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Recall: A Capacitated Network

Directed Graph G=(V,E), nonnegative capacity c(e) (sometimes u(e) is used) for each edge e
unique source s and sink t, no edges into s or out of t,




Recall: An s-t Flow

Ve€E have f(e),0< f(e) <c(e) (capacity constraints)
YWEV Y. ep f(uv) =3 g f(uv) (flow conservation constraints)
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Recall:
The value of a flow and flow across a cut

Forall SC V:
fOUt(S)zz:quE,uES,VEV—S f(xy)

fin(S)zz:quE,uEV—S,vES f(xy) Type equation here.
v(f)=fu*({s})
For all s-t cuts (A,B), v(f)=fout(A)-fin(A)< c(A,B)



Max Flow Min Cut Theorem

For

every capacitated network. The maximum volume of an s-t flow is

equal to the minimum volume of an s-t cut.

Theorem 7.14 KT

If a
fw

| the capacities are integer then there is a maximum volume s-t flow

nich is integer valued. Can find this flow in O(v(f)|E|) time.



Recall: Matchings and Covers

A matching M is a disjoint set of edges
CCVis a cover if thereis no edge with both endpointsin V-C.
For a matching M and coverCin any G, |[M|< |C]



For Bipartite G:
The Max Size of a Matching=Min Size of a cover




Maximum Number of
Edge-Disjoint Paths in a Directed Graph G

V(G’)=V(G), E(G’)=E(G)-{xs|xs€ E(G)} — {tx|tx €E(G)}
Find a integer-valued max value s-t flow fin G’
Find a set of v(f) edge disjoint paths from s-t in G, only using e if f(e)=1.
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Maximum Number of
Edge-Disjoint Paths in a Directed Graph G

V(G’)=V(G), E(G’)=E(G)-{xs|xs€ E(G)} — {tx|tx €E(G)}

Find a integer-valued max value s-t flow fin G’

Find a set of v(f) edge disjoint paths from s-t in G, only using e if f(e)=1.
For any s-t cut (A,B), c(A,B)=|{ab € E|a€E A, b€ B}|.

For any s-t cut (A,B), removing the set {ab € E|a€ A, b€ B} separates s
fromt (i.e. destroys all s-t paths).

Menger’s Theorem(1927): The maximum size of a set of edge disjoint
s-t paths in a directed graph equals the minimum size of a set of edges
whose removal separates s from t.
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Maximum Number of
Edge-Disjoint Paths in an Undirected Graph G

V(G’)=V(G), E(G’)={uv,vu| uv € E(G)} —{xs|xs€ E(G)} — {tx|tx €EE(G)}
A set F of k edge disjoint s-t paths in G yield an s-t flow of value k in G’

As before, there is an algorithm which given an integer-valued flow f of
value k in G’ yields a set F of k disjoint s-t paths in G’.

Each such path yields an undirected path in G. These are disjoint except
that the path using uv in G’ may intersect with the path using vu in G’.

How do we handle this????

Forall uv € E(G),if f(uv)=f(vu)=1, set f(uv)=f(vu)=0. Then find F.
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Airline Scheduling

Set of flights: (Origin, Destination,Departure Time, Arrival Time)

Flight j is reachable from flight i if between the arrival time for flight i
and the departure time for flight j there is time to due all scheduled
maintenance and cleaning, and relocate from the destination of flight i

to the origin of flight j.

We want to find out if k planes can handle all the flights.
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Airline Scheduling Via Edge Disjoint Paths

Build a digraph with two vertices u; and v, for each flight.
Thereis an edge from u; to v, for every i.
There is an edge fromv; to y; if flight j is reachable from flight i.

Thereis a source s and an edge from s to every u..

Thereis asink t and an edge from every v, to t.

A path P from s to t points out a set of flights which can be handled by
one plane (those for which u.v; is an edge of P).

We can schedule the flights using k planes if there is a set of at most k
edge-disjoint paths of G using the edge u.v; for every flight i.



Airline Scheduling Via Bipartite Matching

For any schedule using exactly k planes to handle f flights, the
corresponding k edge disjoint paths use k edges out of s, k edges into t,
the f edges of the form u;v; and f-k edges of the form v,u; where flight j

is reachable from flight i.
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Airline Scheduling Via Bipartite Matching

For any schedule using exactly k planes to handle f flights, the
corresponding k edge disjoint paths use k edges out of s, k edges into t,
the f edges of the form u;v; and f-k edges of the form v,u; where flight j
is reachable from flight i.

These last f-k edges form a matching.

The desired k paths exist precisely if there is a matching of size f-k in
the graph G" whose edge set is {v;u;| flight i is reachable from flight j}.

So the number of planes needed is the minimum k for which there is a
matching of size n-k in G’. Given the matching we can find the schedule
easily, so the time to find an optimal schedule is O(f*3).



Sequential Scheduling Via Bipartite Matching



Image Segmentation Graph.

Graph G=(V,E). Vis the set of pixels, E joins neighbours.
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Image Segmentation Problem

* For each pixel I, have: a-likelihoodiis in the foreground and
b.-likelihoodiis in the background.



Image Segmentation Problem

* For each pixel I, have: a-likelihoodiis in the foreground and
b.-likelihoodiis in the background.

* For each edge ij of the Image Segmentation graph have separation penalty p;
incurred if we make different choices foriandj.



Image Segmentation Problem

* For each pixel I, have: a-likelihoodiis in the foreground and
b.-likelihoodiis in the background.

* For each edge ij of the Image Segmentation graph have separation penalty p;
incurred if we make different choices foriandj.

* We want to find a partition of the pixelsinto a set F of foreground pixels and a set
B of background pixels so as to maximize:

Dier Aitiep b — ZijEE,iEF,jEB Dij



Image Segmentation Problem

For each pixel |, have: a-likelihoodiis in the foreground and
b.-likelihoodiis in the background.

For each edge ij of the Image Segmentation graph have separation penalty p;,
incurred if we make different choices foriandj.

We want to find a partition of the pixels into a set F of foreground pixels and a set
B of background pixels so as to maximize:

Dier Aitiep b — ZijEE,iEF,jEB Dij

This is the same as minimizing
Qe AitXier b +ZijEE,iEF,jEB Dij



Image Segmentation Via Min Cut

e Construct a capacited network whose vertex set is the pixels, s and t.
* Add an edge s; for every pixel i with capacity a,
* Add an edge ti for every pixel i with capacity b,

* For every two neighbouring pixels ij, add edges ij and ji both with
capacity p;
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Image Segmentation Via Min Cut

e Construct a capacited network whose vertex set is the pixels, s and t.
* Add an edge s; for every pixel i with capacity a,
* Add an edge ti for every pixel i with capacity b,

* For every two neighbouring pixels ij, add edges ij and ji both with
capacity p;

* There is a bijection between s-t cuts and choices for the foreground F
and background. The cut correspondingto (F,B) is (s+Ft+B).

* We are looking for the minimum capacity cut.



