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q Large body of work in the literature :
q e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93], 

[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00], 

[Basov’01], [Kazumori’01], [Thanassoulis’04],[Vincent-Manelli ’06,’07], 

[Figalli-Kim-McCann’10], [Pavlov’11], [Hart-Nisan’12], …

q No general approach.

q Challenge already with selling 2 items to 1 bidder:

q Simple and closed-form solution seems unlikely to exist in general.

q Simple and Approximately Optimal Auctions.

§

Optimal Multi-Item Auctions



Selling Separately and Grand Bundling

q Theorem: For a single additive bidder, either selling separately or 

grand bundling is a 6-approximation [Babaioff et. al. ’14].

q Selling separately: post a price for each item and let the bidder choose 

whatever he wants. Let SREV be the optimal revenue one can generate 

from this mechanism.

q Grand bundling: bundle all the items together and sell the bundle. Let 

BREV be the optimal revenue one can generate from this mechanism.

q We will show that Optimal Revenue ≤ 2BREV + 4SREV.



Upper Bound for the Optimal Revenue

q Social Welfare is an upper bound for revenue.

q Unfortunately, could be arbitrarily bad.

q Consider the following 1 item 1 bidder case, and suppose the
bidder’s value is drawn from the equal revenue distribution,

e.g., v ∈ 1,+∞ , 𝑓 𝑣 = +
,-

and 𝐹 𝑣 = 1 − +
,
.

q The optimal revenue = 1.

q What is the optimal social welfare?



Upper Bound for the Optimal Revenue

q Suppose we have 2 items for sale. 𝑟+ is the optimal
revenue for selling the first item and 𝑟1 is the optimal
revenue for selling the second item.

q Is the optimal revenue upper bounded by 𝑟+ + 𝑟1?

§ NO… We have seen an example.

q What is a good upper bound for the optimal revenue,
i.e., within a constant factor?



Upper Bound of the 
Optimal Revenue via 
Duality
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Items

Bidder:
§ Valuation aka type 𝑣~𝐷. Let 𝑽 be the support of 𝐷.
§ Additive and quasi-linear utility:

§ 𝒗 = (𝑣+,𝑣1, … , 𝑣8) and 𝑣 𝑆 = ∑ 𝑣<<∈= for any set 𝑆.

§ Independent items: 𝒗 = (𝑣+, 𝑣1, … , 𝑣8)	is sampled from 𝐷 =	×<𝐷<.

Multi-item Auction: Set Up

Auctioneer

Goal: Optimize 
Revenue!

Bidder

𝑣~𝐷



Primal LP (Revenue Maximization for 1 bidder)

Variables: 

𝒙𝒋 𝒗 : the prob. for receiving item j when reporting 𝑣. 

𝒑(𝒗): the price to pay when reporting 𝑣.

Constraints:

𝒗 ⋅ 𝒙 𝒗 − 𝑝 𝒗 ≥ 𝒗 ⋅ 𝒙 𝒗F − 𝑝 𝒗F , ∀𝒗 ∈ 𝑽,𝒗F ∈ 𝑽 ∪ {∅} (BIC & IRConstraints)

𝒙 𝒗 ∈ 𝑃 = 0,1 8, ∀𝒗 ∈ 𝑽 (Feasibility Constraints)

Objective: 

maxQ𝑓(𝒗)𝑝	 𝒗
𝒗	

Our Duality (Single Bidder) 



Partial Lagrangian

Primal LP:

maxQ𝑓(𝑣)𝑝	 𝑣
𝒗	

s.t. 𝑣 ⋅ 𝑥 𝒗 − 𝑝 𝑣 ≥ 𝑣 ⋅ 𝑥 𝒗F − 𝑝 𝑣F , ∀𝑣 ∈ 𝑽, 𝑣F ∈ 𝑽 ∪ {∅} (BIC	&	IR	Constraints)

𝑥 𝑣 ∈ 𝑃 = 0,1 8,∀𝑣 ∈ 𝑽 (Feasibility	Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

min

�>0
max

x2P,p

L(�, x, p)

where

L(�, x, p) =
X

v

f(v)p(v) +
X

v,v0

�(v, v0) · (v · (x(v)� x(v0))� (p(v)� p(v0))

Strong	Duality:	Opt	Rev = max
X∈Y,Z

min
]^_

𝐿(𝜆, 𝑥, 𝑝) = min
]^_

max
X∈Y,Z

𝐿(𝜆, 𝑥, 𝑝).

Weak	Duality:	Opt	Rev ≤ max
X∈Y,Z

𝐿(𝜆, 𝑥, 𝑝) for	all	𝜆 ≥ 0.

