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Sequential Single-ltem Auctions ..

O Run some single-item auction (e.g. first-price/second-price auction)
sequentially,one item at a time.

O Difficult to play/predict bidder behavior
O Example: Suppose that k identical copies are sold to unit-demand bidders.

o VCG would give each of the top k bidders a copy of the item and charge
them the (k+1)-th highest bid.

o What if we run sequential second-price auctions?

» Easyto seethat truthful biddingis not a dominantstrategy, as if
everyone else is bidding truthfully, | should expect prices to drop

» Bidders will try to shade their bids, but how?
= Qutcomeis unpredictable.

O Moving to more general settings only exacerbatesissue.



Simultaneous Single-ltem Auctions ..

O Run some single-item auction (e.g. first-price/second-price auction)
simultaneously for all items.

O Bidders submit one bid per item.

O Issues for bidders:

O Bidding on all items aggressively, may win too many items and over-pay (if,
e.g., the bidderonly has value for a few items)

U Bidding on items conservatively may not win enough items

1 What to do?

o Difficulty in bidding and coordinating gives low welfare and revenue.



Simultaneous Single-ltem Auctions ..

d In 1990, the New Zealand governmentauctioned off essentially identical licenses
for television broadcasting using simultaneous (sealed-bid) Vickrey auctions.

d The revenue was only $36 million, a small fraction of the projected $250 million.

Q For one license, the highest bid was $100,000 while the second-highestbid (and

selling price) was $6! For another, the highestbid was $7 million and the second-
highestbid was $5,000.

O Even worse: the top bids were made public so everyone could see how much
money was left on the table.

O They later switched to first-price auctions. Similar problems remain (but it is less
embarrassing).



Simultaneous Single-ltem Auctions ..

O How to analyze theoretically?
O Auction is notdirect, has no dominant strategy equilibrium.

O Hence need to make some further modeling assumptions, resort to some
equilibrium concept.

O E.g. assume a complete information setting: bidders know each other’s valuations
(but auctioneerdoes not)

A E.g.2 assume Bayesian incomplete information setting: bidders’ valuations are
drawn from distributions known to every other bidder and the auctioneer, but each
bidder’s realized valuation is private

Theorem [Feldman-Fu-Gravin-Lucier’13]: If bidders’ valuations are subadditive,
then the social welfare achieved at a mixed Nash equilibrium (under complete
information), or a Bayesian Nash equilibrium (under incomplete information) of the
simultaneous 1542 price auction is within a factor of 2 or 4 of the optimal social
welfare.

Theorem [Cai-Papadimitriou’14]: Finding a Bayesian Nash equilibriumin a
Simultaneous Single-ltem Auction is highly intractable.



Simultaneous Ascending Auctions (SAAs) ]

O Overthe last 20 years, simultaneous ascending auctions (SAAs) form the
basis of most spectrum auctions.

O Conceptually, comprise several single-item English auctions running in parallel.

O In every round, each bidder places a new bid on any subset of items that she
wants, subject to an actiivity rule and some constraints on the bids.

O Essentially the activity rule says: the number of items you bid on should
decrease overtime as prices rise.



Simultaneous Ascending Auctions (SAAs) ]

U Big advantage: price discovery.

1 This allows bidders to do mid-course correction.

O Another advantage: value discovery.

d Finding out valuations might be expensive. Only need to determine the value
on a need-to-know basis.



Simultaneous Ascending Auctions (SAAs) ]

O Poorly designed auctions still have issues.
d E.g.in 1999 the German governmentauctioned 10 blocks of cell-phone spectrum

O 10 simultaneous ascendingauctions, with the rule that each new bid on a license
must be at least 10% larger than previous bid

O Bidders: T-Mobile, Mannesman

L Mannesman first bid: 20 million Deutsche marks on blocks 1-5 and 18.18 on blocks
6-10
O Interestingly 18.18* 1.1 = 19.99

O T-Mobile interpreted those bids as an offer to split the blocks evenly for 20 million
each.

1 T-Mobile bid 20 million on licenses 6-10

O The auction ended; German governmentwas unhappy.
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Revenue Maximization

d Goal: design a revenue-optimal truthful mechanism for selling a
few heterogeneous items to a few heterogeneous buyers.

= 1item and 1 buyer, buyer’s value v ~ D.

