
A Deterministic Algorithm for Selection

We present a deterministic algorithm SELECT for selection which just like
QUICKSELECT, chooses a pivot in each iteration, splits the remaining ele-
ments depending on whether they are bigger or smaller than the pivot and
then recurses on the subproblem containing the rth order statistic.

The expected number of comparisions made by Quickselect is linear be-
cause using a uniformily random choice of pivot ensures that it is likely that
the pivot will split the elements into two subsets which are not that far from
equal. Our new algorithm uses a pivot selection subroutine which guarantees
that the pivot chosen splits the elements into two pieces each with almost
three-tenths of the elements.

The pivot-choosing subroutine is reasonably complex and uses SELECT
as a subroutine. It is set out on page 220 of CLRS and proceeds as follows:

1. Partition A into dn
5
e groups, all of which except possibly one have size

5.
2. Find the median of each group of size at most 5 by first sorting the

group.
3. Use SELECT to find the median (if n is odd) or lower median of the

set of medians of the groups. Call this element p.
The rest of the algorithm proceeds as in QUICKSELECT.
4. Using p as a pivot and n− 1 comparisions partition A− {p} into the

set Low of elements smaller than p and the set High of elements larger than
p.

5. If r = |Low|+ 1 return p, if r < |Low|+ 1 recursively apply SELECT
to obtain the rth order statistic of Low. If r > |Low| + 1 then recursively
apply SELECT to find the (r − |Low| − 1)th order statistic of High.

As discussed in CLSR and shown in class, in Step 5, we recurse on a
problem with at most 7n

10
+ 6 elements. In Step 3, we apply Select to an

instance of size at most n
5

+ 1. We can carry out the remaining steps in O(n)
time. Now, provided n is sufficiently large the sum of the sizes of the two
problems we recurse on is at most 19n

20
. So, intuitively we have lost total size

n
20

in our subproblems using O(n) work in Steps 1,2, and 4. Since this is a
constant amount of work for each element we get rid of, intuitively the whole
algorithm should take linear time. Indeed as shown in CLRS and class, this
intuition is correct and SELECT runs in O(n) time.

1

Lower Bounds on The Number of Compari-

sions Performed by a Sorting or Selection Al-

gorithms

In this section, we discuss lower bounds on the number of comparisions
needed to sort or select the ith order statistic of a set A = {a1,, an}
of n distinct elements. We will assume that the only way that we can obtain
information about the relative order of two of these elements is to compare
them. We can think of an oracle to which we give an i and j which returns
whether ai < aj or aj < ai. Dependent on the results of the comparisions
made so far, we either perform a further comparision or terminate with the
desired output.

We are thus considering the decision tree model discussed in Section 8.1
of CLRS. A decision tree is a rooted tree all of whose non-leaf nodes have
exactly two children. Each interior node of the paths from the root to the
leaves is labelled by an ordered pair of distinct integers (i, j) with 1 ≤ i, j ≤ n.
Each leaf is labelled by a solution which will be the output if we arrive at it.

The paths of the tree from the root to the leaves represent the possible
sequences of comparisions made and responses obtained by the algorithm on
its inputs. For every input we follow a unique such path to arrive at a leaf.
This path is defined as follows. Each input begins its journey at the root.
Having arrived at an interior node labelled (i, j), inputs for which ai < aj go
to the left child of this node while inputs for which aj > ai go the right child.

For the algorithm to be correct, for every possible input the answer la-
belling the leaf at which we arrive when given this input must be the correct
solution for this input. The worst case number of comparisions made is the
longest such path, i.e. the height of the tree.

As an example, we describe for every n, a tree Tn of height n − 1 which
computes the maximum of n elements a1, ..., an. To each leaf l of the tree,
we associate a label max(l) such that amax(l) is the maximum of the elements
assuming we arrive at the leaf.

T1 has a single node whch is both a root and a leaf. It is labelled with 1
since a1 must be the maximum. T2 has a single interior node the root, which
is labelled (1, 2). Its left child is a leaf labelled 2 and its right child is a leaf
labelled 1.

