
COMP/MATH 553 Algorithmic 
Game Theory
Lecture 18: Spectrum Auctions
and Revenue Maximization in
Multi-item Settings

Yang Cai

Nov 03, 2016



Menu

Case Study: Spectrum Auctions

Revenue Maximization in Multi-item Settings

Upper Bound of the Optimal Revenue



Sequential Single-Item Auctions

q Run some single-item auction (e.g. first-price/second-price auction) 
sequentially, one item at a time.

q Difficult to play/predict bidder behavior

q Example: Suppose that k identical copies are sold to unit-demand bidders. 

o VCG would give each of the top k bidders a copy of the item and charge 
them the (k+1)-th highest bid. 

o What if we run sequential second-price auctions?

§ Easy to see that truthful bidding is not a dominant strategy, as if 
everyone else is bidding truthfully, I should expect prices to drop

§ Bidders will try to shade their bids, but how?

§ Outcome is unpredictable.

q Moving to more general settings only exacerbates issue. 



Simultaneous Single-Item Auctions

q Run some single-item auction (e.g. first-price/second-price auction) 
simultaneously for all items.

q Bidders submit one bid per item.

q Issues for bidders:

q Bidding on all items aggressively, may win too many items and over-pay (if, 
e.g., the bidder only has value for a few items)

q Bidding on items conservatively may not win enough items

q What to do? 

o Difficulty in bidding and coordinating gives low welfare and revenue.



Simultaneous Single-Item Auctions

q In 1990, the New Zealand government auctioned off essentially identical licenses 
for television broadcasting using simultaneous (sealed-bid) Vickrey auctions. 

q The revenue was only $36 million, a small fraction of the projected $250 million.

q For one license, the highest bid was $100,000 while the second-highest bid (and 
selling price) was $6! For another, the highest bid was $7 million and the second-
highest bid was $5,000.

q Even worse: the top bids were made public so everyone could see how much 
money was left on the table.

q They later switched to first-price auctions. Similar problems remain (but it is less 
embarrassing).



Simultaneous Single-Item Auctions
q How to analyze theoretically? 

q Auction is not direct, has no dominant strategy equilibrium.

q Hence need to make some further modeling assumptions, resort to some 
equilibrium concept.

q E.g. assume a complete information setting: bidders know each other’s valuations 
(but auctioneer does not)

q E.g.2 assume Bayesian incomplete information setting: bidders’ valuations are 
drawn from distributions known to every other bidder and the auctioneer, but each 
bidder’s realized valuation is private

Theorem [Feldman-Fu-Gravin-Lucier’13]: If bidders’ valuations are subadditive, 
then the social welfare achieved at a mixed Nash equilibrium (under complete 
information), or a Bayesian Nash equilibrium (under incomplete information) of the 
simultaneous 1st/2nd price auction is within a factor of 2 or 4 of the optimal social 
welfare.

Theorem [Cai-Papadimitriou’14]: Finding a Bayesian Nash equilibrium in a 
Simultaneous Single-Item Auction is highly intractable.



Simultaneous Ascending Auctions (SAAs)

q Over the last 20 years, simultaneous ascending auctions (SAAs) form the 
basis of most spectrum auctions.

q Conceptually, comprise several single-item English auctions running in parallel.

q In every round, each bidder places a new bid on any subset of items that she 
wants, subject to an activity rule and some constraints on the bids.

q Essentially the activity rule says: the number of items you bid on should 
decrease over time as prices rise.



Simultaneous Ascending Auctions (SAAs)

q Big advantage: price discovery.

q This allows bidders to do mid-course correction.

q Another advantage: value discovery.

q Finding out valuations might be expensive. Only need to determine the value 
on a need-to-know basis.



Simultaneous Ascending Auctions (SAAs)

q Poorly designed auctions still have issues.

q E.g. in 1999 the German government auctioned 10 blocks of cell-phone spectrum

q 10 simultaneous ascending auctions, with the rule that each new bid on a license 
must be at least 10% larger than previous bid

q Bidders: T-Mobile, Mannesman

q Mannesman first bid: 20 million Deutsche marks on blocks 1-5 and 18.18 on blocks 
6-10

q Interestingly 18.18 * 1.1 = 19.99

q T-Mobile interpreted those bids as an offer to split the blocks evenly for 20 million 
each.

q T-Mobile bid 20 million on licenses 6-10

q The auction ended; German government was unhappy.



