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In last lecture, we showed Nash's theorem that a Nash
equilibrium exists in every game.

In our proof, we used Brouwer s fixed point theorem as a Black-
box.

In today s lecture, we explain Brouwer s theorem, and give an
illustration of Nash's proof.

We proceed to prove Brouwer s Theorem using a combinatorial
lemma, called Sperner s Lemma, whose proof we also provide.



Brouwer’s Fixed Point Theorem



Brouwer’s fixed point theorem

Theorem: Letf: D—— D be a continuous function from a
convex and compact subset D of the Euclidean space to itself.

/ Then there existsan x€ D s.t. x=f(x).

closed and bounded

Below we show a few examples, when D is the 2-dimensional disk.

-

N.B. All conditions in the statement of the theorem are necessary.



Brouwer’s fixed point theorem

fixed point



Brouwer’s fixed point theorem
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Brouwer’s fixed point theorem
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Nash's Proof



Nash’s Function

AdSrxr=yeA:

(S ) e :CP(SP) + Gainp§5p ($>
Ip\op) = 17 s es, Gailpsr @)

where:  Gainy.s () = max{u,(sp; v—p) — up(x), 0}



Visualizing Nash’s Construction

Kick

, Left | Right
Dive
Left | B R B |
Right |-1,1 1, -1

Penalty Shot Game

| : f:10,1]> —>[0,1]%, continuous
such that
fixed points = Nash eq.



Visualizing Nash’s Construction
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Visualizing Nash’s Construction
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Visualizing Nash’s Construction
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Visualizing Nash’s Construction

1> 2
Kick | Left | Right
Dive
Left 1,-1] -1,1
Right |-1,1| 1,-1
Penalty Shot Game
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Sperner s Lemma






Sperner’s Lemma

no yellow

no

U
|
no

Lemma: Color the boundary using three colors in a legal way.



Sperner’s Lemma

no yellow

no

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma
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Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Sperner’s Lemma

For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Next we define a
directed walk
starting from the
bottom-left triangle.
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Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Sperner’s Lemma

pace of Triangles

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Sperner’s Lemma

C\/‘\/\
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Claim: The walk
cannot exit the
square, nor can it
loop around itself in
a rho-shape. Hence,
it must stop
somewhere inside. (
This can only happen
at tri-chromatic
triangle...
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For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Next we define a
directed walk
starting from the
bottom-left triangle.

Starting from other
triangles we do the

same going forward
or backward.

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Proof of Brouwer s Fixed Point Theorem

We show that Sperner’s Lemma implies Brouwer’s
Fixed Point Theorem. We start with the 2-dimensional
Brouwer problem on the square.



2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, 3d(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) < €
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2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, 3d(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) <e
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choose some ¢ and
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d < 0(€)
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2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, 3d(e) > 0, s.t.

color the nodes of the Y, d(z, ’w) < 5(6) — d(f(z), f(w)) <€
triangulation according
to the direction of

choose some ¢ and
triangulate so that the
diameter of cells is

d < 0(€)
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2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, 3d(e) > 0, s.t.
d(z,w) < d(e) = d(f(2), f(w)) <e

color the nodes of the Y
triangulation according

to the direction of 1(3\/ /:\EJ\E\ O
— ) D
X

N
fz)—= C — (O——0) choose some ¢ and
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tie-break at the boundary( —O— D find a trichromatic
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2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)

Ve > 0, 3d(e) > 0, s.t.

,@J& d(z,w) < 8(e) = d(f(2), f(w)) < e
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Proof of Claim

Claim: If z¥ is the yellow corner of a trichromatic triangle, then |f(ZY) — 2t oo < €+ 0.

Proof: Let zY, zR, zB be the yellow/red/blue corners of a trichromatic triangle.

