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1 Overview

We have previously discussed games, rationality, knowledge, and solution concepts. We also talked about
mechanism design – where the goal is to engineer a game that, when played by rational players, will
induce a desired outcome (and the set of desired outcomes may depend on information known only to
the players, and not to the designer). We also talked about existence theorems for Nash equilibria,
including Nash’s theorem for general games (using Brouwer’s fixed point theorem) and von Neumenn’s
theorem for two-player zero-sum games (via linear programming duality).

In this lecture, we will introduce algorithms for finding a Nash equilibrium in games other than just
two-player zero-sum games. We will investigate how computationally complex it is to find the Nash
equilibrium of a game (for the game theorist and for the players themselves). We will first discuss
support enumeration algorithms, then we will discuss algorithms for symmetric games, and we will end
with a discussion of the Lenke-Howson algorithm.

2 Support Enumeration Algorithms

In this section, we will consider whether knowing the support of a Nash equilibrium can reduce the
computational complexity of solving for a Nash equilibrium. We define the support of a mixed strategy
x to be the set of pure strategies with strictly positive probability mass in x.

2.1 Two-player games

Suppose we have an m by n two-player game (R,C), and let S
R

, S
C

be the supports of the Row
and Column players’ mixed strategies, respectively, at some Nash equilibruim of the game. Using this
information, we can construct the following linear program to find a Nash equilibrium (x, y):
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Hence, we can solve for a Nash equilibrium using the above LP, if we already know the support of
the equilibrium. If we don’t already know the support, it is reasonable to consider solving for a Nash
equilibrium by repeatedly guessing the support and then solving the resulting LP. Using this algorithm
to solve for a Nash equilibrium, we get a runtime of 2m+n ·poly(|R|, |C|). The 2m+n factor is the number
of possible supports we might need to guess, and for each support that we guess, we can solve the LP in
a runtime of poly(|R|, |C|).

Corollary 1. In any two-player game, there exists a Nash equilibrium whose mixed strategies use only
rational numbers in their probability distributions.

4-1



Proof: This follows from the correctness of the support enumeration algorithm. If there is a Nash
equilibrium with supports S

R

and S
C

, then the polytope of the corresponding LP is non-empty. Any
vertex of that polytope is a Nash equilibrium whose coordinates are rational and whose bit complexity
is polynomial in the description of the LP, and hence the description of the game. ⇤

This corollary suggests that finding an exact, as opposed to an approximate, Nash equilibrium in
polynomial-time is not obviously infeasible. However, the corollary is not true for k-player games where
k > 2. Indeed, Nash’s original paper [3] contains an example of a 3-player game with only irrational
equilibria.

2.2 n-player games

Now, let’s consider the case of an n-player game for arbitrary n. Even if we know the support of each
player (denoted ⌃

p

for player p) in a Nash equilibrium, the feasibility problem we need to solve, shown
below, is unfortunately not an LP:
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Note that the expected payo↵ u
p

(e
i

;x�p

) in the above problem is a polynomial of degree n � 1 in
the variables x

11

, x
12

,..., x
nk

(let’s say that all players have strategies {1, . . . , k}). This means that we
need to solve a system of polynomial equations and inequalities in n · k variables, where the polynomials
have degree n � 1. This can be done to precision ✏ in time polynomial in nnk log( 1

✏

), using tools from
the existential theory of the reals. Thus, including an extra factor of 2nk for guessing the support of the
Nash equilibrium, we get total running time polynomial in nnk log( 1

✏

). Recalling that the description of

the game already needs to specify nkn = n2n log(k) numbers, the running time is quasi-polynomial as
long as k scales polynomially with n.1

3 Algorithms for Symmetric Games

We will now discuss whether the running time for finding a Nash equilibrium can be improved for the
class of games called symmetric games.

Definition 1. An n-player game is symmetric i↵:

• All players have the same strategy set: S = {1, ..., k}; and

• there exists some function g of k + 1 arguments such that every player’s utility can be written as:
u
p

(s) = g(s
p

;n
1

(s�p

), ..., n
k

(s�p

)), where n
i

(s�p

) is the number of players other than p choosing
strategy i in pure strategy profile s.

For example, rock-paper-scissors and guess 2

3

of the average are both symmetric games. Also, con-
gestion games, where players choose routes between the same source and destination, are symmetric
games. Notice that describing symmetric games can be done much more succinctly than general games.
In particular, a n-player k-strategy symmetric game can be described by specifying O(min{knk�1, kn})
payo↵s, which saves exponentially in description complexity when n is large and k is small.

