
Mechanizing Metatheory – The Next Chapter

Brigitte Pientka

McGill University

Montreal, Canada

What is mechanized metatheory?

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Bisimulation

Program Equivalence

Completeness

Consistency

Soundness of Prog. Transform.

Decidability of Type Checking

Type Safety

Metatheory

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Bisimulation

Program Equivalence

Completeness

Consistency

Soundness of Prog. Transform.

Decidability of Type Checking

Type Safety

Metatheory

Mechanized

Metatheory

implemented

in a proof assistant

1. Mechanizing formal systems

together with proofs about them is

the talk of the town.

Everybody talks about it.

2

From Simple Types To Dependent Types

3

2. Mechanizing formal systems

together with proofs about them

establishes trust.

2. Mechanizing formal systems

together with proofs about them

establishes trust. . . and avoids flaws.

Programs go wrong.

Testing correctness of C compilers [Vu et al. PLDI’14]:

• GCC and LLVM had over 195 bugs

• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of

verified compilers.”

[Vu et al. PLDI’14]

4

Programs go wrong.

Testing correctness of C compilers [Vu et al. PLDI’14]:

• GCC and LLVM had over 195 bugs

• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of

verified compilers.”

[Vu et al. PLDI’14]

4

Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

5

Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

5

Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)

5

Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)

5

Why is it hard to get theories and

implementations right?

It’s a tricky business.

“The truth of the matter is that

putting languages together is a

very tricky business. When one

attempts to combine language con-

cepts, unexpected and counterin-

tuitive interactions arise.”

- J. Reynolds

6

Correct proofs are tricky to write.

On paper:

• Challenging to keep track of all the details

• Easy to skip over details

• Difficult to understand interaction between different features

• Difficulties increase with size

In a proof assistant:

• A lot of overhead in building basic infrastructure

• May get lost in the technical, low-level details

• Time consuming

• Experience, experience, experience

7

Mechanizing Normalization for STLC

“To those that doubted de Bruijn, I wished

to prove them wrong, or discover why they

were right. Now, after some years and

many hundred hours of labor, I can say

with some authority: they were right. De

Bruijn indices are foolishly difficult for this

kind of proof. [. . .] The full proof runs

to 3500 lines, although that relies on a

further library of 1900 lines of basic facts

about lists and sets. [. . .] the cost of de

Bruijn is partly reflected in the painful

1600 lines that are used to prove facts

about “shifting” and “substitution”.”

Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq 8

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq

What are good high-level proof

languages that make it easier to

mechanize metatheory?

Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is

to ease the programming task by providing the programmer

with a language containing primitives or abstractions suitable to

his problem area. The programmer is then able to spend his

effort in the right place; he concentrates on solving his problem,

and the resulting program will be more reliable as a result.

Clearly, this is a worthwhile goal.” B. Liskov [1974]

9

“To know your future you must

know your past.” – G. Santayana

Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

• LF = Dependently Typed Lambda Calculus (λΠ) serves as

a Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

10

Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

• LF = Dependently Typed Lambda Calculus (λΠ) serves as

a Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

10

Representing Types and Terms in LF – In a Nutshell

Types A,B ::= nat | A ⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x lam nat λx.x

lam x :nat. (lam x :nat⇒nat.x) lam nat λx.(lam (arr nat nat) λx.x)

lam x :nat. (lam f :nat⇒nat.app f x) lam nat λx.(lam (arr nat nat) λf.app f x)

Higher-order Abstract Syntax (HOAS):

• Uniformly model bindings with (intensional) functions in LF

• Inherit α-renaming and single substitutions

Model

11

Representing Types and Terms in LF – In a Nutshell

Types A,B ::= nat | A ⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x lam nat λx.x

lam x :nat. (lam x :nat⇒nat.x) lam nat λx.(lam (arr nat nat) λx.x)

lam x :nat. (lam f :nat⇒nat.app f x) lam nat λx.(lam (arr nat nat) λf.app f x)

Higher-order Abstract Syntax (HOAS):

• Uniformly model bindings with (intensional) functions in LF

• Inherit α-renaming and single substitutions

Model

11

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A ⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

12

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A ⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

12

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A ⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

LF = Dependently Typed Lambda Calculus λ
Π

• LF functions only encode variable scope

no recursion, no pattern matching, etc.

