
Maximum	Flows	and	
Minimum	Cuts	II

Lecture	6	COMP	610
January	24	2018

Recall:	A	Capacitated	Network
Directed	Graph	G=(V,E),	nonnegative	capacity	c(e)	(sometimes	u(e)	is	used)	for	each	edge	e
unique	source	s	and	sink	t,	no	edges	into	s	or	out	of	t,	

1/20/2018 media/31c/31cb1d64-6c66-4f2c-8996-519b583724d0/phpAq5Htc.png (1024×502)

http://d2vlcm61l7u1fs.cloudfront.net/media%2F31c%2F31cb1d64-6c66-4f2c-8996-519b583724d0%2FphpAq5Htc.png 1/1

Recall:	An	s-t	Flow	
∀e∈E	have	f(e),0≤ f(e)	≤c(e)	(capacity	constraints)
∀v∈V		∑ 𝑓 𝑢𝑣 =)*∈+ ∑ 𝑓(𝑢𝑣)*)∈+ 	(flow	conservation	constraints)

Recall:	An		s-t	Cut
is	a	partition(A,B)	of	V		with	s∈ 𝐴, 𝑏 ∈ 𝐵.
Its	capacity	c(A,B)=∑ 𝑐(𝑢𝑣))*∈+,)∈5,*∈6

Recall:	
The	value	of	a	flow	and	flow	across	a cut

For	all	S	⊆ 𝑉:
	 fout(S)=∑ 𝑓(𝑥𝑦))*∈+,)∈<,*∈=><

fin(S)=∑ 𝑓(𝑥𝑦))*∈+,)∈=><,*∈<

v(f)=fout({s})
For	all	s-t	cuts	(A,B),	v(f)=fout(A)-fin(A)≤ c(A,B)
Proof:	v(f)=∑ (𝑓*∈5

out(v)-fin(v))=∑ 𝑓*∈5
out(v)-∑ 𝑓?@*∈< (v)

=(fout(A)+∑ 𝑓(𝑣𝑤)*B∈+,*∈5,B∈5)- (fin(A)+∑ 𝑓(𝑣𝑤)*B∈+,*∈5,B∈5)
=	fout(A)-fin(A)≤ fout(A)≤ c(A,B)

Type	equation	here.

Max	Flow	Min	Cut	Theorem	

For	every	capacitated	network.	The	maximum	volume	of	an	s-t	flow	is	
equal	to	the	minimum	volume	of	an	s-t	cut.	

Theorem	7.14	KT
If	all	the	capacities	are	integer	then	there	is	a	maximum	volume	s-t	flow	
f	which	is	integer	valued.	 Can	find	this	flow	in	O(v(f)|E|)	time.	

Recall:	Matchings and	Covers

A	matching	M	is	a	disjoint	set	of	edges
C⊆V	is	a	cover		if	there	is	no	edge	with	both	endpoints	in	V-C.	
For	a	matching	M	and	cover	C	in	any	G,	|M|≤ |C|

For	Bipartite	G:
The	Max	Size	of	a	Matching=Min	Size	of	a	cover

Maximum	Number	of	
Edge-Disjoint	Paths	in	a	Directed	Graph	G	

V(G’)=V(G),	E(G’)=E(G)-{xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
Find	a	integer-valued	max	value	s-t	flow		f	in	G’.	
Find	a	set	of	v(f)	edge	disjoint	paths	from	s-t	in	G,	only	using	e	if	f(e)=1.
For	any	s-t	cut	(A,B),	c(A,B)=|{ab	∈ E|a∈ A,	b∈ B}|.
For	any	s-t	cut		(A,B),	removing	the		set	{ab	∈ E|a∈ A,	b∈ B}	separates	s	
from	t	(i.e.	destroys	all	s-t	paths).	
Theorem:	The	maximum	size	of	a	set		of	edge	disjoint	s-t	paths	in	a	
directed	graph	equals	the	minimum	size	of	a	set			of	edges	whose	
removal	separates	s	from	t.		