1

A quasi-polynomial-time algorithm for some computational task is an algorithm that solves an instance ⇧ of the task

in time 2

poly(log d(⇧))

, where d(⇧) is the description complexity of instance ⇧. If the polynomial in the exponent of the

running time is of degree 1 the algorithm is called polynomial-time.
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3.1 Symmetric equilibria

Definition 2. A Nash equilibrium x 2 ⇥�
p

is called symmetric if x
1

= x
2

= . . . = x
n

.

Theorem 1 (Nash ’51 [3]). In every symmetric game, there exists a symmetric Nash equilibrium.
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Suppose we restrict the domain of Nash’s function to the set:

⇥
p

�
p

\ {x
x

= x
2

= ... = x
n

}.

Then the range of the function will be a subset of this same restricted set, since every player performs
the same “update” in the function f . So f maps points of the restricted set to points in the same set.
Moreover, the set is convex, closed and bounded. So we can use Brouwer’s fixed point theorem to show
the existence of a fixed point in the restricted set. This fixed point is a Nash equilibrium as we saw
in the proof of Nash’s theorem in Lecture 2. And since it belongs to the restricted set, it must be a
symmetric one. ⇤

A symmetric Nash equilibrium x of a n-player k-strategy symmetric game can be found as follows:

• Guess the support of x: 2k possibilities;

• Write down a system of polynomial equations and inequalities corresponding to the equilibrium
conditions for the guessed support. (This is a simplified version of the system we wrote down
for general games in Section 2.2.) The polynomials involved have degree  n � 1 in k variables
(c.f. k · n for general games), so the system can be approximately solved to precision ✏ in time
polynomial in nk log( 1

✏

), using tools from the existential theory of the reals.

The overall running time is polynomial in nk log( 1
✏

), which is polynomial in the size of the input for
k = n1��, for any constant � > 0.

3.2 Symmetrization

We will show a reduction from the problem of finding a Nash equilibrium of a two-player game to the
problem of finding an equilibrium of a symmetric two-player game. The reduction we present is due to
Gale, Kuhn and Tucker [1].

Suppose that we are given an arbitrary two-player game G
1

:= (R,C), and we want to find a Nash
equilibrium of this game. WLOG, suppose that R and C have only positive entries.

Exercise 1. Show that computing a Nash equilibrium of an arbitrary game G can be reduced to the
problem of computing a Nash equilibrium of a game G0 whose entries are positive.

The reduction constructs a 2n⇥ 2n symmetric game G
2

, with the following payo↵ matrices in block
form:

✓
0, 0 R,C

CT , RT 0, 0

◆
.

Theorem 2. Given a Nash equilibrium of G
2

, we can e�ciently compute a Nash equilibrium of G
1

.

Proof: Suppose we are given a Nash equilibrium of G
2

. We denote this equilibrium by ([x
1

; y
1

], [x
2

; y
2

]),
where [x

1

; y
1

] is the mixed strategy of the row player and [x
2

; y
2

] the mixed strategy of the column player
in block form, as shown in the following diagram:
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✓ x
2

y
2

x
1

0, 0 R,C
y
1

CT , RT 0, 0

◆
.

First, at least one of x
1

and y
1

must be nonzero. Assume WLOG that x
1

6= 0. We claim the following:

Claim 1. x
1

6= 0 implies that y
2

6= 0.

Proof: Using our positivity assumption for the entries of the game, if y
2

= 0, then the row player in
game G

2

could improve his expected payo↵ by setting x
1

= 0 and boosting all probabilities in y
1

by a
factor of 1/|y

1

|
1

. This contradicts that ([x
1

; y
1

], [x
2

; y
2

]) is a Nash equilibrium. ⇤

Claim 2. Let x̂
1

= x1
|x1|1 and ŷ

2

= y2

|y2|1 . Then (x̂
1

, ŷ
2

) is a Nash equilibrium of (R,C).

Proof: By contradiction. Suppose (x̂
1

, ŷ
2

) is not a Nash equilibrium of G
1

. Then WLOG the row
player can improve his expected payo↵ by switching to some x̃

1

. Then

x̃
1

TRŷ
2

> x̂
1

TRŷ
2

. (*)

Subclaim 1. (*) implies that the row player in G
2

can improve his payo↵ by switching to [x̃
1

· |x
1

|
1

; y
1

]
from [x̂

1

· |x
1

|
1

; y
1

].