Proof:	On	the	board.



=
X

v

p(v) ·
 
f(v) +

X

v0

�(v0, v)�
X

v

�(v, v0)

!

Partial Lagrangian

Better be	
0, o.w.
dual = +∞

Primal LP:

maxQ𝑓(𝑣)𝑝	 𝑣
𝒗	

s.t. 𝑣 ⋅ 𝑥 𝒗 − 𝑝 𝑣 ≥ 𝑣 ⋅ 𝑥 𝒗F − 𝑝 𝑣F , ∀𝑣 ∈ 𝑽, 𝑣F ∈ 𝑽 ∪ {∅} (BIC	&	IR	Constraints)

𝑥 𝑣 ∈ 𝑃 = 0,1 8,∀𝑣 ∈ 𝑽 (Feasibility	Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

+
X

v

x(v) ·
 
v ·
X

v0

�(v, v0)�
 
X

v0

v

0 · �(v0, v)
!!

min

�>0
max

x2P,p

L(�, x, p)

where

L(�, x, p) =
X

v

f(v)p(v) +
X

v,v0

�(v, v0) · (v · (x(v)� x(v0))� (p(v)� p(v0))



The Dual Variables as a Flow

q Observation: If the dual is finite, for every 𝒗 ∈ 𝑽

q This means 𝜆 is a flow on the following graph:

• There is a super source s, a super sink ∅ (IR type) and a node for each 𝒗 ∈ 𝑽.

• 𝑓(𝒗) flow from s to 𝒗 for all 𝒗 ∈ 𝑽. 

• 𝜆(𝒗, 𝒗′) flow from 𝒗 to 𝒗′, for all 𝒗 ∈ 𝑽 and 𝒗F ∈ 𝑽 ∪ {∅} .

q Suffice to only consider 𝜆 that corresponds to a flow!

𝒇 𝒗 + ∑ 𝝀(𝒗′, 𝒗)𝒗F − ∑ 𝝀(𝒗,𝒗′)𝒗F =0

S

		𝒗	

	𝒗′

	∅

𝑓(𝒗)

𝑓(𝒗′)

𝜆(𝒗, 𝒗′)𝜆(𝒗′, 𝒗)

𝜆(𝒗, ∅)

𝜆(𝒗′, ∅)



Duality: Interpretation

q Partial Lagrangian Dual (after simplification)
min
𝒇𝒍𝒐𝒘	𝝀

max
𝒙∈Y	

𝐿(𝜆, 𝑥, 𝑝)

where

virtual	valuation of	𝒗
(m-dimensional
vector)	w.r.t.	𝜆

virtual	welfare	
of	allocation	𝒙
w.r.t.Φ ] (⋅)	

Optimal	Revenue	≤ Optimal Virtual	Welfare	w.r.t.	any	𝜆 (Weak	Duality)

Optimal	Revenue	= Optimal Virtual	Welfare	w.r.t.	to	optimal	𝜆∗ (Strong	Duality)

Primal Dual

Note:	every	flow	𝜆 corresponds	to	
a	virtual	value	function	Φ ] (⋅)

L(�, x, p) =
X

v

f(v) · x(v)
 
v � 1

f(v)

X

v0

�(v0, v)(v0 � v)

!

𝚽 𝝀 𝒗 = 𝒗 −
1

𝑓 𝒗 Q𝜆 𝒗′, 𝒗 𝒗F − 𝒗
𝒗k

whereΦl
(]) 𝑣 = 𝑣< −

+
m 𝒗

∑ 𝜆 𝒗′, 𝒗 𝑣<F − 𝑣<𝒗k

=
X

v

f(v) ·
X

j

xj(v) · �(�)
j (v)



Duality: Implication

q Strong duality implies Myerson’s result in single-item setting.

§ Φ	
]∗ 𝑣n = Myerson’s virtual value.

q Weak duality: 

[Cai-Devanur-Weinberg ’16]: A canonical way for deriving 
approximately tight upper bounds for the optimal revenue. 



Single Bidder Flow



Single Bidder: Flow

q For simplicity, assume 𝑽 = 𝐻 8 ⊆ ℤ8 for some 
integer 𝐻.

q Divide the bidder’s type set into m regions

§ 𝑅< contains all types that have j as the favorite item.

q Our Flow: 

§ No cross-region flow (𝜆 𝑣F,𝑣 = 0 if	𝑣, 𝑣′ are not 
in the same region).

