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1. Mechanizing formal systems
together with proofs about them is
the talk of the town.



Everybody talks about it.
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From Simple Types To Dependent Types




2. Mechanizing formal systems
together with proofs about them
establishes trust.



2. Mechanizing formal systems
together with proofs about them
establishes trust... and avoids flaws.



Programs go wrong.



Programs go wrong.

Testing correctness of C compilers [Vu et al. PLDI'14]:

e GCC and LLVM had over 195 bugs
e Compcert the only compiler where no bugs were found

Desperately seeking
software perfection

20 Octobre 2015
a 18h00

COMPILER INFRASTRUCTURE

“This is a strong testimony to the promise and quality of
verified compilers.”
[Vu et al. PLDI'14]



Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

Java is Type Safe — Probably

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine
email: sd and se @doc.ic.ac.uk

Abstract. Amidst rocketing numbers of enthusiastic Java programmers
and internet applet users, there is growing concern about the security
of executing Java code produced by external, unknown sources. Rather
than waiting to find out empirically what damage Java programs do, we
aim to examine first the language and then the environment looking for
points of weakness. A proof of the soundness of the Java type system is a
first, necessary step towards demonstrating which Java programs won’t
compromise computer security.

We consider a type safe subset of Java describing primitive types, classes,
inheritance, instance variables and methods, interfaces, shadowing, dy-
namic method binding, object creation, null and arrays. We argue that
for this subset the type system is sound, by proving that program exe-
cution preserves the types, up to subclasses/subinterfaces.




Programming lang. designs and implementations go wrong.
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Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)
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Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)
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Why is it hard to get theories and
implementations right?




It’s a tricky business.

“The truth of the matter is that
putting languages together is a
very tricky business. When one
attempts to combine language con-
cepts, unexpected and counterin-
tuitive interactions arise.”

- J. Reynolds




Correct proofs are tricky to write.

On paper:

e Challenging to keep track of all the details
e Easy to skip over details
e Difficult to understand interaction between different features

e Difficulties increase with size

In a proof assistant:

e A lot of overhead in building basic infrastructure
e May get lost in the technical, low-level details
e Time consuming

e Experience, experience, experience



Mechanizing Normalization for STLC

“To those that doubted de Bruijn, | wished
to prove them wrong, or discover why they
were right. Now, after some years and
many hundred hours of labor, | can say
with some authority: they were right. De
Bruijn indices are foolishly difficult for this
kind of proof. [...] The full proof runs
to 3500 lines, although that relies on a
further library of 1900 lines of basic facts
about lists and sets. [...] the cost of de
Bruijn is partly reflected in the painful
1600 lines that are used to prove facts
about “shifting” and ‘substitution”.”
Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq 3


https://github.com/ezrakilty/sn-stlc-de-bruijn-coq

What are good high-level proof
languages that make it easier to
mechanize metatheory?



Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is
to ease the programming task by providing the programmer
with a language containing primitives or abstractions suitable to
his problem area. The programmer is then able to spend his
effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]




“To know your future you must
know your past.” — G. Santayana




Back in the 80s...

10



Back in the 80s...

1987 R. Harper, F. Honsell, G. Plotkin: A Framework for
Defining Logics, LICS'87

1988 F. Pfenning and C. Elliott: Higher-Order Abstract
Syntax, PLDI'88

e LF = Dependently Typed Lambda Calculus (\") serves as
a Meta-Language for representing formal systems

e Higher-order Abstract Syntax (HOAS) :
Uniformly model binding structures in Object Language with
(intensional) functions in LF

10



Representing Types and Terms in LF — In a Nutshell

Types A,B ::=nat | A= B Terms M ::= x | lam x:A.M | app M N

11



Representing Types and Terms in LF — In a Nutshell

Types A,B :=nat | A= B Terms M ::= x | lam x:A.M | app M N

LF Representation

obj: type. tm: type.
nat: obj. lam: obj — (tm — tm) — tm.
arr: obj — obj — obj. app: tm — tm — tm.

On Paper (Object Language) In LF (Meta Language)

|

lam x:nat.x ‘ lam nat Ax.x
|
|

lam x:nat. (lam x:nat=>nat.x) lam nat Ax.(lam (arr nat nat) Ax.x)

lam x:nat. (lam f:nat=>nat.app f x) | lam nat )x.(lam (arr nat nat) Af.app f x)

Higher-order Abstract Syntax (HOAS):

e Uniformly model bindings with (intensional) functions in LF

e Inherit a-renaming and single substitutions
11



Uniformly Model Binding Structures using LF Functions

Types A,B :=nat | A= B| Terms M ::= x | lam x:A.M | app M N |
a|Va.A let x=Min N |tlam a.M | ...

12



Uniformly Model Binding Structures using LF Functions

Types A,B :=nat | A= B| Terms M ::= x | lam x:A.M | app M N |
a|Va.A let x=Min N |tlam a.M | ...

