as well.

C The Trade Reduction Mechanism for

Matching Markets: Proofs

Proof of Theorem 6.1. We first observe that the allocation is indeed feasible, that is, that
we can perfectly match all winning buyers and sellers. Indeed, the set of winners can be
obtained by taking the matching M(b, s) and then removing the agents that correspond
to one edge between any two classes t and t′ that are trading (have rt,t′ > 0), and then
switching agents of the same class (removing every agent in the leftover matching that has
value lower than a removed agent of the same class, and adding the removed agent in her
stead), maintaining a perfect matching of TR(b, s). Thus, there is a matching of the winners
TR(b, s) such that there are exactly rt,t′ − 1 trades of agents of classes t and t′ whenever
rt,t′ > 0. The reduced agents can be perfectly matched with exactly a single edge between
agents of classes t and t′ whenever rt,t′ > 0.

Now, the theorem will directly follow from the following sequence of claims.

Claim C.1. The Trade Reduction Mechanism for matching markets is ex-post IR and ex-post
IC.

Proof. We first observe that the TR mechanism for matching markets is monotone. It is
enough to show this for the buyers. Assume that the value of a winning buyer i increases by
δ. We show that she still wins after the increase. Every matching that includes this buyer
improves by the same amount δ, while the value of any other matching did not change, so
the same matching M(b, s) will be picked after the value increase (ties are broken the same
way, independent of values). Finally, the reduction will also not change as for any class t,
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the values of qt and dt did not change, and if buyer i is of class t, she will still not be in the
set of dt lowest-value buyers after her value has increased, so she will not be reduced.

To complete the proof that the mechanism is ex-post IR and ex-post IC, we need to show
that payments are by critical values. Indeed, assume that for a winning buyer i of class
t, the value of the highest reduced buyer of class t (if i bids truthfully) is x. If buyer i of
class t changes her bid but keeps it above x, she wins. Now assume that she drops her bid
below x. If she is not in M(b, s) she loses. If she is in M(b, s) and bids below x, then the
matching M(b, s) will contain the exact same set of agents, and will be the same (due to the
tie breaking rule which is independent of the actual bids), so she will lose while the agent
with bid x will win instead of her, as both qt and dt are the same but now i is no longer one
of the qt − dt highest-bidding agents of class t. Thus, bidding above x implies winning for
i, while bidding below x implies losing, so x is indeed the critical value for buyer i to win.
Similar arguments prove the claim for sellers.

Claim C.2. The Trade Reduction Mechanism for matching markets is ex-post (direct trade)
weakly budget balanced.

Proof. To see that the mechanism is ex-post (direct trade) weakly BB we prove that every
trade is ex-post weakly BB. Indeed, consider a trade between two agents of respective classes
t and t′ in the matching of TR(b, s) that contains exactly rt,t′ − 1 trades of agents of classes
t and t′ whenever rt,t′ > 0, and consider the reduced edge between these two classes. The
buyer pays at least the value of the reduced buyer of the same class on the reduced edge
between classes t and t′, while the seller receives at most the cost of the reduced seller on
that edge. As that reduced edge has non-negative gain (otherwise removing it will increase
the welfare of the first-best matching M(b, s)), the trade is ex-post weakly BB.

Claim C.3. For any profile (b, s), the fraction of the realized gains from trade (first-best)
that the Trade Reduction Mechanism for matching markets obtains ex-post is at least min

{
1−

dt
qt

∣∣ class t s.t. qt > 0
}

.

Proof. Recall that Tt is the set of class-t agents. Let α(b, s) = min
{

1−dt
qt

∣∣ class t s.t. qt > 0
}

.

To prove the claim that the mechanism guarantees an α fraction of the welfare of OPT (b, s),
we let vk be the value of agent k (vk = bi for a buyer k = i, and vk = −sj for seller k = j),
and assuming W is the set of agents in M(b, s) we observe that

OPT (b, s) =
∑

(i,j)∈M(b,s)

(bi − sj) =
∑
t:qt>0

∑
k∈W∩Tt

vk

.
As for each class t with qt > 0 we remove dt agents each with value at most the value of

any winner, we obtain at least a qt−dt
qt

fraction of the value of agent of class t. Thus,

α(b, s) ·OPT (b, s) ≤
∑
t:qt>0

qt − dt
qt

∑
k∈W∩Tt

vk ≤ TR(b, s),

as needed.

Theorem 6.1 follows from Claims C.1 to C.3.

34



Proof of Corollary 6.2. Let β(b, s) = min
{

1− 1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}

. By the guar-

antee of Theorem 6.1 with respect to α(b, s), it is enough to show that β(b, s) ≤ α(b, s).
Indeed, for every class t such that qt > 0, since qt =

∑
t′ rt,t′ :

qt − dt
qt

=
∑

t′:rt,t′>0

rt,t′ − 1

qt
=

∑
t′:rt,t′>0

rt,t′ − 1

rt,t′
· rt,t

′

qt
≥ min

t′:rt,t′>0

rt,t′ − 1

rt,t′
,

where the inequality is since a weighted average of values is always at least the minimal
value. Taking the minimum of both sides of the obtained inequality over all classes t s.t.
qt > 0, we obtain that α(b, s) ≥ β(b, s), as required.