Maximum	Number	of	
Edge-Disjoint	Paths	in	a	Directed	Graph	G	

V(G’)=V(G),	E(G’)=E(G)-{xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
Find	a	integer-valued	max	value	s-t	flow		f	in	G’.	
Find	a	set	of	v(f)	edge	disjoint	paths	from	s-t	in	G,	only	using	e	if	f(e)=1.
For	any	s-t	cut	(A,B),	c(A,B)=|{ab	∈ E|a∈ A,	b∈ B}|.
For	any	s-t	cut		(A,B),	removing	the		set	{ab	∈ E|a∈ A,	b∈ B}	separates	s	
from	t	(i.e.	destroys	all	s-t	paths).	
Theorem:	The	maximum	size	of	a	set		of	edge	disjoint	s-t	paths	in	a	
directed	graph	equals	the	minimum	size	of	a	set			of	edges	whose	
removal	separates	s	from	t.		

Maximum	Number	of	
Edge-Disjoint	Paths	in	a	Directed	Graph	G	

V(G’)=V(G),	E(G’)=E(G)-{xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
Find	a	integer-valued	max	value	s-t	flow		f	in	G’.	
Find	a	set	of	v(f)	edge	disjoint	paths	from	s-t	in	G,	only	using	e	if	f(e)=1.
For	any	s-t	cut	(A,B),	c(A,B)=|{ab	∈ E|a∈ A,	b∈ B}|.
For	any	s-t	cut		(A,B),	removing	the		set	{ab	∈ E|a∈ A,	b∈ B}	separates	s	
from	t	(i.e.	destroys	all	s-t	paths).	
Theorem:	The	maximum	size	of	a	set		of	edge	disjoint	s-t	paths	in	a	
directed	graph	equals	the	minimum	size	of	a	set			of	edges	whose	
removal	separates	s	from	t.		

Maximum	Number	of	
Edge-Disjoint	Paths	in	a	Directed	Graph	G	

V(G’)=V(G),	E(G’)=E(G)-{xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
Find	a	integer-valued	max	value	s-t	flow		f	in	G’.	
Find	a	set	of	v(f)	edge	disjoint	paths	from	s-t	in	G,	only	using	e	if	f(e)=1.
For	any	s-t	cut	(A,B),	c(A,B)=|{ab	∈ E|a∈ A,	b∈ B}|.
For	any	s-t	cut		(A,B),	removing	the		set	{ab	∈ E|a∈ A,	b∈ B}	separates	s	
from	t	(i.e.	destroys	all	s-t	paths).	
Menger’s Theorem(1927):	The	maximum	size	of	a	set		of	edge	disjoint	
s-t	paths	in	a	directed	graph	equals	the	minimum	size	of	a	set			of	edges	
whose	removal	separates	s	from	t.		

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu.	
How	do	we	handle	this????	
If	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu.	
How	do	we	handle	this????	
If	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu.	
How	do	we	handle	this????	
If	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu	in	G’.	
How	do	we	handle	this????	
If	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu	in	G’.	
How	do	we	handle	this????	
If	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Maximum	Number	of	
Edge-Disjoint	Paths	in	an	Undirected	Graph	G	
V(G’)=V(G),	E(G’)={uv,vu| uv ∈ 𝐸 𝐺 }−{	xs|xs∈ 𝐸(𝐺)} − {𝑡𝑥|𝑡𝑥 ∈E(G)}
A	set	F	of	k	edge	disjoint	s-t	paths	in	G	yield	an	s-t	flow	of	value	k	in	G’.
As	before,	there	is	an	algorithm	which	given	an	integer-valued	flow	f	of	
value	k	in	G’	yields	a	set		F	of	k	disjoint	s-t	paths	in	G’.
Each	such	path	yields	an	undirected	path	in	G.	These	are	disjoint	except	
that	the	path	using	uv in	G’	may	intersect	with	the	path	using	vu	in	G’.	
How	do	we	handle	this????	
For	all	uv ∈ 𝐸 𝐺 , if	f(uv)=f(vu)=1,	set	f(uv)=f(vu)=0.	Then	find	F.	

