
Course Overview

You ask computers to solve algorithmic problems on a daily basis. When
you use google maps you ask Google to find the quickest route between a
starting point and a destination point. When you use a search engine you
ask it both to find the relevant pages from amongst the billions on the web
and then to rank these pages so that the most interesting appear first. When
you send an email, the web must decide how to route it to its destination. It
must make this decision for millions of messages at once, and whilst so doing
avoid overloading any of the communication channels between its servers.

It is imperative that the algorithms which solve such problems are ef-
ficient1. Whether this is the case depends crucially on the structures used
to store the data. Fast algorithms require properly structured data. One
important example of this fact comes from antiquity, and is taught in grade
school. The arabic base 10 notation allows us to add two integers in a number
of steps which is of the order of the sum of their logarithms and to multiply
them in a number of steps which is quadratic in the sum of their logarithms.
A simple every day example is retrieving the phone number of one of your
contacts. If the names in your contact list appear in an arbitrary order then
you may need to look at all the contacts before finding the one you need. If
the list is an ordered array, then binary search allows you to find a contact
in a number of steps which is logarithmic in the number of contacts.

This course presents technique for efficiently solving problems by con-
sidering appropriate data structures, and examples of problems that can be
solved by doing so. Over half the course will be devoted to the graph data
structure. We will discuss (i) how to formulate natural real world problems2

as graph theory problems, and (ii) efficient algorithms for solving these graph
theory problems. We note that reformulating a problem is essentially restruc-
turing the way in which certain information is input while solving a problem
typically involves manipulatng this structured information. We will also dis-
cuss: (i) sorting and selection, (ii) the priority queue data structure and its
implementation via heaps, (iii) red-black trees, and (iv) compressing data so
that it can be stored or transmitted efficiently (including the JPEG compres-
sion algorithm). For information on the required background and when we
will cover specific topics, see the course web page.

1We consider an algorithm efficient if its worst case running time is polynomial in its
input size

2including many that at first sight appear to have nothing to do with graph theory

1

Reformulations Using Boolean Formulas And

Graphs

Because of the way they are built, traditionally computers have dealt with
strings of zeros and ones, and to a large extent they still do so. Thus, refor-
mulating a problem so that it can be solved via a computer usually involves
turning its input into a string of 0s and 1s (or equivalently a false/true
string). One way of doing so is to reformulate the problems so that its input
involves BOOLEAN variables, that is variables which take the values TRUE
and FALSE. For technical simplicity, in discussing such reformulations. we
focus on decision problems, that is problems whose solution is either TRUE
or FALSE.

One famous such problem is the SATISFIABILITY problem, which we
define momentarily. As Cook showed, almost half a century ago, the famous
P=NP? conjecture, for which there is a million dollar prize, is equivalent to
the statement that there is an efficient algorithm to solve SATISFIABILITY.
An easy corollary of Cook’s result is that every instance I of a decision
problem for which there is an efficient algorithm can be reformulated as an
instance I ′ of SATISFIABILITY such that the size of I ′ is polynomial in the
size of I. Indeed, as shown in class and below, these two statements remain
true if we replace SATISFIABILITY by a special case 3-SAT in which the
input boolean clauses have length three.

As we also showed in class and will show below, we can reformulate
instances of the special case 2-SAT of SATISFIABILITY where clauses have
length two as a graph theory problem. As we will show in the next lecture,
this means we can solve it in linear time.

This suggests that our approach of reformulating problems as graph the-
ory problems will have wide applicsbility, Further examples throughout the
course will show that this is indeed the case.

Reducing SATISFIABILITY to 3-SAT

As mentioned earlier, a boolean variable x can be assigned the value true
or the value false. Associated to x are two literals x and its negation ¬x.
Assigning x the value true means x evaluates to true and ¬x evaluates to
false, while assigning x the value false means x evaluates to false and ¬x
evaluates to true. We note that the negation of ¬x is x. I.e. ¬¬x = x.

2

Boolean formulas over a set X = {x1, ..., xn} of Boolean variables are ob-
tained by combining the corresponding literals using AND, OR, and paren-
theses. A truth assignment for X is an assignment of true or false to each
variable xi (and hence to each literal). Using natural rules, this leads to
an evaluation of every formula over the literals to either true of false. In
particular, the OR of a set of subformulas evaluates to true precisely if any
subformula evaluates to true while the AND of a set of subformulas evaluates
to true precisely if all the subformulas evaluate to true.

SATISFIABILITY is concerned with the evaluation of a specially struc-
tured input formula. Specifically, a formula which is the AND of a set of
subformulas called clauses. Each clause is the OR of a set of literals. Such
an input formula is said to be in conjunctive normal form, or CNF.

A CNF formula evaluates to true with respect to a truth assignment to
the variables precisely if in every clause there is a least one literal which
evaluates to true. A truth assignment for which the formula evaluates to
true is called satisfying.

