Lecture 9: Social Choice
Social choice or Preference Aggregation

- Collectively choosing among outcomes
 - Elections,
 - Choice of Restaurant
 - Rating of movies
 - Who is assigned what job
 - Goods allocation
 - Should we build a bridge?

- Participants have preferences over outcomes

- Social choice function aggregates those preferences and picks an outcome
Voting

If there are two options and an odd number of voters
• Each having a clear preference between the options

Natural choice: majority voting
• Sincere/Truthful
• Order of queries has no significance
 – trivial
When there are more than two options:

If we start pairing the alternatives:

• Order may matter

Assumption: \(n \) voters give their complete ranking on set \(A \) of alternatives

• \(L \) – the set of linear orders on \(A \) (permutation).
• Each voter \(i \) provides \(<_i \) in \(L \)
 – Input to the aggregator/voting rule is \((<_1, <_2, \ldots, <_n) \)

Goal

A function \(f: L^n \mapsto A \) is called a social choice function
• Aggregates voters preferences and selects a winner

A function \(W: L^n \mapsto L \), is called a social welfare function
• Aggregates voters preference into a common order
Example voting rules

Scoring rules: defined by a vector \((a_1, a_2, \ldots, a_m)\)

Being ranked \(i\)th in a vote gives the candidate \(a_i\) points

- **Plurality:** defined by \((1, 0, 0, \ldots, 0)\)
 - Winner is candidate that is ranked first most often
- **Veto:** is defined by \((1, 1, \ldots, 1, 0)\)
 - Winner is candidate that is ranked last the least often
- **Borda:** defined by \((m-1, m-2, \ldots, 0)\)

Plurality with (2-candidate) runoff: top two candidates in terms of plurality score proceed to runoff.

Single Transferable Vote (STV, aka. Instant Runoff): candidate with lowest plurality score drops out; for voters who voted for that candidate: the vote is transferred to the next (live) candidate

 Repeat until only one candidate remains

Jean-Charles de Borda 1770
Marquis de Condorcet

Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet

- There is something wrong with Borda! [1785]

1743-1794
Condorcet criterion

- A candidate is the **Condorcet winner** if it wins all of its pairwise elections
- Does not always exist...

Condorcet paradox: there can be **cycles**
- Three voters and candidates:
 - $a > b > c$, $b > c > a$, $c > a > b$
 - a defeats b, b defeats c, c defeats a

Many rules do not satisfy the criterion

- For instance: **plurality**:
 - $b > a > c > d$
 - $c > a > b > d$
 - $d > a > b > c$

- a is the Condorcet winner, but not the plurality winner

Also **Borda**:
- $a > b > c > d > e$
- $c > b > d > e > a$
- Candidates a and b:
- Comparing how often a is ranked above b, to how often b is ranked above a
Even more voting rules…

• **Kemeny:**
 - Consider all pairwise comparisons.
 - Graph representation: edge from winner to loser
 - Create an overall ranking of the candidates that has as few disagreements as possible with the pairwise comparisons.
 - Delete as few edges as possible so as to make the directed comparison graph acyclic

• **Approval** [not a ranking-based rule]: every voter labels each candidate as approved or **disapproved**. Candidate with the most approvals wins

How do we choose one rule from all of these rules?

• How do we know that there does not exist another, “perfect” rule?
• We will list some criteria that we would like our voting rule to satisfy
Arrow’s Impossibility Theorem

Skip to the 20th Century

Kenneth Arrow, an economist. In his PhD thesis, 1950, he:

- Listed desirable properties of voting scheme
- Showed that no rule can satisfy all of them.

Properties

- Unanimity
- Independence of irrelevant alternatives
- Not Dictatorial
Independence of irrelevant alternatives

- Independence of irrelevant alternatives criterion: if
 - the rule ranks \(a \) above \(b \) for the current votes,
 - we then change the votes but do not change which is ahead between \(a \) and \(b \) in each vote

then \(a \) should still be ranked ahead of \(b \).

- None of our rules satisfy this property
 - Should they?
Arrow’s Impossibility Theorem

Every **Social Welfare Function** \(W \) over a set \(A \) of at least 3 candidates:

- If it satisfies
 - **Unanimity** (if all voters agree on \(<\) on the result is \(<\))
 \[
 W(<, <, \ldots, <) = <
 \]
 for all \(< \) in \(L \)
 - **Independence of irrelevant alternatives**

Then it is **dictatorial**: there exists a voter \(i \) where

\[
W(<_1, <_2, \ldots, <_n) = <_i
\]

for all \(<_1, <_2, \ldots, <_n \) in \(L \)
Is there hope for the truth?

• At the very least would like our voting system to encourage voters to tell their true preferences
Strategic Manipulations

- A social choice function f can be manipulated by voter i if for some $<_1, <_2, \ldots, <_n$ and $<_i'$ and we have $a = f(<_1, \ldots, <_i, \ldots, <_n)$ and $a' = f(<_1, \ldots, <'_i, \ldots, <_n)$ but $a <_i a'$. Voter i prefers a' over a and can get it by changing his vote.