D Additional Preliminaries for Appendices E and F

D.1 Notation

First we give some notations specialized in this setting. Given profile (b, s), let M(b, s) be
the first-best matching, or the maximum weight matching35, under graph G with edge weight
bi − sj on each edge (i, j) ∈ E. For each agent a, denote M−a(b, s) the maximum weight
matching36 after removing a and its related edges. For each buyer i such that (i, j) ∈M(b, s),
let Pi(b, s) be the VCG payment of buyer i. Formally,

Pi(b, s) =
∑

(i′,j′)∈M−i(b,s)

(bi′ − sj′)−
∑

(i′,j′)∈M(b,s)

(bi′ − sj′) + bi

Similarly, let Pj(b, s) be the VCG payment received by seller j:

Pj(b, s) =
∑

(i′,j′)∈M(b,s)

(bi′ − sj′)−
∑

(i′,j′)∈M−j(b,s)

(bi′ − sj′) + sj

For simplicity, when the valuation profile (b, s) is fixed, we will abuse the notation and
use M (or M−a, Pi, Pj) instead in the proof, without writing the valuation profile.

D.2 Lexicographic Tie-Breaking by ID

In this section, we define the tie-breaking rule that we use whenever we have to choose be-
tween multiple maximum weight matchings when picking a matching with maximum weight
anywhere throughout this paper. We first define a strict total order over matchings, which
we call the Lexicographic order by IDs.

Definition 6 (Lexicographic order by IDs). Fix a bipartite graph, and let M ′ and M ′′ be
two matchings in this graph. The Lexicographic order by IDs decides which of M ′ and M ′′ is
ranked higher as follows. It first sorts the edges of the matching by the index of the buyer.
For each k, let (i′k, j

′
k) and (i

′′

k, j
′′

k ) be the kth sorted edges (according to the index of the
buyer) in M ′ and in M ′′, respectively. Let k be the lowest index such that it is not the case
that the two edges (i′k, j

′
k) and (i

′′

k, j
′′

k ) are both defined and are the same edge.

35We break ties lexicographically by IDs.
36Follow the same breaking tie rules as the first-best matching.
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• If one matching has a kth edge while the other does not, then the matching with more
edges is ranked higher.

• Otherwise, the matching with the lower buyer index in the kth edge is ranked higher.

• Otherwise, the matching with the lower seller index in the kth edge is ranked higher.

As noted above, throughout this paper when two matchings have the same weight, we use
the Lexicographic by IDs order to break ties when choosing a maximum weight matching, so
we in fact choose the lexicographically-by-IDs-highest matching among those with maximum
weight. We will refer to this practice as using the Lexicographic by IDs tie-breaking rule. We
will now formalize the two properties of this tie-breaking rule, which we will use in our
analysis:37

Lemma D.1. The Lexicographic by IDs tie-breaking rule satisfies the following two proper-
ties:

• The tie-breaking is weight independent: ties between maximum weight matchings are
broken independently of any weight function. That is, if W and W ′ are two weight
functions, if M and M′ are the respective corresponding sets of maximum weight
matchings, and if M and M ′ are the respective corresponding chosen matchings, then
if M ⊆ M′ and M ′ ∈ M, then M = M ′. So, the set of matched nodes that this
tie-breaking rule picks (among all possible maximum weight options), as well as the
matching that this rule picks within that set, does not depend on the weight function.

• The choice function is subset consistent: if the chosen maximum weight matching
among all matchings of the vertices U is the matching M , then for any (i, j) ∈M , the
chosen maximum weight matching among all matchings of the vertices U \ {i, j} is the
matching M \ {(i, j)}.

Proof. Weight-independence is by definition of the Lexicographic order by IDs. For subset
consistency, let M ′ 6= M \ {(i, j)} be another maximum weight matching of U \ {(i, j)}, and
note that when adding the edge (i, j) to M ′, one obtains a maximum weight matching of
U . By definition of M , it is ranked higher than M ′ ∪ {(i, j)} by the Lexicographic by IDs
order, and since the shared edge makes no difference in the tie breaking, we have that after
its removal M \ {(i, j)} is (still) ranked higher than M ′ by the Lexicographic by IDs order
(so the tie is be broken in the same way).

E The Offering Mechanism for

Matching Markets: Proofs

We will now prove Theorem 6.4, which states that the Offering Mechanism for matching
markets is BIC, ex-post IR, ex-post (direct trade) strongly budget balanced, and ex-ante
guarantees at least a 1/4-fraction of the optimal GFT (second-best). The Offering Mechanism

37Indeed, our results would still hold for any other tie-breaking rule that satisfies these two properties.
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is ex-post strongly (direct trade) budget balanced as the RO mechanism is ex-post (direct
trade) strongly budget balanced. To show the remaining properties, we first develop some
machinery.

E.1 Supporting Machinery

Lemma E.1. In the offering mechanism when run on a profile (b, s), for every (i, j) ∈
M(b, s) the following hold:

• If i ∈M−j(b, s), then s̄ = Pj(b, s).

• If j ∈M−i(b, s), then b̄ = Pi(b, s).

Proof. We will prove the first statement (the second is analogous). Since i ∈M−j(b, s), the
VCG price of buyer i in the market without seller j is the minimal bid that causes her to be
in the first-best in that market, and so s̄ = Pi(b, s−j). Now observe that:

Pj(b, s) =
∑

(i′,j′)∈M

(bi′ − sj′)−
∑

(i′,j′)∈M−j

(bi′ − sj′) + sj =

∑
(i′,j′)∈M\{(i,j)}

(bi′ − sj′)−
∑

(i′,j′)∈M−j

(bi′ − sj′) + bi = Pi(b, s−j) = s̄

We are now ready to prove the first two parts of Lemma 6.3:

Claim E.2. For every (i, j) ∈M(b, s), it holds that s̄ ≥ sj and b̄ ≤ bi.