Airline	Scheduling

Set	of	flights:	(Origin,	Destination,Departure Time,	Arrival	Time)

Flight	j	is	reachable	from	flight	i if		between	the	arrival	time	for	flight	i
and	the	departure	time	for	flight	j		there	is	time	to	due	all	scheduled	
maintenance	and	cleaning,		and	relocate	from	the	destination	of	flight	i
to	the	origin	of	flight	j.	

We	want	to	find	out	if		k	planes	can	handle	all	the	flights.			

Airline	Scheduling

Set	of	flights:	(Origin,	Destination,Departure Time,	Arrival	Time)

Flight	j	is	reachable	from	flight	i if		between	the	arrival	time	for	flight	i
and	the	departure	time	for	flight	j		there	is	time	to	due	all	scheduled	
maintenance	and	cleaning,		and	relocate	from	the	destination	of	flight	i
to	the	origin	of	flight	j.	

We	want	to	find	out	if		k	planes	can	handle	all	the	flights.			

Airline	Scheduling

Set	of	flights:	(Origin,	Destination,Departure Time,	Arrival	Time)

Flight	j	is	reachable	from	flight	i if		between	the	arrival	time	for	flight	i
and	the	departure	time	for	flight	j		there	is	time	to	due	all	scheduled	
maintenance	and	cleaning,		and	relocate	from	the	destination	of	flight	i
to	the	origin	of	flight	j.	

We	want	to	find	out	if		k	planes	can	handle	all	the	flights.			

Airline	Scheduling

Set	of	flights:	(Origin,	Destination,Departure Time,	Arrival	Time)

Flight	j	is	reachable	from	flight	i if		between	the	arrival	time	for	flight	i
and	the	departure	time	for	flight	j		there	is	time	to	due	all	scheduled	
maintenance	and	cleaning,		and	relocate	from	the	destination	of	flight	i
to	the	origin	of	flight	j.	

We	want	to	find	out	if		k	planes	can	handle	all	the	flights.			

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Edge	Disjoint	Paths

Build	a	digraph	with	two	vertices	ui and	vi for	each	flight.	
There	is	an	edge	from	ui to	vi for	every	i.	
There	is	an	edge	from	vi to	uj if	flight	j	is	reachable	from	flight	i.	
There	is	a	source	s	and	an	edge	from	s	to	every	ui.
There	is	a	sink	t	and	an	edge	from	every	vi to	t.
A	path	P	from	s	to	t	points	out	a	set	of	flights	which	can	be	handled	by	
one	plane	(those	for	which	uivi is	an	edge	of	P).	
We	can	schedule	the	flights	using	k	planes	if	there	is	a	set	of	at	most		k	
edge-disjoint	paths	of	G	using	the	edge	uivi for	every	flight	i.	

Airline	Scheduling	Via	Bipartite	Matching

For	any	schedule	using	exactly		k	planes	to	handle	f	flights,	the	
corresponding	k	edge	disjoint	paths	use		k	edges	out	of	s,	k	edges	into	t,	
the	f	edges	of	the	form	uivi,			and	f-k	edges	of	the	form	viuj where	flight	j	
is	reachable	from	flight	i.	
These	last	f-k	edges	form	a	matching.	
The	desired	k	paths	exist	precisely	if	there	is	a	matching	of	size	f-k	in	
the	graph	G’	whose	edge	set	is	{vjui|	flight	i is	reachable	from	flight	j}.
So	the	number	of	planes	needed	is	the	minimum	k	for	which	there	is	a	
matching	of	size	n-k	in	G’.	Given	the	matching	we	can	find	the	schedule	
easily,	so	the	time	to	find	an	optimal	schedule	is	O(f^3).	

