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In this lecture we look into some weaknesses of Myerson’s auction and show how to design an
approximately optimal auction with simpler and more transparent allocation and payment rules.

1 Examples of Myerson’s Auction

1.1 Reminder of revenue of Myerson’s Auction

We present a reminder of the result that in any single dimensional environment, we have that the
expected revenue is

Ev∼F [
∑
i

pi(v)] = Ev∼F [
∑
i

xi(v)ϕi(vi)]

Where ϕi(vi) := vi − (1 − Fi(vi))/fi(vi) which is called bidder i’s virtual value and fi is the density
function for Fi. To optimize revenue, we use the virtual welfare maximizing allocation rule

x(v) := argmaxx∈X
∑
i

xi(v)ϕi(vi)

1.2 Single item auction with values drawn from regular i.i.d distribution

Since all virtual value functions ϕ−1() are identical and monotone, the highest bidder has the highest
virtual value and the optimal auction is the Vickrey auction (seen in previous lectures). This result is
a simple mechanism for both bidders and the aucitoneer. However, for the non i.i.d case, the optimal
auction which arises from Myerson’s result may be too complex for practice as seen next.

Example 1. 2 bidders, v1 uniform in [0,1]. v2 uniform in [0,100]. ϕ1(v1) = 2v1−1, ϕ2(v2) = 2v2−100
Under these settings, the auction which optimizes social welfare is as follows:
- Case 1: v1 > 1/2, v2 < 50, we sell to bidder 1 at price 1/2.
- Case 2: v1 < 1/2, v2 > 50, we sell to bidder 2 at price 50.
- Case 3: 0 < 2v1 − 1 < 2v2 − 100, we sell to bidder 2 at price (99 + 2v1)/2.
- Case 4: 0 < 2v2 − 100 < 2v1 − 1, we sell to bidder 1 at price (2v2 − 99)/2.

In Case 1, the allocation rule is quite counter-intuitive, as the item is sold to bidder 1, albeit his
bid might actually be much lower than bidder 2’s. Also the payments in Case 3 and 4 are not easy
to explain to the bidders, as such numbers are not the reserve price or anyone else’s bid. This shows
that the optimal auction could be very complex, and the complexity of the mechanism causes the loss
of interest for participating due to the high barrier to playing. Aside from the complexity, we also
have the added issue that to design the optimal Myerson auction, we must be certain in advance of
the underlying bidder’s distributions, a situation which is rare in practice. This provides motivation for
simpler mechanism design with approximately optimal revenue.

To design a simple nearly-revenue-optimal auction, we borrow tools from the optimal stopping theory
— the Prophet Inequality.
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2 Prophet Inequality

Consider the following game. For n stages (you are aware of how many stages in advance), you are offered
a non-negative reward πi where each reward is drawn from some known distributions Gi independently.
Each reward πi is revealed only at stage i. You decide to either accept the offered reward at stage i, or
to discard that one and continue on. It is unclear how one should play this game. Imagine there is a
prophet who sees all the realization of the πi’s before the game starts. He will certainly pick the largest
πi. The following theorem states that even though you can’t see all the realizations of the rewards, there
is a simple strategy which guarantees a half of the reward of a prophet!

Theorem 1 (Prophet inequality). There exists a strategy such that the expected reward ≥ 1/2·E[maxi πi]
Specifically, a threshold strategy, in which the first reward that is above the threshold t will be accepted,
is sufficient to achieve this result.

Proof: We leave t to be set at a later point.

Definition 1. Given a random variable Z, we define Z+ as max(0, Z).

we also let q(t) = Pr[πi < t, ∀i]
We proceed in two steps to showing the result. First, we prove a lower bound on the expected reward

of the threshold strategy and then we prove an upper bound on the reward of the prophet.

Lemma 1. The expected reward of the threshold strategy is at least

t(1− q(t)) + q(t)
∑
i

E[(πi − t)+]

.

