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WewiDecision Variables

Variables: Tnterim Allocation rule aka. “REDUCED FORM?™.
{m; : T, — [0,1]",p; : T; — R }igpm]




Variables:

* m;(v,): probability that itemj 1s allocated to bidder ¢ if her reported valuation
(bid) is v, in expectation over every other bidders’ valuations (bids);

* p;(v,) : price bidder i pays if her reported valuation (bid) 1s v, in expectation
over every other bidder’s valuations (bids)

Constraints:

o« BIC: > vy -mij(vi) —pi(vi) > > vy -mi;(v)) —pi(vf)  forall viand v’ inT,
J J

e [R: Z?}ij " T (Uz> — pi(vi) >0 for all V; in T;
J

* Feasibility: exists an auction with this reduced form.

Objective:

» Expected revenue: » ) Prft; = v] - pi(vy)

1 v, €T}



Implementation of a Feasible Reduced Form . N

O After solving the succinct LP, we find the optimal reduced form n* and p*.

 Can you turn ©n* and p* into an auction whose reduced form

is exactly n* and p*?

O This is crucial, otherwise being able to solve the LP is meaningless.

O Will show you a way to implement any feasible reduced form, and it reveals

important structure of the revenue-optimal auction!



. Implementation of a Feasible

... Reduced Form




Reduced form is collection {r; : T; — [0, 1]™};

Can view it as a vector 7 € R"™ 2= I T3l

Let’s call set of feasible reduced forms (D) € R™ 22 1Tl

Claim 1: F(D) is a convex polytope.

Proof: Easy!

A feasible reduced form 7 is implemented by a feasible allocation rule M.

M 1s a distribution over determlmstlc feasible allocation rules, of which there is a
finite number. So: M = Z v—1Pe - My where M, is deterministic.

Easy to see: 77 = lezlpg - (My)

conveXx hull of reduced forms of
So, F(D) = feasible deterministic mechanisms



Set of
Reduced Forms

o

Is there a simple
allocation rule
implementing the
corners?




* Is there a simple
allocation rule

implementing a corner

virtual welfare maximizing
interim rule when virtual
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expected virtual welfare i

of an allocation rule with $--e = ;: ) yj ﬂgj(A)f,L] (A) Pr[t; = A] - (2)
interim rule ©’ : i A€eT;

interpretation: virtual value derived by : Fir(A) = w;;(A)
bidder i when given item j when his type is A e==""" « fii(4) Prplt; = A
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implementing a corner¥ |.
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interim rule when virtual
— —/ —
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(Q: Can you name an algorithm doing this?

Az YES, the VCG allocation rule = : virtual-VCG( { fl' } )

( w/ virtual value functions f;, i=1,..,m )

interpretation: virtual value derived by
bidder i when given item j when his type is A




Characterization Theorem [C.-Daskalakis-Weinberg] . B

F(D) is a Convex Polytope whose R 2 | %l
corners are implementable by

virtual VCG allocation rules.

How about implementing any point

inside F(D)?




Carathéodory’s theorem

If some point x is in the convex hull

of P then

L= Z%'Pi

piEP

st. » gi=1landq >0V

Carath¢odory’s Theorem: If a point x
of R4 lies in the convex hull of a set P,
there 1s a subset P’ of P consisting of d
+ 1 or fewer points such that x lies in
the convex hull of P'.

01): .(1,1)

° (Y4, Ya)

Ve S

For example:

x =1%4(0,1) + Y4(1,0) + 12(0,0)




Characterization Theorem [C.-Daskalakis-Weinberg] . B

Any point inside F(D) is a convex R™ > T
combination (distribution) over the

COorners.

The interim allocation rule of any
feasible mechanism can be

implemented as a distribution over

virtual VCG allocation rules.




. Structure of the Optimal Auction
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erization of Optimal Multi-Item Auctions ‘.
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Theorem [C.-Daskalaks-Weinberg]: Optimal multi-item auction has the
following structure:

1. Bidders submit valuations (t,,...,t,,) to auctioneer.
2. Auctioneer samples virtual transformations f,,..., f,
Auctioneer computes virtual types t’; = f(t,)

4. Virtual welfare maximizing allocation is chosen.

Namely, each item is given to bidder with highest virtual value for that item (if
positive)

5. Prices are charged to ensure truthfulness.
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Characterization of Optimal Multi-Item Auctions ‘.

i

Theorem [C.-Daskalaks-Weinberg]: Optimal multi-item auction

5 v
:  has the following structure: :
: g
. 1. Bidders submit valuations (t,,...,t,,) to auctioneer. 5
] W
2.  Auctioneer samples virtual transformations f,..., f, -

4=

L

1_' 3.  Auctioneer computes virtual types t’; = f(t;) :
. 4.  Virtual welfare maximizing allocation is chosen. »
E Namely, each item is given to bidder with highest virtual value for that item (if B
" positive) .
= s
M 5. Prices are charged to ensure truthfulness. : 5
g - e = — =S i = . o e ——————— - E

¢ Exact same structure as Myerson!
- 1n Myerson’s theorem: virtual function = deterministic

- here, randomized (and they must be)




Interesting Open Problems

L Another difference: in Myerson’s theorem: virtual function is given explicitly,
in our result, the transformation is computed by an LP. Is there any structure of

our transformation?

O In single-dimensional settings, the optimal auction is DSIC. In multi-
dimensional settings, this is unlikely to be true. What is the gap between the
optimal BIC solution and the optimal DSIC solution?