Revenue Maximization
in Multi-item Settings



Revenue Maximization

q Goal: design a revenue-optimal truthful mechanism for selling a
few heterogeneous items to a few heterogeneous buyers.
§ 1 item and 1 buyer, buyer’s value 𝑣 ∼ 𝐷.

• Optimal auction: sell at 𝑝 = argmax+ 	𝑥 ⋅ 1 − 𝐹 𝑥 where 𝐹 is the cdf of 𝐷.

§ [Myerson ’81     ] provides an optimal single-item auction that is 
simple, deterministic and dominant strategy incentive 
compatible (DSIC).

Big Challenge: Revenue-Optimal Multi-Item 
Auctions?

…
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Optimal Multi-item Auctions

???

v1∼D1

v2∼ D2

q Large body of work in the literature:
q e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93], 

[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00], 
[Basov’01], [Kazumori’01], [Thanassoulis’04],[Vincent-Manelli
’06,’07], [Figalli-Kim-McCann’10], [Pavlov’11], [Hart-Nisan’12], …

q No general approach.

q Challenge already with selling 2 items to 1 bidder:

1

2



Example 1: Two IID Uniform Items

q Optimal auction:

∴ Selling items separately might not be optimal. 
Bundling increases revenue.

$3

- Expected revenue: 3 ×¾ = 2.25

q Strawman approach:

- Run Myerson for each item separately

- Price each item at 1

- Each bought with probability 1

- Expected revenue: 2 × 1 = 2

v1∼U{1,2}

v2∼ U{1,2}Additive 
Valuation



v2∼ U{1,2}

Example 2: Two ID Uniform Items

q Unique optimal auction:

∴ The optimal mechanism may also use randomization.

$4 $2.50

This item with 
probability ½ 

- expected revenue: $2.625

v1∼U{1,2}

Additive 
Valuation

v2∼ U{1,3}



q [Daskalakis-Deckelbaum-Tzamos ’13]: The optimal auction 
offers un-countably many randomized bundles.

𝑓7 𝑣7 ∝ 𝑣79 1 − 𝑣7 9

𝑓9 𝑣9 ∝ 𝑣99 1 − 𝑣9 :

∴ Menu representation not a good idea

Example 3: Two Beta Distributions

∴ Can’t even represent as a menu!



q [Hart-Reny ’13]: Sometimes, selling to 𝐷×𝐷	is better!

∴ Menu representation not a good idea

Example 4: Non-monotonicity

∴ Selling to a worse distribution might generate higher revenue.

𝑣7 ∼ 𝐷 vs. v7 ∼ 𝐷=

𝑣9 ∼ 𝐷 vs. v9 ∼ 𝐷=

𝐷= stochastically dominates𝐷	,
meaning for any 𝑝, 1 − 𝐹= 𝑝 ≥ 1 −
𝐹 𝑝

Question: which is better, selling the
paintings to𝐷×𝐷	or 𝐷=×𝐷=？



q Large body of work in the literature :
q e.g. [Laffont-Maskin-Rochet’87], [McAfee-McMillan’88], [Wilson’93], 

[Armstrong’96], [Rochet-Chone’98], [Armstrong’99],[Zheng’00], 
[Basov’01], [Kazumori’01], [Thanassoulis’04],[Vincent-Manelli ’06,’07], 
[Figalli-Kim-McCann’10], [Pavlov’11], [Hart-Nisan’12], …

q No general approach.

q Challenge already with selling 2 items to 1 bidder:
q Simple and closed-form solution seems unlikely to exist in general.

q Three possible ways to proceed:

1. Special Cases: Usually with assumptions on the distributions. 

2. Algorithmic Solution: There are polynomial-time computable Revenue-
optimal Multi-Item Auctions [Cai-Daskalakis-Weinberg ’12 ’13].

3. Simple and Approximately Optimal Solution: our focus.

§

Optimal Multi-Item Auctions



Selling Separately and Grand Bundling

q Theorem: For a single additive bidder, either selling separately or 

grand bundling is a 6-approximation [Babaioff et. al. ’14].

q Selling separately: post a price for each item and let the bidder choose 

whatever he wants. Let SREV be the optimal revenue one can generate 

from this mechanism.

q Grand bundling: bundle all the items together and sell the bundle. Let 

BREV be the optimal revenue one can generate from this mechanism.

q We will show that Optimal Revenue ≤ 2BREV + 4SREV.