§ for any 𝑣F,𝑣 ∈ 𝑅< , 𝜆 𝑣F,𝑣 > 0 only if 
	𝑣u<
F = 𝑣u< and 𝑣<

F = 𝑣< + 1.

q Our flow 𝜆	has the following two properties: for all 𝑗	
and 𝒗 ∈ 𝑅<

§ Φu<
] 𝒗 = 𝑣u< .

§ Φ<
] 𝑣 = 𝜑<(𝑣<), where 𝜑<(⋅) is the Myerson’s 

Virtual Value function for 𝐷< .

0 H

H
𝑣1

𝑣+

𝑅+	

𝑅1

Virtual	Valuation:	
Φl
(]) 𝒗

= 𝒗𝒋 −
1

𝑓 𝒗
Q𝜆 𝒗′, 𝒗 𝒗𝒋F − 𝒗𝒋
𝒗k



𝑣<

𝑣< + 1
𝑣< + 2

𝑣<
F

s

𝑓(𝑣<F, 𝑣u<)

𝑓(𝑣< + 2,𝑣u<)

𝑓(𝑣< + 1, 𝑣u<)

Q 𝑓 𝑣<
F,𝑣u<

,y
kz,y

= 𝑓u<(𝑣u<) { 1 − 𝐹< (𝑣<)

Φ<
] 𝑣 = 𝑣< −

1
𝑓 𝑣

Q 𝑓 𝑣<F, 𝑣u<
,y
kz,y

= 𝑣< −
1 − 𝐹<(𝑣<)
𝑓<(𝑣<)

Myerson	virtual	
value function
for𝐷<.

Single Bidder: Flow (cont.)

For item 𝑗:



q Our flow 𝜆	has the following two 
properties: for all 𝑗	 and 𝒗 ∈ 𝑅<

§ Φu<
] 𝒗 = 𝑣u< .

§ Φ<
] 𝑣 = 𝜑<(𝑣<), where 𝜑<(⋅) is 

the Myerson’s Virtual Value 
function for 𝐷< .

q Virtual Valuation: 

Φl
(]) 𝒗

= 𝒗𝒋 −
1

𝑓 𝒗 Q𝜆 𝒗′, 𝒗 𝒗𝒋F − 𝒗𝒋
𝒗k

q Intuition: 

• Empty flow è social welfare. 

• Replace the terms that contribute 
the most to the social welfare with 
Myerson’s virutal value.

Intuition behind Our Flow

0 H

H
𝑣1

𝑣+

𝑅+	

𝑅1



Upper Bound for a Single Bidder

Upper	Bound	for	Revenue	(single-bidder):

REV ≤ max
𝒙∈Y	

𝐿 𝜆, 𝑥, 𝑝 = QQ𝑓 𝒗 𝑥<(𝒗) { (𝑣< { 𝕀 𝒗 ∉ 𝑅< +𝜑<(𝑣<)
<

{ 𝕀[𝒗 ∈ 𝑅<])
,

Corollary: Φ<
(]) 𝒗 = 𝑣< { 𝕀 𝒗 ∉ 𝑅< + 𝜑<(𝑣<) { 𝕀[𝒗 ∈ 𝑅<].

Interpretaion: the optimal attainable revenue is no more than the welfare of all non-
favorite items plus some term related to the Myerson’s single item virtual values.

Theorem: Selling separately or grand bundling achieves at least 1/6 of the upper 
bound above. This recovers the result by Babaioff et. al. [BILW ’14].

Remark:	the	same	upper	bound	can	be	easily	extended	to	unit-demand	valuations.

Theorem: Posted price mechanism achieves 1/4 of the upper bound above. This 
recovers the result by Chawla et. al. [CMS ’10, ’15].



SREV and BREV



Single Additive Bidder

q [BILW ’14] The optimal revenue of selling𝑚 independent items
to an additive bidder, whose valuation 𝒗 is drawn from 𝐷 =×<𝐷<
is no more than 6max SREV(D), BREV(D) .

§ SREV(D) is the optimal revenue for selling the items separately.

§ Formally, SREV D = ∑ 𝑟< = 𝑟< , where 𝑟< = max
X
𝑥 { Pr,y 𝑣< ≥ 𝑥 .

§ BREV(D) is the optimal revenue for selling the grand bundle.

§ Formally,BREV D = max
X

𝑥 { Pr𝒗 ∑ 𝑣<< ≥ 𝑥 .