Tn is obtained from Tn−1 as follows. We add a right and left child under-
neath each leaf of Tn−1, which are leaves of the new tree. So the leaves of

2

Tn−1 are now interior nodes of the new tree. Any such interior node which
was labelled i in Tn−1 is relabelled (i, n). Its left child is labelled n and its
right child is labelled i. We can prove by induction on n that Tn correctly
computes the maximum and has height n− 1.

Information Theory Lower Bound For Sorting

We can obtain a lower bound on the height of a decision tree for a specfic
problem by obtaining a lower bound on the number of leaves it must have.
To prove such a lower bound, we exploit the fact that a rooted binary tree
of height l has at most 2l leaves(this can be easily proven by induction
by consdering the two subtrees rooted at the children of the root). Such a
bound is referred to as an information theory lower bound as it depends on
the amount of information that the output provides.

To illustrate this approach, we consider sorting. There are n! different
permutations of {a1, ..., an}. Each of these is the unique correct answer to at
least one input for our sorting problem. Thus, any decision tree for sorting
must have at least n! leaves. So any decision tree for soritng has height at
least log(n!). But log(n!) is nlog n + o(n).

0.1 Adversarial Lower Bounds For Sorting and Selec-
tion

We can also obtain a lower bound for solving a sorting or selection problem
by specifying a long path of the decision tree. Of course, given the whole
tree it is easy to find the longest path. We take a slightly different approach
and consider an adversary who will find a long path from the root to a leaf
one node at a time without knowing the full tree. To do so, he specifies
at each node of the path in turn, beginning at the root, the answer to the
comparision at that node which leads to the next node on the path. The
only information he has when doing so is the part of the tree he has seen
so far. To prove a lower bound of l on the length of the path the adversary
constructs, it is enough to give an adversarial strategy which ensures that
that the length of the path constructed is l, no matter what the comparisions
on the path are. These bounds are called adversarial.

The information theory lower bound on sorting can also be thought of as
an adversarial lower bound. The adversary’s strategy focuses on the number

3

of permutations of A which are consistent with the answers to the compari-
sions made before reaching a node. At a leaf of the decision tree, the number
of such consistent permutations is at most one, as otherwise the algorithm
may give an incorrect answer. At the root, all n! permutations are consis-
tent. The adversary chooses the answer to the comparision at the node so as
to maximize the number of permutations consistent with it and the answers
to all the previous comparisions. If these two numbers are equal it chooses
ai < aj. Since each permutation consistent with the previous answers is
consistent with exactly one of the answers to the comparision at the current
node, the number of consistent comparisions at most halves at each node.
So, the longest path has length at least dlog(n!)e.

Consider for example n = 3, so there are 3! = 6 permutations of A. If the
comparision at the root is (i, j), there are three permutations consistent with
ai < aj and three consistent with aj < ai depending on whether the third
element of A is first, second, or third in the permutation. So, the adversary
selects the answer ai < aj and so the path grows to include the left child.

This child cannot be a leaf as there are not 1 but 3 comparisions consistent
with the answer to the single comparision made so far. If the child makes
the comparision (i, k) for k 6∈ {i, j} then if we answer ai < ak there is one
permutation1 which remains consistent, while if we answer ai < ak there are
two permutations2 which remain consistent. So the adversary choose ai < ak
and the path will also need a node labelled (j, k) to complete the sort.

If the corresponding child again makes the comparision (i, j) then the
same answer ai < aj must be given and the number of consistent comparisions
does not decrease. Hence in this case we need at least one more node on the
path (in fact two) before we arrive at the leaf. We obtain the correct lower
bound, 3, on the number of comparision snecessary to sort a set of size three.

Adversarial arguments can be much more sophisticated. To illustrate, we
consider median finding. For simpliciy we assume n is odd. I.e n = 2k+1 for
some integer k. We will give a lower bond of 3k on the number of comparisions
needed to find the median.

Our adversarial strategy proceeds as follows.We are going to label all of
the elements which have been involved in comparisions from:

W = {w1,, wk}, L = {l1, ..., lk} and median.
Each element of A gets a distinct label. The nodes not yet involved in a

1ak, ai, aj
2ai, aj , ak and ai, ak, aj

4

comparision are all unlabelled.
Initially, the elements are all unlabelled. We will ensure that as the

algorithm proceeds the following holds
(*) for some nW and nL with 1 ≤ nW , nL ≤ k, the algorithm will have

used the labels w1, ...wnW
and l1, .., lnL

. The last element to be involved in a
comparision is labelled median.