» Optimal auction: sell atp = argmax, x - (1 — F(x)) where F is the cdf of D.

= [Myerson ’81@] provides an optimal single-item auction that is
simple, deterministicand dominant strategy incentive
compatible (DSIC).

Big Challenge: Revenue-Optimal Multi-Item
Auctions?



B Optimal Multi-item Auctions

d Large body of work in the literature:

0O e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93],
[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00],
[Basov'01], [Kazumori’o1], [Thanassoulis’o4],[ Vincent-Manelli
'06,’07], [Figalli-Kim-McCann’10], [Pavlov'11], [Hart-Nisan’12], ...

O No general approach.

O Challenge already with selling 2 items to 1 bidder:




Example 1: Two IID Uniform Items {l

O Strawman approach:

- Run Myerson for each item separately

- Priceeach item at 1

- Each bought with probability 1

Adive v~ U{1,2} - Expected revenue: 2 x 1 = 2

1 . . .
Valuation O Optimal auction:

- Expected revenue: 3 x 34 = 2.25

S3

Selling items separately might not be optimal.
Bundling increases revenue.



Example 2: Two ID Uniform Items QI

O Unique optimal auction:
\;A;?S;?i‘;en v~ Ui1,3} - expected revenue: $2.625
This item with
probability V2

= ' 7
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The optimal mechanism may also use randomization.



Example 3: Two Beta Distributions ]

- [Daskalakis-Deckelbaum-Tzamos "13]: The optimal auction

offers un-countably many randomized bundles.

' : e Ve

Can’t even represent as a menu!



Example 4: Non-monotonicity ]

D* stochastically dominates D ,
meaning for anyp, 1 — Ft(p) > 1 —
F(p)

Question: which is better, selling the
paintingsto DxD or D*xD* ?

1 [Hart-Reny ’13]: Sometimes, selling to DxD is better!

Selling to a worse distribution might generate higher revenue.



Optimal Multi-Item Auctions ]

O Large body of work in the literature :

QO e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93],
[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00],
[Basov'01], [Kazumori’o1], [Thanassoulis’o4],[Vincent-Manelli '06,’07],
[Figalli-Kim-McCann’10], [Pavlov’11], [Hart-Nisan’12], ...

 No general approach.

 Challenge already with selling 2 items to 1 bidder:

0 Simple and closed-form solution seems unlikely to exist in general.
 Three possible ways to proceed:
1. Special Cases: Usually with assumptions on the distributions.

2. Algorithmic Solution: There are polynomial-time computable Revenue-
optimal Multi-Item Auctions [Cai-Daskalakis-Weinberg’12 ’13].

3. Simple and Approximately Optimal Solution: our focus.



Selling Separately and Grand Bundling

(d Theorem: For a single additive bidder, either selling separately or

grand bundling is a 6-approximation [Babaioff et. al. '14].

O Selling separately: post a price for each item and let the bidder choose

whatever he wants. Let SREV be the optimal revenue one can generate

from this mechanism.

O Grand bundling: bundle all the items together and sell the bundle. Let

BREV be the optimal revenue one can generate from this mechanism.

d Wewill show that Optimal Revenue <2BREV + 4SREV.



.. Upper Bound of the
Optimal Revenue via

B Duality




Multi-item Auction: Set Up

Bidder

Goal: Optimize
Revenue!

Bidder:
" Valuation aka type v~D. Let V be the supportof D.
" Additive and quasi-linear utility:
" v = (V1,Vp .., V) and v(S) = X v; for any set S.

= Independentitems: v = (v, Vy, ..., Up,) 18 sampled from D = X;D;.



B our Duality (Single Bidder)

Primal LP (Revenue Maximization for 1 bidder)

Variables:
x;(v): the prob. for receiving item j when reporting v.

p(v): the price to pay when reporting v.