Proof. We will show the former; the latter is analogous. If s̄ =∞ the the claim immediately
holds, so we assume that s̄ < ∞. Consider the profile ((b−i, b

′
i), s) for b′i = max{s̄ + 1, bi}.

Since we have only increased the bid of i, we still have that (i, j) ∈ M((b−i, b
′
i), s). By

definition, s̄ is the same for the profile ((b−i, b
′
i), s) as it is for (b, s). By definition of s̄,

we have by b′i > s̄ that i ∈ M−j((b−i, b′i), s). Therefore, by Lemma E.1, s̄ = Pj((b−i, b
′
i), s).

Since (i, j) ∈M((b−i, b
′
i), s), we have that sj ≤ Pj((b−i, b

′
i), s), and so sj ≤ s̄, as required.

Claim E.3. For every (b, s) and (i, j) ∈M(b, s), it is the case that Pj(b, s) ≥ Pi(b, s).

Proof. by the Second Welfare Theorem, there exist prices p = (pj′)j′∈S (where pj′ denotes a
price for the good of seller j) such that (M(b, s); p) is a Walrasian equilibrium. Therefore,
pj is a price received by sj and paid by bi in some Walrasian equilibrium. By Theorem 8 of
Gul and Stacchetti (1999), we therefore have that Pj(b, s) ≥ pj ≥ Pi(b, s), completing the
proof.

We are now ready to prove the third and final part of Lemma 6.3:

Claim E.4. For every (i, j) ∈M(b, s), it holds that s̄ ≥ b̄.

Proof. Assume for contradiction that there exists a profile (b, s) and a pair (i, j) ∈M(b, s)
such that s̄ < b̄. By Claim E.2 we have that bi ≥ b̄ > s̄ and sj ≤ s̄ < b̄. Therefore, we
have by definition of s̄ and b̄ that both i ∈ M−j(b, s) and j ∈ M−i(b, s). Therefore, by
Lemma E.1, s̄ = Pj(b, s) and b̄ = Pi(b, s), and so Pj(b, s) < Pi(b, s) — a contradiction to
Claim E.3.
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Proof of Lemma 6.3. Follows from Claims E.2 and E.4.

Lemma E.5. Fix valuation profile (b, s) and a pair (i, j) ∈M . If j 6∈M−i, then Pi(b, s) =
sj. Similarly if i 6∈M−j, then Pj(b, s) = bi.

Proof. We only give the proof for Pi = Pi(b, s) and similar argument holds for seller’s VCG
payment Pj = Pj(b, s). If j 6∈ M−i, it holds that M−i = M \ {(i, j)} by subset consistency
of the tie breaking rule. Now, by definition of Pi, we have Pi = sj.

E.2 Incentive Guarantees

Claim E.6. The Offering Mechanism is ex-post IR.

Proof. That the Offering Mechanism is ex-post IR follows from Claim E.2 and Lemma 4.1.

Claim E.7. The Offering Mechanism is BIC.

Proof. We will prove that the Offering Mechanism is BIC for the seller. A similar argument
holds for the buyer. For each seller j with cost sj, suppose she misreports her cost to be
s′j 6= sj. We will show that taking expectation over other agents’ valuation profile b, s−j,
the expected utility of sj when reporting truthfully is at least the expected utility of seller
j with true cost sj when reporting s′j.

We first consider b, s−j such that j is not in the first-best M(b, s−j, sj). It is sufficient
to consider manipulations s′j that cause j to become part of the first-best M(b, s−j, s

′
j).

Let s′j be such a manipulation, and note that in this case, sj ≥ Pj(b, s−j, s
′
j) ≥ s′j (since

Pj(b, s−j, s
′
j) is the threshold bid of seller j to become part of the first-best). Let i be the

agent such that (i, j) ∈M(b, s−j, s
′
j). We will complete the proof of this case by considering

two cases. First, if i ∈M−j(b, s−j, s′j), then s̄ = Pj(b, s−j, s
′
j) by Lemma E.1. Therefore, by

Lemma 4.1(2), seller j with reported cost s′j can only trade with i in the RO mechanism at
a price p ≤ s̄ = Pj(b, s−j, s

′
j) ≤ sj, which derives non-positive utility for seller j. Second, if

i /∈ Mj(b, s−j, s
′
j), then by Lemma E.5, Pj(b, s−j, s

′
j) = bi. Since the mechanism is ex-post

IR for buyer i, seller j can only trade with i (who has value bi) in the RO mechanism at a
price at most bi = Pj(b, s−j, sj) ≤ sj, which again derives non-positive utility for seller j.

Now for every buyer i, consider those b, s−j such that (i, j) ∈M(b, s−j, sj). In this case,
we note that if seller j misreports to s′j, then either the first-best is unchanged (and so j
participates in the same RO mechanism with the same buyer i) or seller j is no longer in
the first-best, receiving utility 0. Either way, she cannot change the RO mechanism that is
run, or the buyer that she is facing. When the BO mechanism is processed, if seller j is in
the first-best, she will be asked to accept a price. This is ex-post truthful.