LF Representation

obj: type. tm: type.

nat: obj. lam: obj — (tm — tm) — tm.
arr: obj — obj — obj. app: tm — tm — tm.

all: (obj — obj) — obj. let: tm — (tm — tm) — tm.

tlam: (obj — tm) — tm.

On Paper (Object Language) ‘ In LF (Meta Language)
tlam . (lam x:c.x) ‘ tlam Ma.(lam a Ax.x)
VaVB.oo = | all )a.all Ab.arr a b

12



Uniformly Model Binding Structures using LF Fun

Va - ~all Ab.arr a b

12



Sounds cool. .. can | do this in
OCaml or Agda?




An Attempt in OCaml

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) -> £
3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

13
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An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) -> £
3 let omega = Lam (function x -> apply x x)
What happens, when we try to evaluate apply omega omega?
It will loop.
Agda
data tm : type = lam : (tm — tm) — tm

Violates positivity restriction
13



An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) =
3 let omega

: (tm

Violates positivity restriction
13



OK... so, how do we write recursive
programs over with HOAS trees?
We clearly want pattern matching, since
a HOAS tree is a data structure.




An Attempt to Compute the Size of a Term

size (lam Ax.lam Af. app f x)

— size (lam Af. app f x) + 1

— size (app £ x) +1+1
== size f 4+ sizex +1+1+1
— 0 + 0 +1+1+41

“the whole HOAS approach by its very nature disallows a
feature that we regard of key practical importance: the ability
to manipulate names of bound variables explicitly in
computation and proof. ” [Pitts, Gabbay'97]

14



Back in 2008. ..




LF and Holes in HOAS trees — Reuvisited

In LF (Meta Lang.)

lam )\X.‘lam)\f.app f x‘

lam Ax. lam )\f.

LF Typing Judgment:

L M A

| I !

LF Context LF Term  LF Type
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LF and Holes in HOAS trees — Reuvisited

In LF (Meta Lang.) |

lam )\X.‘lam)\f.app f x‘

lam Ax. lam Af.[app f x| \

LF Typing Judgment:

x:tm f lam Af.l:': tm
| T |

LF Context LF Term  LF Type
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LF and Holes in HOAS trees — Reuvisited

In LF (Meta Lang.) ‘ Contextual Type

lam )\X.‘lam)\f.app f X‘ [x:tm F tm]

lam Ax. lam)\f.‘ [x:tm, f:tm - tm]

LF Typing Judgment:

x:tm f lam Af.l:': tm
| T |

LF Context LF Term  LF Type

What is the type of I:' ? — Its type is [x:tm, f:tm - tm].

16



Contextual Types [Nanevski, Pfenning, Pientka’08]

h: [x:tm, f:tm b tm| ; xitm b lam Af. h D tm
Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [x:tm, f:tm - tm]
e It can be instantiated with a contextual term [x,fF app f x|
[ ]

Contextual types () reify LF typing derivations (I)

17
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e It has the contextual type [x:tm, f:tm - tm]
e It can be instantiated with a contextual term [x,fF app f x|
[ ]

Contextual types () reify LF typing derivations (I)

WAIT! ... whatever we plug in for h may contain free LF variables?
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Contextual Types [Nanevski, Pfenning, Pientka’08]

h: [y:itm, gitm b tm] ; x:tm & lam Af. h ©tm
Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [y:tm, g:tm I tm]
e It can be instantiated with a contextual term [y,gF app g y]
[ ]

Contextual types () reify LF typing derivations (I)

WAIT! ... whatever we plug in for h may contain free LF variables?
and we want it to be stable under a-renaming ...

17



Contextual Types [Nanevski, Pfenning, Pientka’08]

h: [y:tm, gitm - tm| ; x:tm - lam Af. hx/y, £/g] : tm

/ T T |

Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [y:tm, g:tm I tm]
e It can be instantiated with a contextual term [y,gF app g y]
[ ]

Contextual types () reify LF typing derivations (I)

WAIT! ... whatever we plug in for h may contain free LF variables?
and we want it to be stable under a-renaming ...

Solution: Contextual variables are associated with LF substitutions

17



Contextual Type Theory! (CTT) [Nanevski, Pfenning, Pientka’08]

rs v = M: A
I

Meta Context / LF Context LF Term \ LF Type

(global) (local)
LF Variable Contextual Variable
xAc W x:[PFAlel TVko:o
MV x: A LV x[o] : [0]A
—~— —~—

Closure Apply subst. o

'Footnote for nerds: CTT is a generalization of modal S4.

18



The Tip of the Iceberg: Beluga [POPL’08, POPL’12, ICFP’16,...]