Upper Bound of the 
Optimal Revenue via 
Duality
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Items

Bidder:
§ Valuation aka type 𝑣~𝐷. Let 𝑽 be the support of 𝐷.
§ Additive and quasi-linear utility:

§ 𝒗 = (𝑣7,𝑣9, … , 𝑣E) and 𝑣 𝑆 = ∑ 𝑣II∈K for any set 𝑆.

§ Independent items: 𝒗 = (𝑣7, 𝑣9, … , 𝑣E)	is sampled from 𝐷 =	×I𝐷I.

Multi-item Auction: Set Up

Auctioneer

Goal: Optimize 
Revenue!

Bidder

𝑣~𝐷



Primal LP (Revenue Maximization for 1 bidder)

Variables: 

𝒙𝒋 𝒗 : the prob. for receiving item j when reporting 𝑣. 

𝒑(𝒗): the price to pay when reporting 𝑣.

Constraints:

𝒗 ⋅ 𝒙 𝒗 − 𝑝 𝒗 ≥ 𝒗 ⋅ 𝒙 𝒗O − 𝑝 𝒗O , ∀𝒗,𝒗′ ∈ 𝑽 (Truthfulness Constraints)

𝒙 𝒗 ∈ 𝑃 = 0,1 E, ∀𝒗 ∈ 𝑽 (Feasibility Constraints)

Objective: 

maxS𝑓(𝒗)𝑝	 𝒗
𝒗	

Our Duality (Single Bidder) 
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Partial Lagrangian

Better be	
0, o.w.
dual = +∞

Primal LP:

maxS𝑓(𝑣)𝑝	 𝑣
𝒗	

s.t. 𝑣 ⋅ 𝑥 𝒗 − 𝑝 𝑣 ≥ 𝑣 ⋅ 𝑥 𝒗O − 𝑝 𝑣O , ∀𝑣, 𝑣′ ∈ 𝑽 (Truthfulness	Constraints)

𝑥 𝑣 ∈ 𝑃 = 0,1 E,∀𝑣 ∈ 𝑽 (Feasibility	Constraints)
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The Dual Variables as a Flow

q Observation: If the dual is finite, for every 𝒗 ∈ 𝑽

q This means 𝜆 is a flow on the following graph:

• There is a super source s, a super sink ∅ and a node for each 𝒗 ∈ 𝑽.

• 𝑓(𝒗) flow from s to 𝒗 for all 𝒗 ∈ 𝑽. 

• 𝜆(𝒗, 𝒗′) flow from 𝒗 to 𝒗′, for all 𝒗 ∈ 𝑽 and 𝒗O ∈ 𝑽 ∪ {∅} .

q Suffice to only consider 𝜆 that corresponds to a flow!

𝒇 𝒗 + ∑ 𝝀(𝒗′, 𝒗)𝒗O − ∑ 𝝀(𝒗,𝒗′)𝒗O =0

S

		𝒗	

	𝒗′

	∅

𝑓(𝒗)

𝑓(𝒗′)

𝜆(𝒗, 𝒗′)𝜆(𝒗′, 𝒗)

𝜆(𝒗, ∅)

𝜆(𝒗′, ∅)



Duality: Interpretation

q Partial Lagrangian Dual (after simplification)
min
𝒇𝒍𝒐𝒘	𝝀

max
𝒙∈b	

𝐿(𝜆, 𝑥, 𝑝)

where

virtual	valuation of	𝒗
(m-dimensional
vector)	w.r.t.	𝜆

virtual	welfare	
of	allocation	𝒙
w.r.t.Φ e (⋅)	

Optimal	Revenue	≤ Optimal Virtual	Welfare	w.r.t.	any	𝜆 (Weak	Duality)

Optimal	Revenue	= Optimal Virtual	Welfare	w.r.t.	to	optimal	𝜆∗ (Strong	Duality)

Primal Dual

Note:	every	flow	𝜆 corresponds	to	
a	virtual	value	function	Φ e (⋅)

L(�, x, p) =
X

v

f(v) · x(v)
 
v � 1

f(v)

X

v0

�(v0, v)(v0 � v)

!

𝚽 𝝀 𝒗 = 𝒗 −
1

𝑓 𝒗 S𝜆 𝒗′, 𝒗 𝒗O − 𝒗
𝒗h

whereΦi
(e) 𝑣 = 𝑣I −

7
j 𝒗
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=
X

v

f(v) ·
X

j

xj(v) · �(�)
j (v)



Duality: Implication

q Strong duality implies Myerson’s result in single-item setting.