When the SO mechanism is processed, then it is enough to show that for every i and
fixed b−i, s−j, sj, in expectation over all bi such that (i, j) ∈ M(b−i, bi, s−j, sj), the utility of
j when she reports s′j 6= sj (denoted as uj(s

′
j)) is at most the utility of j when she reports sj

(denoted as uj(sj)) truthfully. Notice that either i can never connect to j in the first-best
M(b−i, bi, s−j, sj), or Pi(b, s−j, sj) (which does not depend on bi) is the threshold bid of buyer
i to connect to j in the first-best. Thus it is enough to prove the claim that when there exists
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a bid for i such that i connects to j in the first-best, in expectation over bi ≥ Pi(b, s−j, sj),
the utility of j when she reports s′j is at most the utility of j when she reports sj.

Note that fixed b−i, s−j, sj, when bi ≥ Pi(b, s−j, sj), the outcome of the Offering Mecha-
nism for j is as if the SO mechanism with parameters s̄ and DB

i |≥b̄ had been run between j
and i. Notice that the parameters s̄ and b̄ do not depend on sj or on bi. By Lemma 4.1(1),
the SO mechanism with parameters s̄ and DB

i |≥b̄ is BIC when the buyer’s valuation is drawn
from DB

i |≥b̄. In other words,

E
bi≥b̄

[uj(s
′
j)] ≤ E

bi≥b̄
[uj(sj)]. (1)

Note that Pi(b, s−j, sj) ≥ b̄ by Claim E.2. If Pi(b, s−j, sj) = b̄, then the above claim trivially
holds. Otherwise we have to reason about the case Pi(b, b−j, sj) > bi ≥ b̄, which is included
in the expectation in Equation (1) but not in the expectation in the above claim.

In this case, since Pi(b, s−j, sj) > b̄, then Lemmas E.1 and E.5, Pi(b, s−j, sj) = sj. We
notice that when sj > bi ≥ b̄, seller j won’t trade with buyer i in the Offering Mechanism
when j reports sj, as (i, j) can’t be in the first-best M(b, s). The utility of j (contributed
by buyer i) is thus 0 in this case. When sj > bi ≥ b̄ and j reports s′j, since the payment
goes directly from buyer i to seller j when they trade, they do so at price at most bj < sj
(since we assume that buyer i reports truthfully, and since the mechanism is ex-post IR for
her), so seller j’s utility (contributed by buyer i) in this case is negative if they trade, and
0 otherwise, so it is nonpositive. Combined this with Equation (1), we obtain

E
bi≥sj

[uj(s
′
j)] ≤ E

bi≥sj
[uj(sj)]

which finishes the proof as sj = Pi(b, s−j, sj).

E.3 Efficiency Guarantee

Given a bipartite graph (B, S,E) and two matchings M and M ′ over the graph, a path is
called an alternating path of M ∪M ′ if the edges on the path alternate between edges of M
and M ′. If aK = a1, we call it an alternating cycle. A path is maximal if it is not a sub-path
of any other path.

It is well-known that the union of two matchings in a bipartite graph can be divided into
disjoint maximal alternating paths and cycles.

Observation E.8. Given any set of nodes V and two undirected graphs G1 = (V,E1) and
G2 = (V,E2) such that in both graphs the degree of any node is at most 1 (i.e., each is a
matching), it holds that in G1,2 = (V,E1∪E2) every node has degree at most 2 and thus G1,2

is a disjoint union of maximal alternating paths and maximal alternating cycles.

Given a bipartite graph (V1, V2, E), a set U ⊆ V1 ∪ V2 of nodes is matchable if it is
possible to find a perfect matching of all of the nodes in U using edges in E. Note that if U
is matchable then |U ∩V1| = |U ∩V2|. A node weight function is a function W that assigns a
weight W (i) to any node i ∈ V1∪V2. A node-based weighted matching problem is a matching
problem in which for some node weight function W , the weight of every edge (i, j) ∈ E is the
sum of the weights of the two nodes incident on the edge, that is, W (i, j) = W (i) + W (j).
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The weight of a matchable set of nodes U is W (U) =
∑

u∈U W (u). For a weighted matching
problem, a weight-maximizing set is a matchable set of nodes that has maximum weight,
over all matchable sets. Clearly, for any node-based weighted matching problem, the weight
of any matching over the same matchable set of nodes U is the same. Moreover, if U is a
weight maximizing set, then any perfect matching of it does not include any edge of negative
weight. For our mechanisms to work, we will need to carefully define the tie-breaking rule
that will be used to choose the weight-maximizing set, as well as the perfect matching of its
elements.

Observation E.9. Fix a bipartite graph. Let WV and W ′
V be two node-based weight functions

for the graph, and let M and M ′ be the two maximum weight matchings picked by the tie-
breaking rule for these two weight functions, respectively. If the sets of matched nodes of M
and M ′ are the same, then M and M ′ must be the same.

We also observe that if an agent is in the first best, by changing his bid he cannot influence
the picked matching while staying in the first best.

Observation E.10. Fix a bipartite graph. Assume that with node-based weight function W ,
the maximum weight matching M is picked by the tie-breaking rule. Fix any i and let W ′

be a node-based weight function such that W ′(k) = W (k) for any k 6= i. Let M ′ be the the
maximum weight matching picked for W ′. Then if i ∈M ′ it holds that M = M ′.

We prove the following two lemmas about VCG prices which are both useful in our proofs.

Corollary E.11. Consider the VCG mechanism with lexicographic by IDs tie-breaking rule.
If (i, j) ∈ M(b, s) for some (b, s) then for any b′i such that i trades when the bids are

((b−i, b
′
i), s), it holds that buyer i trades with j and pays Pi(b, s). Moreover, for any such b′i

it holds that b′i ≥ Pi(b, s) ≥ sj.
Similarly, if (i, j) ∈M(b, s) for some (b, s) then for any s′j such that seller j trades when

the bids are (b, (s−j, sj)), it holds that j trades with i and pays Pj(b, s). Moreover, for any
such s′j it holds that s′j ≤ Pj(b, s) ≤ bi.