The input for an instance of the SATIFIABILITY decision problem is
a CNF formula. The question is whether there is a satisfying truth assign-
ment. If so, the formula is called satisfiable. The size of a SATISFIABILITY
instance is the sum over each clause of the number of literals in the clause.

For example (x1 OR x2 OR ¬x4) AND (x2 OR ¬x3) AND x5 has size 6
and is satisfiable; a satisfying truth assignment is obtained by assigning each
xi the value true. On the other hand, (x1 OR ¬x2) AND (¬x1 OR x2) AND
(¬x1 OR ¬x2) AND (x1 OR x2) has size 8 and is not satisfiable.

For any positive integer k, the input to an instance of k-SAT is a CNF
formula all of whose clauses have length k. We will be especially interested
in 2-SAT and 3-SAT.

We now describe a linear time algorithm which given a CNF formula F
returns a CNF formula F’ all of whose clauses have length three, whose size is
at most 3 times that of F, and such that F’ is satisfiable precisely if F is. The
existence of this reduction implies that if there is an efficient algorithm to
solve 3-SAT then there is an efficient algorithm to solve SATISFIABILITY.
The algorithm for SATISFIABILITY would simply first apply our reduction
algorithm and then apply the algorithm for 3-SAT to its output.

So, suppose F has clauses C1,...,Ck and is over the set X = {x1, ..., xn}
of Boolean variables. We let l(i) be the length of Ci that is the number of
literals Ci contains. Then letting ji = min{1, l(i) − 2} and j =

∑k
i=1 ji, F

′

will have j clauses. For each i between 1 and l, there will be a set Si of ji of

3

these clauses which correspond to Ci.
We let yi1, ..., y

i
l(i) be the literals occurring in Ci so

Ci is yi1 OR yi2 OR ... OR yil(i).

If l(i) ≤ 3 then ji = 1 and Si is a single clause C ′i.
If Ci has length three then C ′i = Ci.
If Ci has length two then C ′i is yi1 OR yi2 OR yi2.
If Ci has length one then C ′i is yi1 OR yi1 OR yi1.

If l(i) > 3 then Si has clauses D1
i , ...D

l(i)−2
i and uses new variables

NOTSATISFIEDY ET i
2, ..., NOTSATISFIEDY ET i

l(i)−1.

Clause D1
i is :

yi1 OR yi2 or NOTSATISFIEDY ET i
2.

For 2 ≤ j ≤ l(i)− 3, Clause Dj
i is

¬NOTSATISFIEDY ET i
j OR yij+1 OR NOTSATISFIEDY ET i

j+1.

Clause D
l(i)−2
i is

¬NOTSATISFIEDY ET i
l(i)−2 OR yil(i)−1 OR yil(i).

It is easy to see that the size of F ′ is at most 3 times the size of F .
Furthermore, it is not difficult to construct the clauses of F ′ given those of
F in linear time. It remains to show that F is satisfiable if and only if F ′ is
satisfiable.

Now, if there is a satisfying truth assignment for F we can obtain one
for F ′ as follows. We use the same assignment on X and for each i, j with
2 ≤ j ≤ l(i)−2 we set NOTSATISFIEDY ET j

i to be true precisely if none
of the literals yi1, .., y

i
j evaluate to true.

On the other hand if there is a satisfying truth assignment for F ′ then
its restriction to X is a satisfying truth assignment for F . To see this, it is
enough to show that there is no satisfying truth assignment for F ′ such that
for some i, all the yij evaluate to false. Assume for a contradiction that such
an assignment exists. Clearly l(i) is at least 4. Considering clause D1

i we see
that NOTSATISFIEDY ET i

2 must be assigned true. Then by induction on
j we see that for 3 ≤ j ≤ l(i)−2, NOTSATISFIEDY ET i

j is assigned true,

by considering Dj−1
i and the inductive hypothesis. But now, clause D

l(i)−2
i

evaluates to false, a contradiction.
The (informal) description and proof of correctness of our reduction al-

gorithm is complete.

4

Reducing 2-SAT to finding a good ordering

If for two Boolean literals x and y , we have that x OR y is a clause in an
instance of 2-SAT then for any satisfying truth assignment ¬x being true
implies that y must be true and ¬y being true implies that x must be true.

This motivates the definition of an impliction directed graph for an in-
stance of 2-SAT. Its vertices are the literals corresponding to the set X of
variables that the formula is over. Letting C be the set of clauses in the input
formula, the arcs of the implication graph consist precisely of:

{¬xixj|(xi OR xj) ∈ C} ∪ {xixj|(¬xi OR xj) ∈ C}∪

{¬xi¬xj|(xi OR ¬xj) ∈ C} ∪ {xi¬xj|(¬xi OR ¬xj) ∈ C}.