Terms t == [WEM]|...

as Functional Programs Types T == [V A]|...
Main Proof

/ /\ \

Renaming Scope€ Binding
Hypothesis Variables

o
Substitution gont Xt
\lar\a‘o\e j
A1) < ()

Proofs

tige

Oe{\\,a&'\"“ VM A

Contextual
Logical Framework LF

19



Revisiting the program size

size [ F lam Ax.lam Af. app f x|

size [« F lam Af. app f x| +1

size [x,f F app f x| +1+1
size [x,f F f] 4+ size [x,fF x] +14+1+41

I

0 aly 0 +1+1+1

20



Revisiting the program size

size [ F lam Ax.lam Af. app f x|

—> size [« F lam Af. app f x| +1

— size [x,f F app f x| +1+1
= size [x,f F f] + size [x,fF x] +1+1+1
— 0 + 0 +1+1+1

Corresponding program:

size : [y:ctx. [y F tm] — int
size [y F #p| =0
size [y b lam Ax. M| = size [y,x b M| + 1

/

size [y F app M N| = size [y F M| + size [y F N] + 1;

e Abstract over context 7y and introduce special variable pattern #p

e Higher-order pattern matching [Miller'91]

20



What Programs / Proofs Can We Write?

e Certified programs:
Type-preserving closure conversion and hoisting [CPP'13]
Joint work with O. Savary-Bélanger, S. Monnier

¢ Inductive proofs:
Logical relations proofs (Kripke-style) [MSCS'18]
Joint work with A. Cave

e Coinductive proofs:
Bisimulation proof using Howe's Method [MSCS'18]
Joint work with D. Thibodeau and A. Momigliano

21



Remember the PhD student who

mechanized strong normalization for
STLC in Coq using de Bruijn?




POPLMark Reloaded

4 Beyond the Challenge

The POPLMARK Challenge is not meant to be exhaustive: other aspects of pro-
gramming language theory raise formalization difficulties that are interestingly
different from the problems we have proposed—to name a few: more complex
binding constructs such as mutually recursive definitions, logical relations proofs,
coinductive simulation arguments, undecidability results, and linear handling of

Strong Normalization for STLC using Kripke-style Logical
Relations Joint work with A. Abel, G. Allais, A. Hameer, A. Momigliano,
S. Schafer, K. Stark

Easily accessible problem, while still being worthwhile

Survey the state of the art
e Compare proof assistants

Encourage development to make them more robust

22



What | Learned

Lesson 1: Choosing an inductive definition for SN makes proofs
modular and simpler — on paper and in mechanizations.

Lesson 2: BELUGA exploits high-level abstractions and primitives
(HOAS, contexts, substitutions, renamings, etc.) leading to a
compact implementation (416 LOC).

Lesson 3: Contextual types provide an abstract, conceptual view of
syntax trees within a context of assumptions.

23



Sounds cool. .. but how can we get
this into type theories (like Agda)?




A Type Theory for Defining Logics and Proofs

rs v = M: A
I

Meta Context / LF Context LF Term \ LF Type

(global) (local)

The strict separation between contextual LF and computations
means we cannot embed computation terms directly.

Contextual Variable Rule

x:[PFAlel ThVko:®
Vi x[o] : [0]A
N -

Closure Apply subst. o

24



A Type Theory for Defining Logics and Proofs

Fiw - M: A
|

Meta Context / LF Context LF Term K LF Type

(global) (local)

What if we did?
Rule for Embedding Computations |

N=t:[oFA] ThVko:®
HVE [t : [c]A
—~— —

Closure Apply subst. o

24



Cocon: A Type Theory for Defining Logics

Joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini

e Hierarchy of universes
e Type-level computation

e Writing proofs about functions (such as size)

unquote / unbox [t|,

LF (intensional) Computation (extensional)

~_

quote / box [V F M]

25



Sketch: Translation Between STLC and CCC

STLC Cartesian Closed Categories (CCC)
tm: obj — type. mor:obj — obj — type
\ A
itm

Translate an LF context v to cross product: ictx:My:ctx.[ = obj]

Example: ictx (x1:A1, x2:A2) = (cross (cross unit A;) A)

Translate STLC to CCC
itm:My:ctx.MA:[ F obj].[yF tm [A]] — [F mor |ictx | |A]]

26



Bridging the Gap between LF and Martin Lof Type Theory

27



Theory

e Decidable equality
e Categorical semantics

Implementation and Case Studies

e Build an extension to Coq/Agda/Beluga

e Case studies: Equivalence of STLC and CCC
e Meta-Programming (Tactics)

e Compilation

Proof Search

28



Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to
think about syntax trees within a context of assumptions.

Lesson 2: Abstractions for variable binding, contexts, and
substitution, etc. are useful when we mechanize metatheory.

29



Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to
think about syntax trees within a context of assumptions.

Lesson 2: Abstractions for variable binding, contexts, and
substitution, etc. are useful when we mechanize metatheory.

Last but not least: There are many other abstractions and
primitives we should explore: heaps, linearity, resources, ...

29
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