Proof. The inequality b′i ≥ Pi(b, s) holds by VCG being ex-post IR. It holds that Pi(b, s) ≥ sj
as otherwise, if Pi(b, s) < sj then for bi s.t. Pi(b, s) < bi < sj there is an inefficient trade in
M , a contradiction. Similar arguments prove imply the claim for seller j.

Observe that M = M(b, s), M∗
1 = M∗

1 (b, s) and M∗
2 = M∗

2 (b, s) are each a maximum
weighted matching for some node based weight function, all defined over the same undirected
bipartite graph G = (S,B,E) and chosen using the same tie-breaking rule. M(b, s) is derived
from the node-based function W that assigns weight bi to any node i ∈ B and weight −sj
to any node j ∈ S. Similarly, M∗

1 (b, s) is derived from the node-based function W1 that
assigns weight ϕ̃i(bi) to any node i ∈ B and weight −sj to any node j ∈ S, where ϕ̃i(bi) is
the ironed virtual value of i when his value is bi, as defined in Section 2.3. Finally, M∗

2 (b, s)
is derived from the node-based function W2 that assigns weight bi to any node i ∈ B and
weight −τ̃j(sj) to any node j ∈ S, where τ̃j(sj) is the ironed virtual cost of j when his cost
is sj, as defined in Section 2.3.

A direct corollary of Observation E.9, is that any alternating cycle in M ∪M∗
1 cannot

include more than two distinct nodes, as any such alternating cycle is actually two different
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matchings over the same matchable set of nodes. We state the claim for M∗
1 ; the same claim

holds also for M∗
2 .

Corollary E.12. Let (a1a2...aK), be an alternating cycle of M ∪M∗
1 . Then K = 3. In other

words, a1 = a3 and the undirected edge (a1, a2) is in both M and in M∗
1 .

For a bipartite graph (V1, V2, E), we say that the node-based weight function W is a V1-
weak-improvement of W ′ if for any node i ∈ V1 it holds that W (i) ≥ W ′(i) and for any j ∈ V2

it holds that W (j) = W ′(j). By definition of ϕ̃ and τ̃ , we have that the node-based weight
function W used to derive M is a B-weak improvement to the node-based weight function
W1 used to derive M∗

1 (and similarly, W is an S-weak improvement to the node-based weight
function W2 used to derive M∗

2 ).

Lemma E.13. Fix a bipartite graph (B, S,E), and assume that the node-based weight func-
tion W is a B-weak-improvement of W ′. Let M and M ′ be the maximum weight matchings
that are picked by the tie-breaking rule for W and W ′ respectively. Consider a maximal
alternating path of M ∪M ′ that is not a cycle. It holds that path cannot both start and end
with an edge from M ′. Moreover, it holds that the path (or its inverse) starts with a node in
B and that the first edge belongs to M .

Proof. Let A = (a1a2...aK) be a maximal alternating path in M ∪M ′ that is not a cycle,
and let U be the set of nodes in the path A. W.l.o.g., if there is a a node in B on any end
of the path, it is the first in the path. Assume that the path starts and ends with an edge
from M ′. In this case the path must have an odd number of edges (as any edge from M ′

is followed by an edge from M), and it starts with a node a1 ∈ B and ends with a node
ak ∈ S. If W ′(a1) +W ′(ak) < 0, then U ′ = U \ {a1, ak} is matchable and has higher weight
than U for W ′, a contradiction to the maximality of M ′. If W ′(a1) +W ′(ak) ≥ 0 then since
W is a V1-weak-improvement of W ′ it holds that W (a1) +W (ak) ≥ W ′(a1) +W ′(ak) ≥ 0. If
W (a1) +W (ak) > 0 then the matchable set U ′ has higher weight than U with respect to W ,
contradicting the maximality ofM . If on the other handW (a1)+W (ak) = W ′(a1)+W ′(ak) =
0 both U and U ′ are matchable sets of the same weight with respect to both W and W ′, so
by set consistency of the tie breaking, both M and M ′ must have matched the same set, a
contradiction.

Now, if the path starts and ends with an edge in M , it has an odd number of edges, so
it has a node in B on one end and a node in S on the other, and as we can assume w.l.o.g.
that the node in B is first, this completes the proof.

We are left with the case that the path has an edge from M on one end, and an edge
from M ′ on the other. In this case it has an even number of edges and thus either both
ends are in B, or both are in S. We prove that both are in B, completing the proof of the
claim. Assume by way of contradiction that both a1 and ak are in S. Since W is a B-weak-
improvement of W ′, for any node j ∈ S we have W (j) = W ′(j) and thus W (a1) = W ′(a1)
and W (ak) = W ′(ak). If W (a1) < W (ak) then U \{ak} is a matchable set with higher weight
than the set U \ {a1} with respect to W , contradicting the optimality of M . Similarly if
W ′(a1) = W (a1) > W (ak) = W ′(ak) then U \{a1} is a matchable set with higher weight than
the set U \{ak} with respect to W ′, contradicting the optimality of M ′. Thus it must be the
case that W ′(a1) = W ′(ak). So both matchable sets U \ {a1} and U \ {ak} have exactly the
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same weight with respect to both W and W ′, and as the tie breaking is weight-independent,
both should have picked the same set, a contradiction.