• HOAS trees = Syntax trees with binders

• Benefit: α-renaming and substitution principles

• Scales: Model derivation trees

- Hypothetical derivations as LF functions

- Parametric derivations as LF functions

12

Sounds cool. . . can I do this in

OCaml or Agda?

An Attempt in OCaml

and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

13

An Attempt in OCaml

and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

13

An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

13

An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

13

OK. . . so, how do we write recursive

programs over with HOAS trees?

We clearly want pattern matching, since

a HOAS tree is a data structure.

An Attempt to Compute the Size of a Term

size (lam λx.lam λf. app f x)

=⇒ size (lam λf. app f x) + 1

=⇒ size (app f x) + 1 + 1

=⇒ size f + size x + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

“the whole HOAS approach by its very nature disallows a

feature that we regard of key practical importance: the ability

to manipulate names of bound variables explicitly in

computation and proof. ” [Pitts, Gabbay’97]

14

Back in 2008. . .

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

Ψ

LF Context

`̀ M

LF Term

: A

LF Type

15

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf.app f x

LF Term

: tm

LF Type

15

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.

16

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.) Contextual Type

lam λx. lam λf.app f x dx:tm ` tme

lam λx. lam λf. app f x dx:tm, f:tm ` tme

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.

16

Contextual Types [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dx:tm, f:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dx:tm, f:tm ` tme
• It can be instantiated with a contextual term dx,f` app f xe
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

17

Contextual Types [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dx:tm, f:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dx:tm, f:tm ` tme
• It can be instantiated with a contextual term dx,f` app f xe
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

17

Contextual Types [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dy:tm, g:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dy:tm, g:tm ` tme
• It can be instantiated with a contextual term dy,g` app g ye
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

17

Contextual Types [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dy:tm, g:tm ` tme ; x:tm

LF Context

`̀ lam λf . h[x/y, f/g]︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dy:tm, g:tm ` tme
• It can be instantiated with a contextual term dy,g` app g ye
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

17

Contextual Type Theory1 (CTT) [Nanevski, Pfenning, Pientka’08]

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

LF Variable Contextual Variable

x :A ∈ Ψ
Γ; Ψ `̀ x : A

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

1Footnote for nerds: CTT is a generalization of modal S4.

18

The Tip of the Iceberg: Beluga [POPL’08, POPL’12, ICFP’16,. . .]

Main Proof

Eigenvariables

Hypothesis
Context

Variables
Renaming

Derivation Tree

Substitution

Scope Binding

Contextual
Logical Framework LF Γ; Ψ `̀ M : A

Proofs
as Functional Programs

Γ `̀ t : T

Terms t ::= dΨ ` Me | . . .
Types T ::= dΨ ` Ae | . . .

19

Revisiting the program size

size d ` lam λx.lam λf. app f xe
=⇒ size dx ` lam λf. app f xe + 1

=⇒ size dx,f ` app f xe + 1 + 1

=⇒ size dx,f ` fe + size dx,f ` xe + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

Corresponding program:

size : Πγ:ctx. dγ ` tme → int

size dγ ` #pe = 0

size dγ ` lam λx. Me = size dγ,x ` Me + 1

size dγ ` app M Ne = size dγ ` Me + size dγ ` Ne + 1;

• Abstract over context γ and introduce special variable pattern #p

• Higher-order pattern matching [Miller’91]

20

Revisiting the program size

size d ` lam λx.lam λf. app f xe
=⇒ size dx ` lam λf. app f xe + 1

=⇒ size dx,f ` app f xe + 1 + 1

=⇒ size dx,f ` fe + size dx,f ` xe + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

Corresponding program:

size : Πγ:ctx. dγ ` tme → int

size dγ ` #pe = 0

size dγ ` lam λx. Me = size dγ,x ` Me + 1

size dγ ` app M Ne = size dγ ` Me + size dγ ` Ne + 1;

• Abstract over context γ and introduce special variable pattern #p

• Higher-order pattern matching [Miller’91]

20

What Programs / Proofs Can We Write?