Proof of Subclaim 1: The expected payo↵ of the row player in G
2

from mixed strategy [x̃
1

· |x
1

|
1
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1

]
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|
1

· x̃
1

TRy
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.

His expected payo↵ from the mixed strategy [x̂
1

· |x
1

|
1
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1

] is

|x
1

|
1
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1

TRy
2

+ yT
1

CTx
2

.

The first of these payo↵s is strictly greater, due to (*). This concludes the proof of the subclaim. ⇤
Given Subclaim 1, we get a contradiction to our assumption that ([x

1

; y
1

], [x
2

; y
2

]) is a Nash equilibrium
of G

2

. ⇤ ⇤
By virtue of our reduction, we conclude that it is essentially as hard to solve a symmetric two-

player game as it is to solve a general two-player game. An interesting open problem is whether the
symmetrization can be generalized to games with more than 2 players.

Open Problem 1. Is there a reduction from 3-player games to symmetric 3-player games?

4 The Lemke-Howson Algorithm

We now describe the Lemke-Howson algorithm [2], which computes an exact Nash equilibrium of any
given two-player game (R,C). Since there always exists a rational equilibrium, this task is feasible.

To simplify our discussion, we assume that the input game is a symmetric n⇥ n game, i.e. C = RT .
From our work in Section 3.2, we can make this assumption WLOG.

The idea of the algorithm is to perform pivoting steps between the vertices of a polytope related to
the game until a Nash equilibrium is found. The (n-dimensional) polytope of interest is given by

R · z  1, z � 0,

where z is an n-dimensional vector.
We now make an additional assumption: at every vertex of the polytope, exactly n out of the 2n

inequalities are tight. We can make this assumption because if it is not true, we can perturb the original
game entries with exponentially small noise to make it happen. The equilibria of the perturbed game
will be approximate equilibria of the original game, and these can be converted to exact equilibria. This
is what the following exercise asks you to do:
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Exercise 2. Part 1. Show that the Lemke-Howson polytope can be perturbed with exponentially small
noise so that at every vertex exactly n of the inequalities are tight. Part 2. Show that, given a Nash
equilibrium of the perturbed game, an equilibrium of the original game can be recovered in polynomial
time.

Definition 3. Pure strategy i is represented at a vertex z of the polytope if at least one of the following
inequalities is tight:

z
i

� 0

R
i

z  1

Furthermore, we call any vertex of the polytope where all pure strategies are represented a democracy.

Notice that (0, 0, . . . , 0) is a democracy according to our definition. We make an interesting observation
about democracies.

Lemma 1. If a vertex z 6= 0 of the polytope is a democracy, then ( z

|z|1 ,
z

|z|1 ) is a Nash equilibrium.

Proof: At a democracy we have the following implication:

8i : z
i

> 0 =) R
i

z = 1.

Hence
8i : z

i

> 0 =) R
i

z � R
j

z, 8j

and after normalization:

8i : 1

|z|
1

· z
i

> 0 =) eT
i

R · z

|z|
1

� eT
j

R · z

|z|
1

, 8j.

Notice that these are exactly the equilibrium conditions for ( z

|z|1 ,
z

|z|1 ) to be a symmetric Nash equilibrium
of the game. ⇤

The goal of the Lemke-Howson algorithm is to find a democracy in the given polytope. The algorithm
operates as follows. Let’s call n the “special strategy,” albeit this choice is arbitrary.

1. Start at the vertex v
0

:= (0, 0, . . . , 0).

2. Comment: By non-degeneracy, there are exactly n edges of the polytope adjacent to v
0

. Each of
these edges corresponds to un-tightening one of the z

i

� 0 inequalities which are tight at v
0

.

3. Keeping all other inequalities tight, un-tighten the inequality z
n

� 0 (which corresponds to our
special strategy n). This defines an edge of the polytope adjacent to v

0

. Go to the other endpoint
of this edge.

4. If the obtained vertex v
1

is a democracy, then a Nash equilibrium has been found because v
1

6= 0.

5. Otherwise, one of the strategies 1, . . . , n� 1, say strategy j
1

, is represented twice, by both z
j1 = 0

(which was already tight) and R
j1z = 1 (which just became tight).