§ Φ	
e∗ 𝑣5 = Myerson’s virtual value.

q Weak duality: 

[Cai-Devanur-Weinberg ’16]: A canonical way for deriving 
approximately tight upper bounds for the optimal revenue. 



Single Bidder Flow



Single Bidder: Flow

q For simplicity, assume 𝑽 = 𝐻 E ⊆ ℤE for some 
integer 𝐻.

q Divide the bidder’s type set into m regions

§ 𝑅I contains all types that have j as the favorite item.

q Our Flow: 

§ No cross-region flow (𝜆 𝑣O,𝑣 = 0 if	𝑣, 𝑣′ are not 
in the same region).

§ for any 𝑣O,𝑣 ∈ 𝑅I , 𝜆 𝑣O,𝑣 > 0 only if 
	𝑣qI
O = 𝑣qI and 𝑣I

O = 𝑣I + 1.

q Our flow 𝜆	has the following two properties: for all 𝑗	
and 𝒗 ∈ 𝑅I

§ ΦqI
e 𝒗 = 𝑣qI .

§ ΦI
e 𝑣 = 𝜑I(𝑣I), where 𝜑I(⋅) is the Myerson’s 

Virtual Value function for 𝐷I .

0 H

H
𝑣9

𝑣7

𝑅7	

𝑅9

Virtual	Valuation:	
Φi
(e) 𝒗

= 𝒗𝒋 −
1

𝑓 𝒗
S𝜆 𝒗′, 𝒗 𝒗𝒋O − 𝒗𝒋
𝒗h



𝑣I

𝑣I + 1
𝑣I + 2

𝑣I
O

s

𝑓(𝑣IO, 𝑣qI)

𝑓(𝑣I + 2,𝑣qI)

𝑓(𝑣I + 1, 𝑣qI)

S 𝑓 𝑣I
O,𝑣qI

uv
hwuv

= 𝑓qI(𝑣qI) x 1 − 𝐹I (𝑣I)

ΦI
e 𝑣 = 𝑣I −

1
𝑓 𝑣

S 𝑓 𝑣IO, 𝑣qI
uv
hwuv

= 𝑣I −
1 − 𝐹I(𝑣I)
𝑓I(𝑣I)

Myerson	virtual	
value function
for𝐷I.

Single Bidder: Flow (cont.)

For item 𝑗:



q Our flow 𝜆	has the following two 
properties: for all 𝑗	 and 𝒗 ∈ 𝑅I

§ ΦqI
e 𝒗 = 𝑣qI .

§ ΦI
e 𝑣 = 𝜑I(𝑣I), where 𝜑I(⋅) is 

the Myerson’s Virtual Value 
function for 𝐷I .

q Virtual Valuation: 

Φi
(e) 𝒗

= 𝒗𝒋 −
1

𝑓 𝒗 S𝜆 𝒗′, 𝒗 𝒗𝒋O − 𝒗𝒋
𝒗h

q Intuition: 

• Empty flow è social welfare. 

• Replace the terms that contribute 
the most to the social welfare with 
Myerson’s virutal value.

Intuition behind Our Flow
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H
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𝑅7	

𝑅9



Upper Bound for a Single Bidder

Upper	Bound	for	Revenue	(single-bidder):

REV ≤ max
𝒙∈b	

𝐿 𝜆, 𝑥, 𝑝 = SS𝑓 𝒗 𝑥I(𝒗) x (𝑣I x 𝕀 𝒗 ∉ 𝑅I +𝜑I(𝑣I)
I

x 𝕀[𝒗 ∈ 𝑅I])
u

Corollary: ΦI
(e) 𝒗 = 𝑣I x 𝕀 𝒗 ∉ 𝑅I + 𝜑I(𝑣I) x 𝕀[𝒗 ∈ 𝑅I].

Interpretaion: the optimal attainable revenue is no more than the welfare of all non-
favorite items plus some term related to the Myerson’s single item virtual values.

Theorem: Selling separately or grand bundling achieves at least 1/6 of the upper 
bound above. This recovers the result by Babaioff et. al. [BILW ’14].

Remark:	the	same	upper	bound	can	be	easily	extended	to	unit-demand	valuations.

Theorem: Posted price mechanism achieves 1/4 of the upper bound above. This 
recovers the result by Chawla et. al. [CMS ’10, ’15].