Airline	Scheduling	Via	Bipartite	Matching

For	any	schedule	using	exactly		k	planes	to	handle	f	flights,	the	
corresponding	k	edge	disjoint	paths	use		k	edges	out	of	s,	k	edges	into	t,	
the	f	edges	of	the	form	uivi,			and	f-k	edges	of	the	form	viuj where	flight	j	
is	reachable	from	flight	i.	
These	last	f-k	edges	form	a	matching.	
The	desired	k	paths	exist	precisely	if	there	is	a	matching	of	size	f-k	in	
the	graph	G’	whose	edge	set	is	{vjui|	flight	i is	reachable	from	flight	j}.
So	the	number	of	planes	needed	is	the	minimum	k	for	which	there	is	a	
matching	of	size	n-k	in	G’.	Given	the	matching	we	can	find	the	schedule	
easily,	so	the	time	to	find	an	optimal	schedule	is	O(f^3).	

Airline	Scheduling	Via	Bipartite	Matching

For	any	schedule	using	exactly		k	planes	to	handle	f	flights,	the	
corresponding	k	edge	disjoint	paths	use		k	edges	out	of	s,	k	edges	into	t,	
the	f	edges	of	the	form	uivi,			and	f-k	edges	of	the	form	viuj where	flight	j	
is	reachable	from	flight	i.	
These	last	f-k	edges	form	a	matching.	
The	desired	k	paths	exist	precisely	if	there	is	a	matching	of	size	f-k	in	
the	graph	G’	whose	edge	set	is	{vjui|	flight	i is	reachable	from	flight	j}.
So	the	number	of	planes	needed	is	the	minimum	k	for	which	there	is	a	
matching	of	size	n-k	in	G’.	Given	the	matching	we	can	find	the	schedule	
easily,	so	the	time	to	find	an	optimal	schedule	is	O(f^3).	

Airline	Scheduling	Via	Bipartite	Matching

For	any	schedule	using	exactly		k	planes	to	handle	f	flights,	the	
corresponding	k	edge	disjoint	paths	use		k	edges	out	of	s,	k	edges	into	t,	
the	f	edges	of	the	form	uivi,			and	f-k	edges	of	the	form	viuj where	flight	j	
is	reachable	from	flight	i.	
These	last	f-k	edges	form	a	matching.	
The	desired	k	paths	exist	precisely	if	there	is	a	matching	of	size	f-k	in	
the	graph	G’	whose	edge	set	is	{vjui|	flight	i is	reachable	from	flight	j}.
So	the	number	of	planes	needed	is	the	minimum	k	for	which	there	is	a	
matching	of	size	n-k	in	G’.	Given	the	matching	we	can	find	the	schedule	
easily,	so	the	time	to	find	an	optimal	schedule	is	O(f^3).	

Sequential	Scheduling	Via	Bipartite	Matching

Image	Segmentation	Graph.

Graph	G=(V,E).	V	is	the	set	of	pixels,	E	joins	neighbours.	

Image	Segmentation	Problem

• For	each	pixel	I,	have:	ai-likelihood	i is	in	the	foreground	and
bi-likelihood	i is	in	the	background.	

• For	each	edge	ij of	the	Image	Segmentation	graph	have	separation	penalty	pij
incurred	if	we	make	different	choices	for	i and	j.	
• We	want	to	find	a	partition	of	the	pixels	into	a	set	F	of	foreground	pixels	and	a	set	
B	of	background	pixels	so	as	to	maximize:

∑ 𝑎??∈Y +∑ 𝑏??∈6 −∑ 𝑝?[?[∈+,?∈Y,[∈6

• This	is	the	same	as	minimizing	
∑ 𝑎??∈6 +∑ 𝑏??∈Y +∑ 𝑝?[?[∈+,?∈Y,[∈6

Image	Segmentation	Problem

• For	each	pixel	I,	have:	ai-likelihood	i is	in	the	foreground	and
bi-likelihood	i is	in	the	background.	