Single Additive Bidder

𝐿 𝜆, 𝑥, 𝑝 = QQ𝑓 𝒗 𝑥<(𝒗) { (𝑣< { 𝕀 𝒗 ∉ 𝑅< + 𝜑<(𝑣<)
<

{ 𝕀[𝒗 ∈ 𝑅<])
,

= QQ𝑓 𝒗 𝑥<(𝒗) { 𝑣< { 𝕀 𝒗 ∉ 𝑅<
<𝒗

+QQ𝑓 𝒗 𝑥<(𝒗) { 𝜑< (𝑣<) { 𝕀 𝒗 ∈ 𝑅<
<𝒗

NON-FAVORITE SINGLE

Goal: upper bound 𝐿 𝜆, 𝑥, 𝑝 for any 𝑥 ∈ 𝑃 using
SREV and BREV.

Corollary:	Φ<
(]) 𝒗 ≤ 𝑣< { 𝕀 𝒗 ∉ 𝑅< + 𝜑<(𝑣<) { 𝕀[𝒗 ∈ 𝑅<].



Bounding SINGLE

q SINGLE	= 	∑ ∑ 𝑓 𝒗 𝑥<(𝒗) { 𝜑<(𝑣<) { 𝕀 𝒗 ∈ 𝑅<<𝒗

= ∑ ∑ 𝑓<(𝑣<) { 𝜑<(𝑣<),y { ∑ 𝑓u< 𝑣u<,�y { 𝑥<(𝒗)	∙𝕀 𝒗 ∈ 𝑅<<

q For each item 𝑗, this is Myerson’s virtual welfare ≤ 𝑟<. 

q SINGLE	≤ 𝑟

view	as	the	probability	of	
allocating item	𝑗 to the bidder
when her value for 𝑗 is 𝑣<.



NON-FAVORITE: Core-Tail Decomposition

q NON-FAVORITE =	∑ ∑ 𝑓 𝒗 𝑥<(𝒗) { 𝑣< { 𝕀 𝒗 ∉ 𝑅<<𝒗

≤QQ𝑓 𝒗 { 𝑣< { 𝕀 𝒗 ∉ 𝑅<
<,

= QQ𝑓<(𝑣<) { 𝑣< { Pr,�y[𝒗
,y<

∉ 𝑅<]

≤Q Q 𝑓< 𝑣< { 𝑣< { Pr,�y[∃𝑘 ≠ 𝑗, 𝑣� ≥ 𝑣<]
,y^�<

				+ 				Q Q 𝑓<(𝑣<) { 𝑣<
,y��<

TAIL CORE



NON-FAVORITE: Bounding the TAIL

q TAIL	= ∑ ∑ 𝑓< 𝑣< { 𝑣< { Pr,�y ∃𝑘 ≠ 𝑗,𝑣� ≥ 𝑣<,y^�<

q Sell each item separately at price 𝑣< :

𝑣< { Pr,�y ∃𝑘 ≠ 𝑗, 𝑣� ≥ 𝑣< ≤ ∑ 𝑣< { Pr,� 𝑣� ≥ 𝑣<��< ≤ ∑ 𝑟���< ≤ 𝑟, ∀𝑣<

q Sell each item separately at price 𝑟:

TAIL ≤QQ 𝑓< 𝑣< { 𝑟
,y^�<

= Q𝑟 { Pr,y [𝑣< ≥ 𝑟]
<

≤ Q𝑟< ≤
<

𝑟



NON-FAVORITE: Bounding the CORE

q CORE	= ∑ ∑ 𝑓<(𝑣<) { 𝑣<,y��< = E[𝑣F]

q Lemma: Var 𝑣<F ≤ 2𝑟< { 𝑟

q Corollary: Var 𝑣′ = ∑ Var 𝑣<F< ≤ 2𝑟1

q Chebyshev Inequality: for any random variable 𝑋, Pr 𝑋 − 𝐸 𝑋 ≥ 𝑎 ≤ £¤¥ ¦
§- .

q By Chebyshev Inequality,

Pr	[𝑣F < CORE − 2𝑟] ≤
Var[𝑣F]
4𝑟1 ≤

1
2

q Pr ∑ 𝑣<< ≥ CORE − 2𝑟 ≥ 1/2	.	If selling the grand bundle at price CORE−2𝑟, 
the bidder will buy it with prob. ≥ 1/2.

q 2BREV+2r ≥ CORE

𝑣<F = 𝑣< { 𝕀 𝑣< ≤ 𝑟
𝑣F = ∑ 𝑣<′<



Putting Everything Together

q REV ≤ max
𝒙∈Y	

𝐿(𝜆, 𝑥, 𝑝) ≤ SINGLE + TAIL + CORE

§ SINGLE ≤ 𝑟

§ TAIL ≤ 𝑟

§ CORE ≤ 2BREV + 2𝑟

q [BILW ’14] Optimal	Revenue ≤ 2BREV + 4SREV.