AN
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%

(F(z7) —2¥),| < e+

By the definition of the coloring, observe that the product of AJ&
Y (f(z¥) = 2¥)z and (£(z7) - 2P)- is <0. -
\ Hence:
1Q C—Q@—C—O
(f(") = 27)al
< J\(;\(;\(;\() < ‘(f(zy) - zy)x - (f(ZB) — ZB)x‘
S :\\i\\“\() <I(fF) = FEE)el 17 = 27)al
< d(f(2"), f(27)) + d(z", 27)
) /\Ci\() <e+9o
:\\ \,) Similarly, we can show:
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2D-Brouwer on the Square

say d is the /., norm

Suppose f: [0,1]> —[0,1]?, continuous

L must be uniformly continuous (by the Heine-Cantor theorem)
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2D-Brouwer on the Square

Finishing the proof of Brouwer’s Theorem:
- pick a sequence of epsilons: €; = Q_i,i =1,2,...

- define a sequence of triangulations of diameter: §; = min(d(¢;),€;),i =1,2,. ..

- pick a trichromatic triangle in each triangulation, and call its yellow corner

2X i=1,2,...

7

- by compactness, this sequence has a converging subsequence w;, = 1,2,...
. . . with limit point w™
Claim: f(w™) = w".

Proof: Define the function g¢(z) = d(f(x), ). Clearly, g is continuous since d(-,-)
is continuous and so is f. It follows from continuity that

g(w;) — gw*), as i — +oc.

But 0 < g(w;) <2 " Hence, g(w;) — 0Tt follows that g(w*) =0

Therefore, d(f(w*),w*) =0 = f(w™) = w". -



How hard is computing a Nash
Equilibrium?



NASH, BROUWER and SPERNER

We informally define three computational problems:
* NASH: find a (appx-) Nash equilibrium in a n player game.
* BROUWER: find a (appx-) fixed point x for a continuous function f().

 SPERNER: find a trichromatic triangle (panchromatic simplex) given a
legal coloring.



Function NP (FNP)

A search problem L 1s defined by a relation R, (x, y) such that

R,(x,y)=1 1iff yisa solution to x

A search problem is called roral iff for all x there exists y such that R, (x, y) =I.

A search problem L belongs to FNP iff there exists an efficient algorithm A, (x, y)
and a polynomial function p,( - ) such that

() if A, (x, 2)=1 > R, (x, 2)=1

() if Jy s.t. R(x,y)=1 -> z with lz| < p,(Ixl) such that A, (x, z7)=1

Clearly, SPERNER e FNP.



Reductions between Problems

A search problem L € FNP, associated with A, (x, y) and p,, is polynomial-time
reducible to another problem L’ e FNP, associated with A, .(x, y) and p, , iff there
exist efficiently computable functions f, g such that

(i) xisinputto L = f{x)isinputto L’
(1)

AL (), y)=1 2 A;x g()=1

1{L’ (f(X), y):O, v y > RL(xa y):O’ v y

A search problem L is FNP-complete iff
e.g. SAT

L « FNP
L’ is poly-time reducible to L, for all L’ « FNP



Our Reductions (intuitively)

NASH > BROUWER “\»> SPERNER < FNP

both Reductions are polynomial-time

Is then SPERNER FNP-complete?

- With our current notion of reduction the answer is no, because SPERNER always has
a solution, while a SAT instance may not have a solution;

- To attempt an answer to this question we need to update our notion of reduction
we require that a solution to SPERNER informs us about

whether the SAT instance is satisfiable or not, and provides us with a solution to the
SAT instance in the "“yes” case;

but if such a reduction existed, it could be turned into a non-deterministic algorithm
for checking “no” answers to SAT: guess the solution to SPERNER; this will inform
you about whether the answer to the SAT instance is “yes” or “no”, leading to

NP =co— NP ...

- Another approach would be to turn SPERNER into a non-total problem, e.g. by
removing the boundary conditions; this way, SPERNER can be easily shown FNP-
complete, but all the structure of the original problem is lost in the reduction.