When comparing nodes, we will insist that (i) any element labelled wi

beats any element with a label in L∪median∪{wj|j < i} and loses to every
element with a label in {wj|j > i}. We insist further that (ii) any element
labelled li loses to any element with a label in W ∪median ∪ {lj|j > i} and
beats every element with a label in {lj|j < i}. This means that an element
labelled median loses to elements with a label from W and beats elements
with a label from L. When labelling an uncompared node we choose its label
before performing the comparision and then respect (i) and (ii).

If we can ensure that our labelling respects (*), since our answers respect
(i) and (ii), at any time, for any labelling obtained by assigning each uncom-
pared element a distinct unused label, we see that there is an input whose
median is labelled median which will have arrived at the current node of
the decision tree. It is the input where looking at the elements in order of
increasing size we see the labels in the following order:

l1, l2, ..., lk,median, w1, ..., wk

Thus, at a leaf, there is an input which is consistent with the answers
made so far for which the median is the element labelled median. Thus the
output for this leaf must be the element labelled median. Hence, at a leaf,
every input permutation consistent with the answers made so far must have
this element as a median. If there is an i such that the element labelled li
has not lost a comparision to any element with a label in L∪{median}, then
the permutations where the labels appear in the order

l1, .., li−1, li+1, ..., lk,median, li, w1, ..., wk

would also be consistent with the answers given so far, which is a contradic-
tion. In the same vein, if there is an i such that the element labelled wi has
not won a comparision against any element with a label in W ∪ {median},
then the permutations where the labels appear in the order

l1, ..., lk, wi,median, w1, ..., wi−1, wi+1, ..., wk

5

would also be consistent with the answers given so far, which is a contradic-
tion,

So, at a leaf every every element with a label in L has lost a comparision
to an element with a label in L ∪ {median} and there have been at least
k comparisions involving two elements with labels in L ∪ {median}. In the
same vein, every every element with a label in W has won a comparision
against an element with a label in W ∪ {median} and there have been at
least k comparisions involving two elements with labels in W ∪ {median}.

In particular this implies there are no uncompared elements in L∪W . We
claim that we can chose a labelling procedure ensuring that (*) remains true
and such that, at all times, there have been at least max(nW , nL) compari-
sions involving one element with a label in L and the other in W . Since at a
leaf there are no uncompared elements in L∪W , we must have nW = nL = k
and hence if our claim is true, there are at least k such comparisions and 3k
comparision in total.

It remains to prove our claim by describing and analyzing our labelling
procedure. Intially we have nW = nL = 0.
For comparisions which compare an unlabelled element to an element with
a label in L we proceed as follows:

If nW < k then nW := nW + 1 and the uncompared element is labelled
wnW

else if nL < k then nL := nL + 1 and the uncompared element is labelled
lnL

else the uncompared element is labelled median.

For comparisions which compare an unlabelled element to an element with
a label in W we proceed as follows:

If nL < k then nL := nL + 1 and the uncompared element is labelled lnL

else if nW < k then nW := nW +1 and the uncompared element is labelled
wnW

else the uncompared element is labelled median.

For comparisions which compare two unlabelled element we proceed as fol-
lows:

If nL < k and nW < k then nw := nW + 1, nL := nL + 1 one uncompared
element is labelled lnL

and the other is labelled wnW

elseif nL < k − 1 then nL := nL + 2 one uncompared element is labelled
lnL

and the other is labelled lnL−1

6

elseif nW < k− 1 then nW := nW + 2 one uncompared element is labelled
wnW

and the other is labelled wnW−1

else there are only two unused labels, we label the elements in the com-
parision with these labels and set nW = nL = k.

We claimed that throughout the process, the number of comparisions
made between elements in W and elements in L is at least min(nW , nL).. To
see this note first thay we increase each of nW and nL by at most one in each
iteration. Note furthermore, that when we increase one of these numbers,
either the comparision made is between an element of W and an element of
L or the other number had value k and hence max(nW , nL) did not increase.
The claim follows.

7

