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Duality and Upper Bound of the Optimal Revenue

SREV and BREV




Optimal Multi-Item Auctions ]

O Large body of work in the literature :
QO e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93],
[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00],
[Basov'01], [Kazumori’o1], [Thanassoulis’o4],[Vincent-Manelli '06,’07],

[Figalli-Kim-McCann’10], [Pavlov’11], [Hart-Nisan’12], ...

 No general approach.

 Challenge already with selling 2 items to 1 bidder:

O Simple and closed-form solution seems unlikely to existin general.

d Simple and Approximately Optimal Auctions.



Selling Separately and Grand Bundling

(d Theorem: For a single additive bidder, either selling separately or

grand bundling is a 6-approximation [Babaioff et. al. '14].

O Selling separately: post a price for each item and let the bidder choose

whatever he wants. Let SREV be the optimal revenue one can generate

from this mechanism.

O Grand bundling: bundle all the items together and sell the bundle. Let

BREV be the optimal revenue one can generate from this mechanism.

d Wewill show that Optimal Revenue <2BREV + 4SREV.



Upper Bound for the Optimal Revenue ..

Social Welfare 1s an upper bound for revenue.
Unfortunately, could be arbitrarily bad.

Consider the following 1 item 1 bidder case, and suppose the

bidder’s value is drawn from the equal revenue distribution,

e.g., vV E[1,+0),f(v) =—=and F(v) =1 —-

v v

The optimal revenue = 1.

What 1s the optimal social welfare?



Upper Bound for the Optimal Revenue ..

L Suppose we have 2 items for sale. r; is the optimal
revenue for selling the first item and r,, 1s the optimal

revenue for selling the second 1tem.

U Is the optimal revenue upper bounded by r; + 13,?

= NO... We have seen an example.

J What is a good upper bound for the optimal revenue,

1.., within a constant factor?



.. Upper Bound of the
Optimal Revenue via

B Duality




Multi-item Auction: Set Up

Bidder

Goal: Optimize
Revenue!

Bidder:
" Valuation aka type v~D. Let V be the supportof D.
" Additive and quasi-linear utility:
" v = (V1,Vp .., V) and v(S) = X v; for any set S.

= Independentitems: v = (v, Vy, ..., Up,) 18 sampled from D = X;D;.



B our Duality (Single Bidder)

Primal LP (Revenue Maximization for 1 bidder)

Variables:
x;(v): the prob. for receiving item j when reporting v.

p(v): the price to pay when reporting v.

Constraints:

v-x(w)—pw)=zv-x@')—p), VveV,v' € VU {0} (BIC & IRConstraints)
x(v) € P=[0,1]™, Vv € V (Feasibility Constraints)

Objective:

max ) f(®)p (v)




. B Partial LLagrangian

Primal LP:
max )" f(w)p (v)
s.t.v-x(w) —pw) Z2v-x@')—p®'), VveV,v' € VU/{@}BIC & IR Constraints)

x(v) € P = [0,1]™, Vv € V (Feasibility Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

min max L(A, x,p)

] A>0 xeP,p
L(A, z, p) Zf (0) + D Aw,0) - (v- (2(v) = 2(v")) = (p(v) = p(v"))

Duali Rev = L = L
Strong Duality: Opt Rev = ;relgér{l;g 4 x,p) = rl{1>151 rrelgx (4, x,p).

Weak Duality: Opt Rev < max L(A,x,p) forall A = 0.
XEP,p

Proof: On the board.



. B Partial LLagrangian

Primal LP:
max )" f(w)p (v)

v
s.t.v-x(w) —pw) Z2v-x@')—p®'), VveV,v' € VU/{@}BIC & IR Constraints)

x(v) € P = [0,1]™, Vv € V (Feasibility Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

L\
min max L(A,z,p)

/ Better be
—Zp @AU v) (v,v) 0, o.w.
dual = +0
/ /




. - The Dual Variables as a Flow

O Observation: If the dual is finite, for every v € V

F(0) + S0 AV, ) — 3 AW,2)=0 |

O This means 1 is a flow on the following graph:

» There is a super source s, a super sink @ (IR type) and a node for eachv e V.

* f(v) flow fromstovforall v € V.

« Ay, V") flow fromvto v, forallv € Vandv' € V U {0} .

O Suffice to only consider 1 that corresponds to a flow!



. - Duality: Interpretation

O Partial Lagrangian Dual (after simplification)

L
iy max LG )

where
LOvz,p) = 3 f() - 2(v) ( -

v

)

_ virtual valuation of v

virtual welfare . (\)
of allocation x —— Z Fo): Z% = (I)j f?})/ (m-dimensional

w.r.t. @D () ? ! vector) w.rt. A
Note: every flow A corresponds to PW(v) =v - w )Z AW, v) (v —v)
a virtual value function @ () W
where @’ (v) —v]—ﬁz AV, v)(v —v;)
Primal Dual

A A
1

| [ 1
Optimal Revenue < Optimal Virtual Welfare w.r.t.any 1 (Weak Duality)

Optimal Revenue = Optimal Virtual Welfare w.r.t. to optimal A* (Strong Duality)



Duality: Implication

 Strong duality implies Myerson’s result in single-item setting.

m CD(A*)(UL-) = Myerson’s virtual value.

1 Weak duality:

[Cai-Devanur-Weinberg ’16]: A canonical way for d ‘
approximately tight upper bounds for the optimal reve




.
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N single Bidder Flow




Single Bidder: Flow

For simplicity, assume V = [H]™ € Z™ for some A
integer H.