From Lemma E.13 and Corollary E.12 we immediately get the following corollary.

Corollary E.14. Let (a1a2...aK), be a maximal alternating path of M ∪M∗
1 . Precisely one

of the following holds:

• K = 3, a1 = a3 and the undirected edge (a1, a2) ∈M ∩M∗
1 , or

• (w.l.o.g.) the path starts with a buyer and an edge from M .

Lemma 7.2, which plays a central role in our proof of the ex-ante guarantee of the Offering
Mechanism, provides a sufficient condition for a buyer-seller pair to trade in that mechanism.
Here we restate and prove the lemma.

Lemma E.15 (Restatement of Lemma 7.2). Fix valuation profile (b, s). For every (i, j) ∈
M(b, s), if j is in M−i(b, s) then buyer i will trade with seller j in the BO Mechanism, and
if i is in M−j(b, s) then buyer i will trade with seller j in the SO Mechanism. Thus, in each
such case the edge (i, j) will be traded with probability at least 1/2 in the Offering Mechanism.

Proof. For every pair (i, j) ∈ M(b, s), if j ∈ M−i(b, s), we have by Lemma E.1 that b̄ =
Pi(b, s) ≥ sj, where the inequality is by Lemma E.5. Similarly, if i ∈ M−j(b, s), then
s̄ = Pj(b, s) ≤ bi. Therefore, in either case, by Lemma 4.2(1) the edge (i, j) will be traded
with probability at least 1/2 in the Offering Mechanism.

Consider a maximal alternating path that is not a cycle. Lemma 7.3 shows that for every
seller j ∈ A that is not at one of the ends such a path, it holds that j ∈M−i, where i is the
buyer that is matched to j in M . Here we restate and give the proof of the lemma.

Lemma E.16 (Restatement of Lemma 7.3). Let A be a maximal alternating path of M ∪M∗
1

that is not a cycle. For every seller j ∈ A who is not at one of the ends of the path, it holds
that j ∈M−i, where i is the buyer such that (i, j) ∈M .

Proof. By Corollary E.14 we can assume w.l.o.g. that A starts with a buyer and an edge
in M . So, if the path has an even number of edges, then A = (i1j1i2j2...iL−1jL−1iL) and
if it is odd then A = (i1j1i2j2...iL−1jL−1iLjL), where in either case each agent il denotes a
buyer and each agent jl denotes a seller, such that for every l ∈ {1, 2, ..., L− 1} it holds that
(il, jl) ∈M . If the path is odd, it furthermore holds that (iL, jL) ∈M .

We need to show that for every l ∈ {1, 2, ..., L − 1} it holds that jl ∈ M−il . Assume for
contradiction that jl /∈ M−il for some l ∈ {1, 2, ..., L − 1}. Then M−il = M \ {(il, jl)} by
subset consistency of the tie-breaking rule, and in A the matching M−il matches the set of
agents38 A′ = M ∩ (A \ {il, jl}).

If the path has an even number of edges, then iL /∈ A′. To derive a contradiction we
observe that the set A′′ = A′ ∪ {jl, iL} = A \ {il} is matchable (using the edges of M on
the path A up to jl−1, and the edges of M∗

1 on the path A starting from jl), and moreover,
has weight with respect to W that is at least the weight of A′. This holds as M∗

1 matched

38We slightly abuse notation by using A to also denote the set of agents in the path A.
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A′′ ∩ R and not A′ ∩ R for R = {jl, il+1, jl+1, . . . , iL}, and the weight of iL is not lower in
W than in W1 (and the weight of jl is the same in both). So we get an contradiction as
either A′′ is matchable and with a higher weight than A′ with respect to W , or they have
the same weight with regard to W and the same weight with regard to W1, and ties were
broken differently.

Next we consider the case that the path has an odd number of edges, in which case also
(iL, jL) ∈M . It must hold that sjl ≤ sjL as M∗

1 matches A \ {i1, jL} and not the matchable
set A \ {i1, jl}. Recall that since jl /∈ M−il , then M−il = M \ {(il, jl)}, but the matchable
set A′′ = A \ {il, jL} ⊆ A \ {il} has at least the weight of A′ = A \ {il, jl} with respect to W
(since sellers have the same weight in W and W1), so we get an contradiction as either A′′ is
matchable and with a higher weight than A′ with respect to W , or they have the same weight
with regard to W and the same weight with regard to W1, and ties were broken differently
in M−il and in M∗

1 .

Lemma 7.4 considers such paths with an odd number of edges and present some additional
characterization that will help us in bounding the GFT of our mechanism. By Corollary E.14
we can assume w.l.o.g. that any maximal alternating path of M ∪M∗

1 starts with a buyer
and an edge in M . Let GFTM ′(U) be the GFT of all edges of M ′ that are contained in U .
We now restate and prove this lemma.

Lemma E.17 (Restatement of Lemma 7.4). For K > 3, let A = (i1j1i2j2...iL−1jL−1iLjL),
be a maximal alternating path of odd number of edges of M ∪M∗

1 with any agent il denoting
a buyer and any agent jl denoting a seller, and the first edge in M ((i1, j1) ∈ M). It holds
that

• if biL > bi1 then iL ∈M−jL.

• if biL ≤ bi1 then GFTM(A \ {iL, jL}) ≥ GFTM∗1 (A).

Proof. We prove that if biL > bi1 then iL ∈M−jL . Assume for contradiction that iL /∈M−jL .
Since the tie breaking is subset consistent, the matching picked on A \ {iL, jL} will be the
same as the one in M . Yet, the set A \ {i1, jL} is matchable (by the edges of M∗

1 ) and has
higher weight than the weight that M gets on A \ {iL, jL}, a contradiction.