• Certified programs:

Type-preserving closure conversion and hoisting [CPP’13]

Joint work with O. Savary-Bélanger, S. Monnier

• Inductive proofs:

Logical relations proofs (Kripke-style) [MSCS’18]

Joint work with A. Cave

• Coinductive proofs:

Bisimulation proof using Howe’s Method [MSCS’18]

Joint work with D. Thibodeau and A. Momigliano

21

Remember the PhD student who

mechanized strong normalization for

STLC in Coq using de Bruijn?

POPLMark Reloaded

Strong Normalization for STLC using Kripke-style Logical

Relations Joint work with A. Abel, G. Allais, A. Hameer, A. Momigliano,

S. Schäfer, K. Stark

• Easily accessible problem, while still being worthwhile

• Survey the state of the art

• Compare proof assistants

• Encourage development to make them more robust

22

What I Learned

Lesson 1: Choosing an inductive definition for SN makes proofs

modular and simpler – on paper and in mechanizations.

Lesson 2: Beluga exploits high-level abstractions and primitives

(HOAS, contexts, substitutions, renamings, etc.) leading to a

compact implementation (416 LOC).

Lesson 3: Contextual types provide an abstract, conceptual view of

syntax trees within a context of assumptions.

23

Sounds cool. . . but how can we get

this into type theories (like Agda)?

A Type Theory for Defining Logics and Proofs

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

The strict separation between contextual LF and computations

means we cannot embed computation terms directly.

Contextual Variable Rule

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

24

A Type Theory for Defining Logics and Proofs

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

What if we did?

Rule for Embedding Computations

Γ `̀ t : dΦ ` Ae Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ btcσ︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

24

Cocon: A Type Theory for Defining Logics

Joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini

• Hierarchy of universes

• Type-level computation

• Writing proofs about functions (such as size)

LF (intensional) Computation (extensional)

quote / box dΨ ` Me

unquote / unbox btcσ

25

Sketch: Translation Between STLC and CCC

STLC

tm: obj → type.

Cartesian Closed Categories (CCC)

mor:obj → obj → type

itm

Translate an LF context γ to cross product: ictx:Πγ:ctx.d ` obje

Example: ictx (x1:A1, x2:A2) =⇒ (cross (cross unit A1) A2)

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

26

Bridging the Gap between LF and Martin Löf Type Theory

27

What’s Next?

Theory

• Decidable equality

• Categorical semantics

• . . .

Implementation and Case Studies

• Build an extension to Coq/Agda/Beluga

• Case studies: Equivalence of STLC and CCC

• Meta-Programming (Tactics)

• Compilation

• Proof Search

• . . .

28

Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to

think about syntax trees within a context of assumptions.

Lesson 2: Abstractions for variable binding, contexts, and

substitution, etc. are useful when we mechanize metatheory.

Last but not least: There are many other abstractions and

primitives we should explore: heaps, linearity, resources, . . .

29

Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to

think about syntax trees within a context of assumptions.

Lesson 2: Abstractions for variable binding, contexts, and

substitution, etc. are useful when we mechanize metatheory.

Last but not least: There are many other abstractions and

primitives we should explore: heaps, linearity, resources, . . .

29

	What is orangemechanized metatheory?
	1. Mechanizing formal systems together with proofs about them is the talk of the town.
	2. Mechanizing formal systems together with proofs about them establishes trust.
	2. Mechanizing formal systems together with proofs about them establishes trust… orangeand avoids flaws.
	Why is it hard to get theories and implementations right?
	What are good high-level proof languages that make it easier to mechanize metatheory?
	``To know your future you must know your past.'' – G. Santayana
	Sounds cool… can I do this in OCaml or Agda?
	OK… so, how do we write recursive programs over with HOAS trees? We clearly want pattern matching, since a HOAS tree is a data structure.
	Back in 2008…
	Remember the PhD student who mechanized strong normalization for STLC in Coq using de Bruijn?
	Sounds cool… but how can we get this into type theories (like Agda)?