- f is called incentive compatible if it cannot be manipulated.
Gibbard-Satterthwaite Impossibility Theorem

• Suppose there are at least 3 alternatives
• There exists no social choice function f that is simultaneously:
 – Onto
 • for every candidate, there are some votes that make the candidate win
 – Nondictatorial
 – Incentive compatible
Implication of Gibbard-Satterthwaite Impossibility Theorem

- All mechanism design problems can be modeled as a social choice problem.
- This theorem seems to quash any hope for designing incentive compatible social choice functions.
- The whole field of Mechanism Design is trying to escape from this impossibility results.
- Introducing “money” is one way to achieve this.
Proof of Arrow’s Impossibility Theorem

Claim (Pairwise Unanimity): Every Social Welfare Function W over a set A of at least 3 candidates

- If it satisfies
 - Unanimity (if all voters agree on $<$ on the result is $<$)
 \[W(<, <, \ldots, <) = < \]
 for all $<$ in L
 - Independence of irrelevant alternatives

Then it is Pareto efficient

If $W(<_1, <_2, \ldots, <_n) = <$ and for all i $a <_i b$ then $a < b$
Proof of Arrow’s Theorem

Claim (Neutrality): let
• \(<_1,<_2,...,<_n\) and \('<_1, '<_2,..., '<_n\) be two profiles
• \(\leq W(\langle 1,\langle 2,...,\langle n)\) and \('<= W(\langle'1,\langle'2,...,\langle'n)\)
• and where for all \(i\)
 \[a <_i b \iff c <'_i d\]
Then \(a < b \iff c <' d\)
Proof: suppose \(a < b\) and \(c \neq b\)
Create a single preference \(\pi_i\) from \(_i\) and \('<_i\): where \(c\) is just below \(a\) and \(d\) just above \(b\).
Let \(\langle \pi = W(\pi_1, \pi_2,..., \pi_n)\)
We must have: \((i)\) \(a < \pi b\) \((ii)\) \(c < \pi a\) and \((iii)\) \(b < \pi d\)
And therefore \(c < \pi d\) and \(c <'d\)
Proof of Arrow’s Theorem: Find the Dictator

Claim: For any \(a, b\) in \(A\) consider sets of profiles

Voters

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>…</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(ab)</td>
<td>(ba)</td>
<td>(ba)</td>
<td>(ba)</td>
</tr>
<tr>
<td>2</td>
<td>(ab)</td>
<td>(ab)</td>
<td>(ba)</td>
<td>(ba)</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>n</td>
<td>(ab)</td>
<td>(ab)</td>
<td>(ab)</td>
<td>(ba)</td>
</tr>
</tbody>
</table>

Hybrid argument

Change must happen at some profile \(i^*\)

Where voter \(i^\) changed his opinion

Claim: this \(i^*\) is the dictator!
Proof of Arrow’s Theorem: i^* is the dictator

Claim: for any $<_1, <_2, \ldots, <_n$ and $<=W(<_1, <_2, \ldots, <_n)$ and c, d in A. If $c <_{i^*} d$ then $c < d$.

Proof: take $e \neq c, d$ and

- for $i < i^*$ move e to the bottom of $<_i$
- for $i > i^*$ move e to the top of $<_i$
- for i^* put e between c and d

For resulting preferences:
- Preferences of e and c like a and b in profile i^*-1.
- Preferences of e and d like a and b in profile i^*.

Therefore $c < d$
Gibbard-Satterthwaite Impossibility Theorem

- Suppose there are at least 3 alternatives
- There exists no social choice function \(f \) that is simultaneously:
 - Onto
 - for every candidate, there are some votes that make the candidate win
 - Nondictatorial
 - Incentive compatible
Proof of the Gibbard-Satterthwaite Theorem

Construct a Social Welfare function W_f based on f.

$$W_f(<1,\ldots,<n)=<\text{ where } a< b \text{ iff }$$

$$f(<1\{a,b\},\ldots,<n\{a,b\})=b$$

Lemma: if f is an incentive compatible social choice function which is onto A, then W_f is a social welfare function

- If f is non dictatorial, then W_f also satisfies Unanimity and Independence of irrelevant alternatives
Proof of the Gibbard-Satterthwaite Theorem

Claim: for all $<_1, \ldots, <_n$ and any subset S of A we have $f(<_1^S, \ldots, <_n^S)$ in S

Take a in S. There is some $<_1', <_2', \ldots, <_n'$ where $f(<'_1, <'_2, \ldots, <'_n) = a$.

Sequentially change $<_i'$ to $<_i^S$:
- At no point does f output b not in S.
- Due to the incentive compatibility.
Proof of Well Form Lemma

• Antisymmetry: implied by claim for \(S=\{a,b\} \)

• Transitivity: Suppose we obtained contradicting cycle \(a < b < c < a \)
 take \(S=\{a,b,c\} \) and suppose \(a = f(<_1^S, ..., <_n^S) \)
 Sequentially change \(<^S_i \to <^i_\{a,b\} \)
 Non manipulability implies that
 \(f(<_1^{\{a,b\}}, ..., <_n^{\{a,b\}}) = a \) and \(b < a \).

• Unanimity: if for all \(i, b <_i a \) then
 \(<_1^{\{a,b\}}{a} =<_1^{\{a,b\}} \) and
 \(f(<_1^{\{a,b\}}, ..., <_n^{\{a,b\}}) = a \)

Will repeatedly use the claim to show properties
Proof of Well Form Lemma

- **Independence of irrelevant alternatives**: if there are two profiles \(<_1, _2, \ldots, _n>\ and \<'_1, '_2, \ldots, '_n>\ where for all \(i\) \(b<_i a\) iff \(b<_i a\), then
 \[
 f(_1\{a, b\}, \ldots, _n\{a, b\}) = f(_1\{a, b\}, \ldots, '_n\{a, b\})
 \]
 by sequentially flipping from \(_i\{a, b\}\) to \('_i\{a, b\}\)

- **Non dictator**: preserved