We next consider the case that biL ≤ bi1 . Let w = GFTM(A) =
∑L

l=1(bil − sil). Notice
that:

GFTM(A\{iL, jL}) = w− (biL−siL) ≥ w− (bi1−siL) = GFTM∗1 (A\{i1, jL}) = GFTM∗1 (A).

We are now ready to complete the proof of Lemma 7.1, which states that for any valuation
profile (b, s), the gains from trade of the Offering Mechanism for matching markets is at least
half of the from trade of the RVWM mechanism for that profile.

Fix a valuation profile (b, s). To prove the claim we consider the connected components
of M(b, s) ∪M∗

1 (b, s) and show that in each connected component separately the GFT of
the Offering Mechanism in expectation (over the randomness of the mechanism), is at least
half the GFT of the RVWM mechanism of Brustle et al. (2017) on (b, s).

By Observation E.8 each connected component is either a maximal alternating path or
a cycle. By Corollary E.12 any cycle has only two (identical) undirected edges, denote it by
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(i, j) ∈ M(b, s) ∩M∗
1 (b, s). That is, the unique edge (i, j) of M∗

1 = M∗
1 (b, s) in this cycle

is the same as the unique edge (i, j) of M = M(b, s) in that cycle. If j ∈ M−i(b, s) or
i ∈M−j(b, s), by Lemma 7.2 buyer i will trade with seller j in the Offering Mechanism with
probability at least 1/2, which obtains at least half the GFT that the RVWM mechanism
obtains on (i, j) ∈M∗

1 (b, s) when the profile is (b, s). Otherwise, since i /∈M−j we have that
s̄ ≥ bi, and since j /∈ M−i we have that b̄ ≤ sj. Since trade occurs with positive probability
on (i, j) in the RVWM mechanism, then by Observation 2.2, in this case the GFT of the
RVWM mechanism on this edge are therefore at least those of the RO mechanism with SO
parameters ∞ (no constraint) and DB

bi
(unconditioned distribution) and BO parameters 0

(no constraint) and DS
sj

(unconditioned distribution) on (i, j). Since s̄ ≥ bi and b̄ ≤ sj, we
have by Lemma 4.2(2) that the probability that trade occurs between i and j is at least as
high in our Offering Mechanism (which runs the appropriate RO mechanism, constrained
and conditioned) as it is in the unconstrained and unconditioned RO mechanism (that upper-
bounds the GFT of RVWM on this edge). Therefore, in this case our Offering Mechanism
achieves at least the gains from trade of the RVWM mechanism on this edge (and therefore,
on any alternating cycle).

By Corollary E.14, any other maximal alternating path of is not a cycle, and is a path
starts or ends with a buyer and an edge from M . We will assume w.l.o.g. that it start with
a buyer and an edge from M , and we consider such paths of even and odd numbers of edges
separately. Note that Corollary E.14 implies that there is no connected component that does
not include at least one edge from M , so by going over all connected components with at
least two edges, we cover all the edges of M∗

1 .
If the number of edges in the path is even, by Lemma 7.3, M matches every seller j in

the path to some buyer i, and for any such pair (i, j) it holds that j ∈M−i. By Lemma 7.2
buyer i will trade with seller j in the BO Mechanism, so whenever the BO mechanism runs,
the maximal GFT (first best) of that connected component, which is at least the GFT of the
M∗

1 mechanism for that connected component, will be obtained. The Offering Mechanism
runs the BO mechanism is probability 1/2, so in expectation it obtains at least 1/2 the GFT
of M∗

1 for this path.
We next consider the case that the number of edges in the path is odd and at least

3.39 Let the path be A = (i1j1i2j2...iL−1jL−1iLjL) for some L ≥ 2. By Lemma 7.3, for any
l ∈ {1, 2, ..., L− 1} it holds that jl ∈M−il . Next, we use Lemma 7.2 again. We consider two
cases, using Lemma 7.4.

• If biL > bi1 then iL ∈ M−jL . In this case all edges of M will each be traded with
probability at least 1/2 in the Offering Mechanisms, so in expectation it obtains at least
1/2 the GFT of M in this path and thus also at least 1/2 the GFT of M∗

1 in this path
A.

• If on the other hand biL ≤ bi1 then GFTM(A\{iL, jL}) ≥ GFTM∗1 (A). Therefore, since
every edge (il, jl) for l ∈ {1, 2, ..., L − 1} is traded with probability 1/2 in the Offering
Mechanisms, we have that in expectation the Offering Mechanism obtains in this path
A at least 1/2 of the GFT of M∗

1 in this path A.

39As noted, if there is a single edge, it is only in M . We only need to cover edges in M∗1 .
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We conclude that the Offering Mechanisms obtains at least 1/2 the GFT that the RVWM
mechanism gets on M∗

1 . Similar arguments show that the Offering Mechanisms obtains at
least 1/2 the GFT of the RVWM mechanism gets on M∗

2 . Thus the Offering Mechanisms,
obtains at least 1/4 the total GFT of M∗

1 and M∗
2 . The expected GFT of the RVWM

mechanism is the average GFT of M∗
1 and of M∗

2 . We conclude that the Offering Mechanisms
obtains at least 1/2 the GFT of the RVWM mechanism.

F The Hybrid Mechanism for

Matching Markets: Proofs

In this section, we prove Theorem 6.5.

