
A Probabilistic Analysis of Quicksort

You are assumed to be familiar with Quicksort. In each iteration this sorting
algorithm chooses a pivot and then, by performing n− 1 comparisions with
the pivot, splits the remainder of the input into those elements less than the
pivot and those elements greater than the pivot. It then recurses on two
subproblems, sorting the elements less than the pivot and those greater than
the pivot separately.

In the worst case, the pivot is always the largest of the elements to be
sorted, the size of the problem decreases by one in each iteration, and there
are

(
n
2

)
comparisions. In the best case, the algorithm always split the input

into two sets whose size differs by at most one, and the algorithm takes fewer
than nlogn comparisions. As you will be asked to show in the assignment,
actually in the best case the algorithm takes at least (1 + o(1))n log n com-
parisions. We are interested in the variant of quicksort in which each pivot
is chosen uniformly at random. I.e. if in each subproblem, each element in
the list currently being sorted is equally likely to be the pivot. As discussed
above, the random variable X which counts the number of comparisions made
by this algorithm can take values as as large as

(
n
2

)
and smaller than nlog n.

We are interested in computing E(X), the expected number of comparisions
taken. .

Our approach exploits the fact that X is actually equal to the sum of(
n
2

)
simple random variables. Spefically, if for 1 ≤ i < j ≤ n, we let Xi,j be

the number of comparisions the algorithm makes between the ith smallest
element zi and jth smallest element zj of the input then

X =
n−1∑
i=1

n∑
j=i+1

Xi,j.

Now, the expectation of the sum is the sum of the expectations, so

E(X) =
n−1∑
i=1

n∑
j=i+1

E(Xi,j).

We note that we compare two elements of the list to be sorted in an
iteration, precisely if one of them is the pivot. In this case, the pivot is not
compared in any future iteration and the two elements are compared exactly
once. Thus each Xi,j is either 0 or 1 and E(Xi,j) is the probability that zi
and zj are compared.

1

We note further that while the pivot is neither equal to nor lies between
zi and zj, all of zi, zi+1, ..., zj remain in the same subproblem. Thus, if no zk
with i < k < j is chosen as a pivot before either of zi or zj then they will be
compared. On the other hand if some zk with i < k < j is chosen as a pivot
before either of zi or zj then they will not be compared.

In the first iteration, we can choose the pivot uniformly as follows. We first
expose whether the pivot is one of zi, zi+1, ..., zj or not (it is with probability
j−i+1

n
). If so, we choose it to be zk for each i ≤ k ≤ j with probability 1

j−i+1
.

Otherwise we chose it to be each zk with k < i or k > j with probablitiy
1

n−j+i−1 . In the latter case, we use the same procedure in the subproblem
containing zi and zk and the elements between them. In the analysis, n
is replaced by n′ where n′ is the number of elements to be sorted in this
subproblem. We continue in this manner until we use zk as a pivot for some
i ≤ k ≤ j. We see that the probability that k = i or k = j is exactly 2

j−i+1

regardless of the size of the subproblem and so the probability we compare
zi and zj is exactly 2

j−i+1
.

Thus,

E(X) =
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2

k + 1

≤
n∑

i=1

n∑
k=1

2

k + 1

≤
n∑

i=1

n∑
k=1

2

k

= n
n∑

k=1

2

k

Now , it is well known that
∑n

k=1
1
k
is log n + O(1) we see that E(X) ≤

2nlog n + O(n). This means that on average quicksort performs no more
than 2 + O(1) times as many comparisions as it performs in the best case.

2

Randomized Algorithms for Selection

The ith order statistic of a set of distinct is its ith smallest element. Thus the
minimum is the first order statistic and the maximum of a set of n elements
is the nth order statistic. if n is odd then the median of a set of n elements
is its n+1

2
order statistic while if n is even then a set of N elements has two

medians. Its n
2

order statistic is the lower median and its n+2
2

order statistic
is the higher median. The rank of the ith order statistic is i.

The selection problem takes as input a set A of (distinct) elements and
an integer r between 1 and n = |A|. Its output is the rth order statistic(r
here stands for rank).