Constraints:

v-x(v)—pw) v -x(w')—p®), Vv, v' €V (Truthfulness Constraints)
x(v) € P =[0,1]™, Vv € V (Feasibility Constraints)

Objective:

max ) f@)p @)




. B Partial LLagrangian

Primal LP:
max )" f(w)p (v)

s.t.v-x(w) —p(w) =2v-x@')—p®'), Vv,v' € V (Truthfulness Constraints)

x(v) € P=[0,1]™, Vv € V (Feasibility Constraints)

Partial Lagrangian (Lagrangify only the truthfulness constraints):

L\
min max L(A,z,p)

/ Better be
—Zp @AU v) (v,v) 0, o.w.
dual = +0
/ /




. - The Dual Variables as a Flow

O Observation: If the dual is finite, for every v € V

F(0) + S0 AV, ) — 3 AW,2)=0 |

O This means 1 is a flow on the following graph:

« There is a super source s, a super sink @ and a node for eachv € V.
* f(v) flow fromstovforall v € V.

« Ay, V") flow fromvto v, forallv € Vandv' € V U {0} .

O Suffice to only consider 1 that corresponds to a flow!



. - Duality: Interpretation

O Partial Lagrangian Dual (after simplification)

L
iy max LG )

where
LOvz,p) = 3 f() - 2(v) ( -

v

)

_ virtual valuation of v

virtual welfare . (\)
of allocation x —— Z Fo): Z% = (I)j f?})/ (m-dimensional

w.r.t. @D () ? ! vector) w.rt. A
Note: every flow A corresponds to PW(v) =v - w )Z AW, v) (v —v)
a virtual value function @ () W
where @’ (v) —v]—ﬁz AV, v)(v —v;)
Primal Dual

A A
1

| [ 1
Optimal Revenue < Optimal Virtual Welfare w.r.t.any 1 (Weak Duality)

Optimal Revenue = Optimal Virtual Welfare w.r.t. to optimal A* (Strong Duality)



Duality: Implication

 Strong duality implies Myerson’s result in single-item setting.

m CD(A*)(UL-) = Myerson’s virtual value.

1 Weak duality:

[Cai-Devanur-Weinberg ’16]: A canonical way for d ‘
approximately tight upper bounds for the optimal reve
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N single Bidder Flow




Single Bidder: Flow

For simplicity, assume V = [H]™ € Z™ for some A
integer H.

Divide the bidder’s type set into m regions

" R; contains all types that have j as the favorite item.

Our Flow:

= No cross-region flow (A(v',v) = 0if v, v are not
in the same region).

= foranyv',v € R;, A(v',v) > 0 only if
vii=v_jandv = v; + 1.

Virtual Valuation:

Our flow A has the following two properties: for all j CD].(’U (v)
and v € R;

- oy _
(I)—j (17) = U_j.

=D

1
e )ZA(‘U’ v)(v]’- - v;)

o CD]@ (v) = @;(vj), where @;(-) is the Myerson’s
Virtual Value function for D;.



Single Bidder: Flow (cont.)

For item j: _,

f(v] + 1, 17_]')

> fes) = £y (- @)

17;->17j
Myerson virtual
1 1—F;(v;) :
W () = E ! = v; — JATJZ | value function
Y Ww)=v, ——— v v_;) = v va
J AN Fv) = fi (@) for D).
vj>vj J




. - Intuition behind Our Flow

O  Virtual Valuation:
cI)]_(/l) ()

1 / '
= v; —mz AW, v)(vj — v))

0 Intuition:

0 H V1

d  Our flow A has the following two
properties: for all j and v € R;

«  Empty flow =» social welfare.

«  Replace the terms that contribute
the most to the social welfare with - CD(_A]-) () =v_j.

Myerson's virutal value. = CD]W (v) = @;(v;), where @;(-) is

the Myerson’s Virtual Value
function for Dj.



Upper Bound for a Single Bidder ..

Corollary: @ (v) = v; - 1|v & R;| + ¢;(v)) - 1[v € Rj].

Upper Bound for Revenue (single-bidder):

X€EP

REV < maxL(4,x,p) = ZZf(v)xj(v) - (v v ¢ Rj] +@;(v;) - I[v € Rj])
v o j

Interpretaion: the optimal attainable revenue is no more than the welfare of all non-
favorite items plus some term related to the Myerson’s single item virtual values.

Theorem: Selling separately or grand bundling achieves at least 1/6 of the upper
bound above. This recovers the result by Babaioff et. al. [BILW ’14].

Remark: the same upper bound can be easily extended to unit-demand valuations.

Theorem: Posted price mechanism achieves 1/4 of the upper bound above. This
recovers the result by Chawla et. al. [CMS ’10, ’15].