Proof: : How do we give a lower bound on the expected reward? An obvious lower bound is t ·(1−q(t))
as with probability 1− q(t) some reward will be higher than the threshold. However, this could be way
lower than what the reward really is. Imagine that we set t = 100, when some reward is above 100, it
could be 120, 500 or even 1, 000, 000, and you actually get the reward not just t. If there is only a single
reward πi ≥ t, it is clear that we will receive πi, and it is easy to write the expected reward for this event
t+ E[πi − t|πi ≥ t, ∀j 6=iπj < t]. When there are multiple rewards above t, we get the first one, and it is
not easy to write a simple formula to represent this. So we relax our bound and say if there are more
than one reward above t, we count our reward as t, which is an obvious lower bound.

So we have obtained an lower bound for our expected reward

t(1− q(t)) +
∑
i

Pr[πi ≥ t, ∀j 6=iπj < t] · E[πi − t|πi ≥ t, ∀j 6=iπj < t]

=t(1− q(t)) +
∑
i

Pr[πi ≥ t] · Pr[∀j 6=iπj < t] · E[πi − t|πi ≥ t] (independence of the π′is)

=t(1− q(t)) +
∑
i

E[(πi − t)+] · Pr[∀j 6=iπj < t] (the definition of (πi − t)+)

≥t(1− q(t)) + q(t) ∗
∑
i

E[(πi − t)+] (Pr[∀j 6=iπj < t] ≤ q(t))

�
Next, we show a simple upper bound for the expected reward of the prophet.

Lemma 2. we have that the expected reward is at most

E[max
i
πi] ≤ t+

∑
i

E[(πi − t)+]
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Proof:

E[max
i
πi]

=E[t+ max(πi − t)] = t+ E[max(πi − t)]

≤t+ E[max(πi − t)+] ≤ t+ E[
∑
i

(πi − t)+]

=t+
∑
i

E[(πi − t)+]

�
If we choose t such that q(t) = 1/2, then combining these two results, we see that the expected

reward of the threshold is at least 1/2 · E[maxi πi]. �

Remark 1. We have actually proved a stronger version of this theorem. In our lower bound, we only
count the reward as t when there are multiple rewards above t. If we change the threshold strategy to
be — pick the smallest reward that is above the threshold, the same lower bound holds. Thus, the same
proof can show the expected reward of this new strategy is still at least 1/2 · E[maxi πi]. This stronger
version of prophet inequality is what we will use in the design for simple nearly-optimal auctions.

3 Simple Nearly-Optimal Auctions

Using this result, we revisit the case of a single item auction with bidders’ value distributions being non
i.i.d. We think of an auction as the game introduced above where the virtual value functions ϕi(vi)

+

as the ith prize where Gi is the induced non-negative virtual value distribution from Fi. The prophet’s
expected reward in this game Ev∼F [maxi ϕi(vi)

+] is exactly the optimal revenue in the corresponding
single-item auction. If we can find an auction whose expected virtual welfare is at least a constant
fraction of Ev∼F [maxi ϕi(vi)

+], then we have an auction that achieves a constant fraction of the optimal
revenue.

Consider the allocation rule:
1. choose t such that Pr[maxi ϕi(vi)

+ ≥ t] = 1/2
2. give the item to some bidder i with ϕi(vi) ≥ t if there are ties, break them arbitrarily (subject to
monotonicity).
By Prophet Inequality, any allocation rule which satisfies the above has

Ev∼F [max
∑
i

xi(v)ϕi(vi)] ≥ 1/2 · Ev∼F [max
i
ϕi(vi)

+].

Therefore, any of these allocation rule can be turned to an auction that achieves at least half of the
optimal revenue.

More specifically, we can select for instance the following allocation rule:
1. For each bidder i, set the reserve price ri = ϕ−1i (t) using the t defined above.
2. Give the item to the highest bidder that meets his or her reserve price, if any.

As for the payment rule, it is simply the maximum between the winner’s reserve price and the second
highest bid (that meets the reserve). We see here a much simpler mechanism which achieves at least
half optimal revenue.

This mechanism is much simpler than Myerson’s auction when the distributions are i.i.d.. An even
simpler auction would use the same reserve price for every bidder. An important open problem asks the
following:
Open Problem: If we are restricted to use the same reserve price, what is the best approximation ratio
we can achieve for revenue. We know the answer is between 1/2 and 1/4.
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