Divide the bidder’s type set into m regions

" R; contains all types that have j as the favorite item.

Our Flow:

= No cross-region flow (A(v',v) = 0if v, v are not
in the same region).

= foranyv',v € R;, A(v',v) > 0 only if
vii=v_jandv = v; + 1.

Virtual Valuation:

Our flow A has the following two properties: for all j CD].(’U (v)
and v € R;

- oy _
(I)—j (17) = U_j.

=D

1
e )ZA(‘U’ v)(v]’- - v;)

o CD]@ (v) = @;(vj), where @;(-) is the Myerson’s
Virtual Value function for D;.



Single Bidder: Flow (cont.)

For item j: _,

f(v] + 1, 17_]')

> fes) = £y (- @)

17;->17j
Myerson virtual
1 1—F;(v;) :
W () = E ! = v; — JATJZ | value function
Y Ww)=v, ——— v v_;) = v va
] AN Fv) = fi (@) for D).
vj>vj J




. - Intuition behind Our Flow

O  Virtual Valuation:
cI)]_(/l) ()

1 / '
= v; —mz AW, v)(vj — v))

0 Intuition:

0 H V1

d  Our flow A has the following two
properties: for all j and v € R;

«  Empty flow =» social welfare.

«  Replace the terms that contribute
the most to the social welfare with - CD(_A]-) () =v_j.

Myerson's virutal value. = CD]W (v) = @;(v;), where @;(-) is

the Myerson’s Virtual Value
function for Dj.



Upper Bound for a Single Bidder ..

Corollary: @ (v) = v; - 1|v & R;| + ¢;(v)) - 1[v € Rj].

Upper Bound for Revenue (single-bidder):

X€EP

REV < maxL(4,x,p) = ZZf(v)xj(v) - (v v ¢ Rj] +@;(v;) - I[v € Rj])
v o j

Interpretaion: the optimal attainable revenue is no more than the welfare of all non-
favorite items plus some term related to the Myerson’s single item virtual values.

Theorem: Selling separately or grand bundling achieves at least 1/6 of the upper
bound above. This recovers the result by Babaioff et. al. [BILW ’14].

Remark: the same upper bound can be easily extended to unit-demand valuations.

Theorem: Posted price mechanism achieves 1/4 of the upper bound above. This
recovers the result by Chawla et. al. [CMS ’10, ’15].




SREV and BREV




Single Additive Bidder

I [BILW "14] The optimal revenue of selling m independent items
to an additive bidder, whose valuation v 1s drawn from D =X;D;

is no more than 6 max{SREV (D), BREV(D)}.

= SREV(D) is the optimal revenue for selling the items separately.
* Formally, SREV(D) = ¥ ;7; = r, where 7; = max x - Pr lv; = x].
= BREV(D) is the optimal revenue for selling the grand bundle.

* Formally, BREV(D) = max x - Pry,[Y; vj = x|.
X



Single Additive Bidder

Corollary: CI)JQ) (v) <v;- H[v ¢ RJ-] + @ (v;) - I[v € Ry].

Goal: upper bound L(4, x,p) for any x € P using
SREV and BREV.

L(Ax,p) = zzf(v)xj(v) ;- 1[v & R + ¢; () - I[v € R;])
v

= zzf(v)xj(v) v+ Ilv & Ri| + ZZf(”)xj(”) 9 (V) - I[v € Ry]
v o / v o]

NON-FAVORITE | SINGLE _|




Bounding SINGLE

Q SINGLE = %, %, f()x(v) - ¢;(v)) - I[v € Rj]

=%, %0, £ 0, - (Zo_, f-(v-5) - %) 1[v € Ry])

\ J
|

view as the probability of
allocating item j to the bidder
when her value for j is v;.

For each item j, this is Myerson’s virtual welfare < r;.

d SINGLE<Tr



NON-FAVORITE: Core-Tail Decomp Ositioh -

0O NON-FAVORITE = ¥, % f(0)x;(v) - v; - [[v & R}]

< f) v -IvéRr] = fij @) vj - Pry_;[v & R;]
5o teen- 33
Sz z fi(vj) v -Pry_[Fk #jve 2 v5] + Z Z fi(w) - v

Jj vjzr J vj<r

TAIL CO‘I'RE.\




NON-FAVORITE: Bounding the TAIL. QI

Q TAIL=Y;%, . f;(v) - v - Pro_;[3k # j, v, 2 )]

1 Sell each item separately at price v;:

O Sell cach item separately at price r:

TAILSEZfj(vj)-r=Zr-Prvj[vj 2r]szrj <r

J vjzr j j



NON-FAVORITE: Bounding the CORE Wl

4 CORE:Zijjsrfj(vj)’vj = E[v'] vj’: vj -]I[vj ST] J
O Lemma: Var[vj'] <2rj-r v T
Q Corollary: Var[v'] = }; Var[vj'] < 2r?

Var[X]

O Chebyshev Inequality: for any random variable X, Pr[|X — E[X]| = a] <

0 By Chebyshev Inequality,

Var[v']
Pr[v' < CORE — 2r] £ ———

d Pr [Z jV;j = CORE — 2r] > 1/2 .1f selling the grand bundle at price CORE—2r,

the bidder will buy it with prob. = 1/2.

d 2BREV+2r > CORE



Putting Everything Together

O REV < max L(4,x,p) < SINGLE + TAIL + CORE
X

= SINGLE <r
= TAIL<r

= CORE < 2BREV + 2r

1 [BILW "14] Optimal Revenue < 2BREV 4 4SREV.