• For	each	edge	ij of	the	Image	Segmentation	graph	have	separation	penalty	pij
incurred	if	we	make	different	choices	for	i and	j.	
• We	want	to	find	a	partition	of	the	pixels	into	a	set	F	of	foreground	pixels	and	a	set	
B	of	background	pixels	so	as	to	maximize:

∑ 𝑎??∈Y +∑ 𝑏??∈6 −∑ 𝑝?[?[∈+,?∈Y,[∈6

• This	is	the	same	as	minimizing	
∑ 𝑎??∈6 +∑ 𝑏??∈Y +∑ 𝑝?[?[∈+,?∈Y,[∈6

Image	Segmentation	Problem

• For	each	pixel	I,	have:	ai-likelihood	i is	in	the	foreground	and
bi-likelihood	i is	in	the	background.	

• For	each	edge	ij of	the	Image	Segmentation	graph	have	separation	penalty	pij
incurred	if	we	make	different	choices	for	i and	j.	
• We	want	to	find	a	partition	of	the	pixels	into	a	set	F	of	foreground	pixels	and	a	set	
B	of	background	pixels	so	as	to	maximize:

∑ 𝑎??∈Y +∑ 𝑏??∈6 −∑ 𝑝?[?[∈+,?∈Y,[∈6

• This	is	the	same	as	minimizing	
∑ 𝑎??∈6 +∑ 𝑏??∈Y +∑ 𝑝?[?[∈+,?∈Y,[∈6

Image	Segmentation	Problem

• For	each	pixel	I,	have:	ai-likelihood	i is	in	the	foreground	and
bi-likelihood	i is	in	the	background.	

• For	each	edge	ij of	the	Image	Segmentation	graph	have	separation	penalty	pij
incurred	if	we	make	different	choices	for	i and	j.	
• We	want	to	find	a	partition	of	the	pixels	into	a	set	F	of	foreground	pixels	and	a	set	
B	of	background	pixels	so	as	to	maximize:

∑ 𝑎??∈Y +∑ 𝑏??∈6 −∑ 𝑝?[?[∈+,?∈Y,[∈6

• This	is	the	same	as	minimizing	
∑ 𝑎??∈6 +∑ 𝑏??∈Y +∑ 𝑝?[?[∈+,?∈Y,[∈6

Image	Segmentation	Via	Min	Cut

• Construct	a	capacited network	whose	vertex	set	is	the	pixels,	s	and	t.
• Add	an	edge	si for	every	pixel	i with	capacity	ai
• Add	an	edge	ti for	every	pixel	i with	capacity	bi
• For	every	two	neighbouring pixels	ij,	add	edges	ij and	ji both	with	
capacity	pij
• There	is	a	bijection between	s-t	cuts		and	choices	for	the	foreground	F	
and	background.	The	cut	corresponding	to	(F,B)	is	(s+F,t+B).
• We	are	looking	for	the	minimum	capacity	cut.	

Image	Segmentation	Via	Min	Cut

• Construct	a	capacited network	whose	vertex	set	is	the	pixels,	s	and	t.
• Add	an	edge	si for	every	pixel	i with	capacity	ai
• Add	an	edge	ti for	every	pixel	i with	capacity	bi
• For	every	two	neighbouring pixels	ij,	add	edges	ij and	ji both	with	
capacity	pij
• There	is	a	bijection between	s-t	cuts		and	choices	for	the	foreground	F	
and	background.	The	cut	corresponding	to	(F,B)	is	(s+F,t+B).
• We	are	looking	for	the	minimum	capacity	cut.	

Image	Segmentation	Via	Min	Cut

• Construct	a	capacited network	whose	vertex	set	is	the	pixels,	s	and	t.
• Add	an	edge	si for	every	pixel	i with	capacity	ai
• Add	an	edge	ti for	every	pixel	i with	capacity	bi
• For	every	two	neighbouring pixels	ij,	add	edges	ij and	ji both	with	
capacity	pij
• There	is	a	bijection between	s-t	cuts		and	choices	for	the	foreground	F	
and	background.	The	cut	corresponding	to	(F,B)	is	(s+F,t+B).
• We	are	looking	for	the	minimum	capacity	cut.	