QuickSelection

One way of solving selection is to sort the input set using Quicksort and to
then simply traverse the ordered set to find the desired element. However,
this is much too much work, as in each iteration we really need only recurse
on one of the two subproblems not both. We now describe an algorithm
QUICKSELECT which chooses pivots and splits the problem into two parts
in each iteration just like QUICKSORT, but only recurses on at most one
of the subproblems. Specifically if the pivot is the jth order statistic then if
j = r we simply return the pivot, if j > r we simply return the rth order
statistic in the set of elements which are less than the pivot, and if j < r
we simply return the r − jth order statistic in the set of elements which are
greater than the pivot.

Definining X and Xi,j as in the analysis of quicksort, we once again have
that

E(X) =
n−1∑
i=1

n∑
j=i+1

E(Xi,j)

and that Xi,j is the probability pi,j that zi and zj are compared.
But the value of pi,j differs from that calculated in the quicksort analysis.

Specifically, if the element we are looking for lies on one side of the pivot,
and zi and zj both lie on the other side, then neither zi nor zj remains in the
active problem and so they will not be compared. Thus, we need to consider
the first time that there is a pivot lying between the minimum mini,j of
zi, zr, zj and the maximum maxi,j of these 3 values. The probability pi,j is
precisely the probability that when this occurs the pivot is one of zi or zj. It

3

follows that pi,j is always at most 2
max(|r−i|,|r−j|)+1

. So in calculating our sum,

we reindex using ki,j = max(|r− i|, |r− j|) and note that pi,j ≤ 2
ki,j+1

< 2
ki,j

.

Now, we know every ki,j lies between 1 and n. Furthermore, if ki,j = k
then one of i or j is r−k or r+k and the other lies between r−k and r+k.
Thus there are at most 4k choices for such a pair. It follows that:

E(X) ≤
n∑

k=1

4k
2

k
≤ 8n

.

The Two Pivot Algorithm

The expected number of comparisions made by our next algorithm for ran-
domized selection is 2n+o(n). It employs a subroutine to finds two pivots plow
and phigh with plow < phigh using o(n) comparisions. It then use comparisions
with the pivots to split A− plow − phigh into three sets: Low = {z|z < plow},
High = {z|z > phigh}, and Middle = {z|plow < z < p + high}. This can
be done with 2n − 4 comparisions, by comparing each non-pivot with each
pivot. Now, if zr is one of the pivots we return it. Otherwise we proceed
as follows. If r is less than the rank rlow of plow We sort Low, and return
its rth order statistic. If r exceeds the rank rhigh of phigh we sort High and
return its (r− rhigh)th order statistic. If rlow < r < rhigh we sort Middle and
return its (r − rlow)th order statistic. We claim that the probability pfail of
the event that our subroutine does not return pivots such that the element
of {Low,Middle,High} we need to sort has size at most n

log2 n
is o(1

n
).

Now, we can sort a set of m elements in O(mlog m) steps. The set
we sort has at most n elements. So, the total number of steps we need is
o(n) + 2n− 4 + O((1− pfail)

n
log2 n

log(n
log2 n

)) + O(pfailnlog n). If our claim

is true, this is 2n + o(n).
To complete the description and analysis of our algorithm, it remains to

describe a subroutine which chooses the two pivots in o(n) time for which
the claim holds. We do so now. The subroutine chooses a subset A′ of d

√
ne

elements of uniformily at random (by repeatedly choosing a uniform element
from the unchosen set to add to the chosen set until it has the right size),

and sorts A′. It sets ilow to be d r√
n
− n

3
8 e and ihigh to be d r√

n
+ n

3
8 e.

Provided r is at least 2n
7
8 and at most n− 2n

7
8 It sets plow to be the ith

order statistic of A′ and phigh to be the ihighth order statistic of A′. As will be

4

discussed in class, well known results then yield that the probability that the
event rlow < r < rhigh < rlow + n

log2 n
fails is o(1

n
). Provided this event holds,

we search Middle which has at most n
log2 n

elements. So the claim holds in
this case.

If r is less than 2n
7
8 It sets plow and phigh both to be the to be the ihighth

order statistics. As will be discussed in class, similar well known results
then yield that the probability that the event r < rlow < n

log2 n
fails is o(1

n
).

Provided this event holds, we search Low which has at most n
log2 n

elements.
So the claim holds in this case.

If r is more than n− 2n
7
8 It sets plow and phigh both to be the to be the

ilowth order statistics. A symmetrical argument yields that the probability
that the event r > rhigh > n− n

log2 n
fails is o(1

n
). Provided this event holds,

we search High which has at most n
log2 n

elements. So the claim holds in this
case.

5