We note that we think of the clauses as unordered so each clause gives
rise to two arcs. It is easy to see that a truth assignment is satisfying for
the formula precisely if there is no arc of the implication graph from a literal
which evaluates to true to a literal which evaluates to false. It is also easy
that we can construct this implication graph from the clauses of an instance
of 2-SAT in linear time. Thus we can reduce a 2-SAT instance to an instance
of the following problem in linear time:

Definition: we say a labelling of the vertex set of an implication graph with
T and F is good if (i) for every i, xi and ¬xi get different labels and (ii) there
is no arc yz such that y is labelled T and z is labelled F .

Problem: IS THERE A GOOD LABELLING?

Input: Directed implication graph G with vertex set V = {x1, ..., xn,¬x1, ...,¬xn}
and arc set A.

Question: Is there a good labelling of V (G)?

We note that if the desired labelling exists and xyz is a path such that x
is labelled T then by considering the edge xy so is y. Hence by considering
the edge yz, so is z. More generally we see that our condition on the desired
labelling is equivalent to the statement that if x is labelled T then any vertex
which is on a directed path starting at x is also labelled T .

We recall that a strong component of a digraph is a maximal set of vertices
such that for any two vertices u and v in the set, there is a path from u to
v. We note that if there is a path from u to v and a path from v to w then
there is a path from u to w. Hence the vertex sets of strong components are
disjoint and partition V (G).

5

We note that our desired condition implies that if any vertex of a strong
component of G is labelled T all of its vertices must be labelled T . So we
have:

Lemma: If an implication graph has a good labelling then none of its strong
components contain both xi and ¬xi for any i.

Proof One of xi or ¬xi must be labelled T and the other F .

It turns out, as we now explain, that the desired labelling exists precisely
if there is no i such that xi and ¬xi lie in the same strong component. More
strongly, we show now that there is a linear time algorithm which when
applied to an implication graph, finds a labelling with T and F which has
the desired property provided no such i exists.

Key to doing so is constructing a special ordering on the vertices of a
graph. We will be interested in orderings where the vertices of each strong
component appear consecutively in the ordering. Furthermore, we will insist
that any edge between strong components must go from some vertex to a
vertex which appears later in the order.

Definition: We say that an order on the vertices of a directed graph G is
good if we can label the strong components of G as Z1, ..Zk so that for i < j
all the vertices of Zi appear before all the vertices of Zj under the ordering,
and for all i < j there is no arc from a vertex of Zj to a vertex of Zi.

In the next class, we shall present and discuss an algorithm with the
following specifications.

Algorithm: FINDING A GOOD ORDER

Input: A directed graph G.
Output: A linked list ORD which lists the vertices of G in a good order.
Running time: O(|V (G)|+ |E(G)|).
We then exploit the following result:

Lemma: Suppose G is a directed graph in which no literal is contained in
the same strong component as its negation. Then for any good ordering of
G, labelling xi with T if it appears after ¬xi in the order and F otherwise
yields a good labelling.

Proof: We note that by the construction of our implication graph, if yz is
an arc so is ¬y¬z. It follows by induction on the length of the path that if
there is a directed path from y to z there is a path from ¬y to ¬z. In the

6

same vein if there is a path from z to y then there is a path from ¬y to ¬z.
Thus, if for every literal x, we let Sx be the strong component containing x,
then we have that S¬x = {¬y|y ∈ Sx}. Hence the vertex sets of the strongly
connected components split into a set of pairs each of which is Sx and S¬x
for some x and is also Sy and S¬y for every y in Sx ∪ S¬x.

Now, by the definition of a good order, since x and ¬x lie in different
strong components either all the vertices of Sx come before all those of S¬x
or all the vertices of S¬x come before all those of Sx. It follows that for every
strong component, our labelling procedure either labels all its vertices T or
all its vertices F . Thus if there is an arc xy such that x has the label T and
y has the label F then x and y lie in different strong components.

Because of the pairing of the strong components, so do ¬x and ¬y. Now,
because xy is an arc, the vertices of Sx appears before those of Sy in the order.
Because of the way that our implication graph was constructed, ¬y¬x is an
arc of this graph. Hence the vetices of S¬y appears before those of S¬x in
the order. Because x is labelled true the vertices of S¬x appears before the
vertices of Sx in the order. Hence, the vertices of S¬y appears before those
of Sy and y is labelled true, a contradiction.

We can now set out our linear time algorithm for solving an instance G of IS
THERE A GOOD LABELLING? It uses an array LABEL indexed by the
vertex set V of G.The entries of LABEL can be T,F, or ∅. It returns either
a good labelling in LABEL or the information that no such labelling exists

(1) apply FINDING A GOOD ORDER to G.

(2) For all v in V do LABEL[v] = ∅
(3) Traverse ORD; when we come to v perform the following:

IF LABEL[v] = ∅ THEN LABEL[v] := F , LABEL[¬v] := T ENDIF

(4) For each uv in E(G) IF LABEL[u] = T AND LABEL[v] = F THEN
return ”no good labelling exists” and terminate ENDIF

(5) Return LABEL and terminate.

7

