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«* (b) Auction

Two Scenarios |
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Benchmark

Lemma 1: The optimal revenue achievable in

scenario (a) is always less than the optimal revenue
achievable in scenario (b).
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- Remark: This gives a natural benchmark for the revenue in (a).




A nearly-optimal auction (Lecture 6)

L In a single-item auction, the optimal expected revenue

E, pmax X.x,(v) ¢, v)] = E, g [max; p(v,)*]

0 Remember the following mechanism RM we learned in Lecture 6.

1. Choose t such that Pr[max; ¢, (v,)* >¢t] =Y.

2. Set a reserve price r; =¢;! (¢) for each bidder i with the ¢ defined above.
3. Give the item to the highest bidder that meets her reserve price (if any).
4

. Charge the payments according to Myerson’s Lemma.

U By prophet inequality:
ARev(RM) = E_ ¢ [X,x,(v) ¢, v)] = 72 E,_p [max; p,(v;)*] = /2 ARev(Myerson)

[ Let’s use the revenue of RM as the benchmark.



Inherent loss of this approach

U Relaxing the benchmark to be Myerson’s revenue in (b)

[ This step might lose a constant factor already.

[ To get the real optimum, a different approach is needed.



. - Optimal Multidimensional Pricing

F;1s a Monotone Hazard Rate

0
(MHR) distribution. o
* MHR Definition:
f(x)/(1-F(x)) 1s non-decreasing.

pi?

O Only constant factor appx are known
[CHK ’07, CHMS ’10]. )
DPn!

Q [Cai-Daskalakis ’11] There is a PTAS!

Q  PTAS: Polynomial-Time Approximation Scheme — for every constant
e 1n [0,1], there is a polynomial time algorithm that achieves (1- €)
fraction of the optimum (for maximization problems). The running
time is required to be polynomial for every fixed €, but could be
different for different €. For example, the running time could be O(n'’%)



Extreme Value Theorem (MHR)

[Cai-Daskalakis 11] COROLLARY:
Let X, ..., X, be independent (but not necessarily (1I-¢) OPT is
1dentically distributed) MHR random variables, Let X= extracted from
max; X;. Then there exists anchoring point £ such that: values in (& f,
1/¢ logl/c p).
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What if the items are 1.i.d.?

U Say you know for each item there are only two prices 1 and 2,

you can use.
1 How many possible prices vectors are there?
_ On

- Do you really need to search over all of them?

[ Only need to check O(n) different price vectors.



What if the items are i.i.d.?

(d When you know you can use only c different prices on each item

O Only need to check O(n¢!) different price vectors, when the

distributions are 1.1.d.

 Our theorem says you only need to consider poly(1/¢) many different

prices, so that gives you a PTAS for the 1.1.d. case.

(d When the distributions are not i.i.d., we need to use a more
sophisticated Dynamic Programming algorithm to find the optimal
price vector. But having only a constant number of prices is still crucial

here.



. Multi-item Multi-bidder Settings
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Multi-item Multi-bidder Setting

O Remember the challenges. The optimal mechanism could have strange

structure and uses randomization.

U Closed form solution (like Myerson’s auction) seem impossible, even for a
single bidder.

L More powerful machinery is required.

O Turn to Linear Programming for help.



Multi-item Multi-bidder Auctions:

________________________ > Bidders Items

t1 ~D
1 @ ! ! Auctioneer

Bidders:

= have values on “items” and bundles of “items”.
» Valuation aka type t; € T; encodes that information.

= Common Prior: Each ¢; is sampled independently from D,; .
* Every bidder and the auctioneer knows D

=  Additive: Values for bundles of items = sum of values for each item.

* From now on, t; = (v;1,...,Vp)-



A few remarks on the setting

d T;is a subset of R"

O Since we are designing algorithms, assume 7; is a discrete set.

d We know Pr[t=v] for all v in T; and X, Pr[t=v] =1.



Multi-item Multi-bidder Auctions: Execution . B

: ’Q Y Each Bidder:

» Uses as input: the
auction, own type,
distributions about other
bidders’ types;

* Bids;

Goal: Optimize own utility
(= expected value minus
expected price).

Auctioneer:

* Designs auction, specifying allocation and payment

rules;
e Asks bidders to bid;

* Implements the allocation and payment rule
specified by the auction;

Goal: Find an auction that:
1) Encourages bidders to bid truthfully (w.l.0.g.)

2) Maximizes revenue, subject to 1)



. LP Formulation

..




Single Bidder Case

J What are the decision variables?

 An auction is simply an allocation rule and a payment rule.

O Let’s set the decision variables accordingly.

O Allocation rule: for eachj in [m], v in T, there is a variable x;(v): the

probability that the buyer receives itemj when his report is v.

- if the mechanism is item pricing, and has price p; for item j, then x,(v)=1
if v;2p; and 0 otherwise.

- if the mechanism is grand bundling with price r. Then for all j, x(v)=1 if
2. v; 2 r, otherwise all x;(v)=0.

- For deterministic mechanisms, x,(v) is either O or 1. But to include
randomized mechanisms, we should allow x(v) to be fractional.



Single Bidder Case

O Payment rule: for each v in T, there is a variable p(v): the payment when the
bid 1s v.
d Objective function: max X, Pr[z = v] p(v)

O Linear in the variables, since Pr[z = v] are constants (part of our input).

1 Constraints:

- incentive compatibility: 2, v; x(v) — p(v) 2 X;v; x(v’) —p(v’) forallyv andv’in T

- individual rationality (non-negative utility): 2;v; x,(v) —p(v) 20 forallv in T

- feasibility: 0 <xy(v) < I for alljin [m] and v in T



Single Bidder Case

d We have a LP, we can solve it. But now what?

L What is the mechanism?

L In this case, it’s straightforward. Let x* and p* be the optimal solution of our LP.

1 Then when the bid is v, give the buyer item j with prob. x4(v) and charge him
p(v).

O This mechanism is feasible, incentive compatible and individual rational!

O So the buyer will bid truthfully, and thus the expected revenue of the
mechanism is the same as the solution of our LP!