6. Comment: For the next step, we will un-tighten one of the two inequalities that are tight for j
1

.
If we un-tighten R

j1z  1, this would define the same edge (v
0

v
1

) that brought us to v
1

. To make
progress we will un-tighten instead the other inequality representing strategy j

1

.

7. Un-tightening z
j1 � 0, this defines an edge (v

1

v
2

) 6= (v
0

v
1

) of the polytope. Go to vertex v
2

.

8. If v
2

is a democracy, then stop.
Comment: To be shown that v

2

6= 0, and hence v
2

/|v
2

|
1

is a symmetric Nash equilibrium.
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9. Otherwise, again some strategy j
2

is doubly represented, all other strategies in {1, . . . , n� 1} are
represented once, and the special strategy n is not represented at all.

/*Proof: This is because, for all strategies who were singly represented before the step was taken,
their corresponding inequalities are maintained tight during the step. So they are still represented.
Strategy j

1

was doubly represented at vertex v
1

and we only un-tightened one of its tight inequalities.
So it is still represented at vertex v

2

by the inequality that we did not un-tighten. Finally, strategy
n was not represented before the step and since v

2

is not a democracy it is still not represented.*/

10. . . .

11. At step t of the algorithm:

• if vertex v
t

is not a democracy then one strategy j
t

is represented twice, all other strategies
in {1, . . . , n� 1} are represented once, and strategy n is not represented at all.

• between R
jtz  1 and z

jt � 0, un-tighten the one that defines an edge (v
t

v
t+1

) 6= (v
t�1

v
t

).

• If v
t+1

is a democracy, stop. Comment: To be shown that v
t+1

6= 0.

• O.w. continue.

Theorem 3. The Lemke-Howson algorithm terminates at a democracy that is di↵erent than (0, . . . , 0).

Proof: The Lemke-Howson algorithm defines a walk v
0

, . . . , v
t

, . . . on the vertices of the polytope. We
show that the vertices encountered in this walk satisfy a special property.

Claim 3. For all t, v
t

is either a democracy, or it satisfies the following property:

⇧ :
All of the strategies in {1, . . . , n� 1} are represented at v

t

, exactly one of them
is represented twice, and strategy n is not represented at all.

Proof: v
0

is a democracy. In the description of the algorithm, we justified that v
1

is either a democracy
or satisfies property ⇧. In the description of the algorithm we also justified that if v

t�1

satisfied property
⇧ then v

t

is either a democracy or it satisfies property ⇧. ⇤
Consider now all the vertices of the polytope that satisfy property ⇧, as well as all the vertices of

the polytope that are democracies. We define an auxiliary graph G on these vertices, where the vertices
satisfying property ⇧ have exactly two neighbors in G, and those that are democracies have exactly one
neighbor in G. In particular,

• The two neighbors (in G) of a vertex v satisfying property ⇧ are obtained from the polytope as
follows: If j is the strategy that is represented twice at v, consider un-tightening either z

j

� 0 or
R

j

z  1. Either one will define an edge of the polytope adjacent to v whose other endpoint is
either a democracy or a vertex satisfying property ⇧. Set those two vertices to be the neighbors
of v in G.

• The single neighbor (in G) of a vertex v that is a democracy is obtained from the polytope as
follows: Since v is a democracy, either z

n

� 0 or R
n

z  1 is tight. Consider un-tightening
whichever inequality is tight. This defines an edge of the polytope whose other endpoint is either
a democracy or a vertex satisfying property ⇧. Set that vertex to be the neighbor of v in G.

Clearly G comprises paths and cycles, as every vertex has degree either 1 or 2. Moreover, all
democracies are endpoints of paths in G, since they have degree 1. Let’s call “main path” the path
whose endpoint is v

0

and whose other endpoint is some democracy v⇤ 6= v
0

. We can show the following
by induction.

Claim 4. The Lemke-Howson algorithm traverses the main path starting from v
0

, and stopping at v⇤.

Given the claim, the proof is concluded. ⇤

Some final remarks about the Lemke-Howson algorithm are in place.
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• The algorithm provides an alternative proof that a Nash equilibrium exists in two-player games.
In particular, the existence of a Nash equilibrium is implied by the correctness of the algorithm.

• Moreover, it shows that there always exists a rational equilibrium in two-player games.

• Its worst-case running time is exponential in the number of strategies. This lower bound was
established by Savani and von Stengel [5].

• There are analogues of the Lemke-Howson algorithm for multi-player games working with manifolds
instead of polytopes. (See Rosenmüller [4] and Wilson [6].)
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