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Myerson’s Auction Recap ‘ B

[Myerson ‘81 ?;}% ] For any single-dimensional
environment.

Let F= F; xF, x ... x F, be the joint value distribution, and
(x,p) be a DSIC mechanism. The expected revenue of this
mechanism
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where is called bidder i's virtual
value (f; is the density function for F,).
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. - Myerson’s Auction Recap

= Bidders report their values;

" The reported val

[ Myerson '81]:

transformed in{

values; : If there is @ single itef
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“* Myerson’s auction looks
like the following
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Nice Properties of Myerson’s Auction ..

1 DSIC, but optimal among all Bayesian Incentive Compatible (BIC)

mechanisms!

] Deterministic, but optimal among all possibly randomized mechanisms!

] Central open problem in Mathematical Economics: How can we extend

Myerson’s result to Multi-Dimensional Settings?

O Important progress in the past a few years.

O See the Challenges first!



. Challenges in Multi-Dimensional

.. . Settings




A single buyer, 2 non-identical items

O Bidder is additive e.g. v({1,2}) = v, +v,.

O Further simplify the setting, assume v, and v, are drawn i.i.d. from distribution
F=U{1,2} (1 w.p. %2, and 2 w.p. ¥2).

 What’s the optimal auction here?

O Natural attempt: How about sell both items using Myerson’s auction separately?



O Selling each item separately with Myerson’s auction has expected revenue $2.

1 Any other mechanism you might want to try?

O How about bundling the two items and offer it at $3?

J What is the expected revenue?

d Revenue =3 x Pr[v;+v,>3] =3 x 3% =9/4 > 2!

U Lesson 1: Bundling Helps!!!



The effect of bundling becomes more obvious when the number of items is

large.

Since they are i.1.d., by the central limit theorem (or Chernoff bound) you
know the bidder’s value for the grand bundle (contains everything) will be a

Gaussian distribution.

The variance of this distribution decreases quickly.

If set the price slightly lower than the expected value, then the bidder will buy
the grand bundle w.p. almost 1. Thus, revenue is almost the expected value!

This is the best you could hope for.



O Change F to be U{0,1,2}.

O Selling the items separately gives $4/3.

O The best way to sell the Grand bundle is set it at price $2, this again gives $4/3.

1 Any other way to sell the items?

 Consider the following menu. The bidder picks the best for her.

- Buy either of the two items for $2
- Buy both for $3



1 Bidder’s choice:

O Expected Revenue =3 x 3/9 + 2 x 2/9 =13/9 > 4/3!



4 Change F, to be U{1,2}, F, to be U{1,3}.

O Consider the following menu. The bidder picks the best for her.
- Buy both items with price $4.

- A lottery: get the first item for sure, and get the second item with prob. -.
pay $2.50.

 The expected revenue is $2.65.

O Every deterministic auction — where every outcome awards either nothing, the
first item, the second item, or both items — has strictly less expected revenue.

U Lesson 2: randomization could help!
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. B Unit-Demand Bidder Pricing Problem (UPP)

A fundamental pricing problem

p1?

pi”?

= Bidder chooses the item that maximizes v;- p;, if any of them is positive.

= Revenue will be the corresponding p;.

* Focus on pricing only, not considering randomized ones.

= [t’s known randomized mechanism can only get a constant factor better than pricing.



Our goal for UPP

L Goal: design a pricing scheme that achieves a constant fraction of the revenue that

is achievable by the optimal pricing scheme.

O Assumption: F,’s are regular.

Theorem [CHK '07]: There exists a simple
pricing scheme (poly-time computable), that achieves
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at least V4 of the revenue of the optimal pricing
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Remark: the constant can be improved with a better analysis.



What is the Benchmark???

L When designing simple nearly-optimal auctions. The benchmark is clear.

L Myerson’s auction, or the miximum of the virtual welfare.

L In this setting we don’t know what the optimal pricing scheme looks like.

L We want to compare to the optimal revenue, but we have no clue what the optimal

revenue 1s?

O Any natural upper bound for the optimal revenue?



«* (b) Auction

Two Scenarios |

<> (a)UPP
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drawn independently from F;
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Bidder’s value for the i-th
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Benchmark

Lemma 1: The optimal revenue achievable in

scenario (a) is always less than the optimal revenue
achievable in scenario (b).
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- Remark: This gives a natural benchmark for the revenue in (a).




An even simpler benchmark

L In a single-item auction, the optimal expected revenue

E, p[max X.x,(v) ¢, (v)] = E, g [max; p(v,)*] (the expected prize of the prophet)

0 Remember the following mechanism RM we learned in Lecture 6.

1. Choose t such that Pr[max; ¢, (v,)* >¢t] =Y.

2. Set a reserve price r; =¢;! (¢) for each bidder i with the ¢ defined above.
3. Give the item to the highest bidder that meets her reserve price (if any).
4

. Charge the payments according to Myerson’s Lemma.

U By prophet inequality:
ARev(RM) = E_ ¢ [X,x,(v) 0, v;)] = 72 E,_ [max; p,(v;)*] = /2 ARev(Myerson)

[ Let’s use the revenue of RM as the benchmark.



Inherent loss of this approach

U Relaxing the benchmark to be Myerson’s revenue in (b)

[ This step might lose a constant factor already.

[ To get real optimal, a different approach is needed.