Ex-post IR, ex-post (direct trade) weakly budget balance They directly come from
the fact that both the TR mechanism and Offering Mechanism are ex-post IR and ex-post
(direct trade) weakly budget balanced.

Bayesian IC Lemma F.1 proves that after combining the two mechanisms, the hybrid
mechanism is still a BIC mechanism.

Lemma F.1. The hybrid mechanism for matching markets is BIC.

Proof. We will prove that the Hybrid Mechanism is BIC for the seller. A similar argument
holds for the buyer. For each seller j with cost sj, suppose she misreports her cost to be
s′j 6= sj. We will show that taking expectation over other agents’ valuation profile b, s−j,
the expected utility of sj when reporting truthfully is at least the expected utility of seller
j with true cost sj when reporting s′j. We consider three cases:

• First, consider the case where when seller j reports sj, then she is in the first-best
and the TR Mechanism is run. In this case, we note that if seller j misreports to s′j,
then either the first-best is unchanged (and so the TR is still run) or j is no longer
in the first-best. In the former case, seller j does not profit since by Theorem 6.1 the
TR Mechanism is ex-post IC, and in the latter case seller j does not profit as she gets
utility 0.

• Now, consider the case where when seller j reports sj, then she is in the first-best and
the Offering Mechanism is run with an offer on the edge (i, j). Similarly to above,
we note that if j misreports to s′j, then either the first-best is unchanged (and so the
Offering Mechanism is still run) or j is no longer in the first-best, and has 0 utility. In
particular, j cannot cause the TR mechanism to run without getting 0 utility. Also
note that for the same reason, for every report of buyer i that keeps (i, j) in the first
best, the Offering Mechanism is still run, and so it is enough to show truthfulness of
j in expectation over all such reports of buyer i, and we have shown precisely that
in Claim E.7 using Lemma 4.1(1). So, we have that when j has cost sj such that
there exists b, s−j such that the Offering Mechanism is run with an offer on the edge
(i, j), then in expectation over all such b, s−j, it is the case that sj cannot gain from
misreporting.
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• Finally, consider the case where when seller j reports sj, then she is not in the first-
best. In this case, regardless of the mechanism that is actually run when j reports sj,
her outcome reporting sj would have been the same under both mechanisms. So, since
we have shown that when j is not in the first-best, truthtelling is ex-post IC in both
mechanisms, we have that this implies that truthfulness is ex-post IC for seller j in the
hybrid mechanism in this case.

Ex-post efficiency guarantee Whenever α(b, s) ≥ 1/2, the hybrid mechanism run TR
mechanism. The ex-post guarantee directly comes from Claim C.3.

Ex-ante efficiency guarantee Let (b, s) be a profile. If α(b, s) ≥ 1
2
, the hybrid mech-

anism runs the Trading Reduction mechanism, which achieves at least 1/2-fraction of the
first-best gains from trade. This is at least 1/2-fraction the gains from trade of the RVWM
mechanism. If α(b, s) < 1

2
, the hybrid mechanism runs the Offering Mechanism, which by

Lemma 7.1 achieves at least a 1/2-fraction of the GFT of the RVWM mechanism for this
profile. So, for any profile the hybrid mechanism achieves at least a 1/2-fraction of the GFT
of the RVWM mechanism for this profile, and so by Theorem 2.3, it achieves at least a
1/4-fraction of the GFT of the second-best mechanism, as required.

Proof of Corollary 6.6. Since β(b, s) ≤ α(b, s) (see the proof of Corollary 6.2), we have that
in this case also α(b, s) ≥ 1/2, and so the hybrid mechanism runs the TR mechanism for
matching markets, and so the claim following via Corollary 6.2.

46


	1 Introduction
	1.1 Our Results
	1.1.1 Double Auctions
	1.1.2 Matching Markets

	1.2 Additional Related Work

	2 Preliminaries
	2.1 Model and Definitions
	2.2 The Trade Reduction Mechanism
	2.3 The Random Virtual-Welfare Maximizing Mechanism of Brustle et al. [2017]

	3 Shortcomings of the RVWM Mechanism and of Naïve Modifications thereto
	3.1 Asymptotic Inefficiency of the RVWM Mechanism
	3.2 Nonmonotonicity of Naïve Modifications to the RVWM Mechanism

	4 The Seller-Offering, Buyer-Offering, and Randomized-Offerer Mechanisms
	5 Double Auctions
	5.1 A Hybrid Mechanism for Double Auctions
	5.2 Proof of Theorem 5.1
	5.2.1 Why The Proof of the Ex-Ante Guarantee Gives a Factor of 1/4 and Not 1/2


	6 Main Results for Matching Markets
	6.1 A Trade Reduction Mechanism for Matching Markets
	6.2 The Offering Mechanism for Matching Markets
	6.3 The Hybrid Mechanism for Matching Markets

	7 Sketch of the Proof of Ex-Ante Guarantee of the Offering Mechanism for Matching Markets
	8 Conclusion
	A Proof of Examples 3.1 through 3.3
	B Proofs of Lemmas 4.1 and 4.2
	C The Trade Reduction Mechanism for Matching Markets: Proofs
	D Additional Preliminaries for Appendices E and F
	D.1 Notation
	D.2 Lexicographic Tie-Breaking by ID

	E The Offering Mechanism for Matching Markets: Proofs
	E.1 Supporting Machinery
	E.2 Incentive Guarantees
	E.3 Efficiency Guarantee

	F The Hybrid Mechanism for Matching Markets: Proofs

