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Mechanizing formal systems together

with proofs establishes trust.



Mechanizing formal systems together

with proofs establishes trust. . . and

avoids flaws.



Programs Go Wrong
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Compilers Go Wrong

Compiler bugs

• are very hard to find and to fix

• every programmer and every program is affected and potentially at risk

=⇒ over 195 bugs in GCC and LLVM C Compiler [Vu et al. PLDI’14]

Grand Challenge: Verifying compiler challenge (T. Hoare)

1970s • Challenge proposed, but abandoned

2003 • Challenge renewed
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Compilers Go Wrong

Compiler bugs

• are very hard to find and to fix

• every programmer and every program is affected and potentially at risk

=⇒ [Vu et al. PLDI’14] found over 195 bugs in GCC and LLVM C Compiler

Grand Challenge: Verifying compiler challenge (T. Hoare)

1970s • Challenge proposed, but abandoned

2003 • Challenge renewed

2009 • CompCert Compiler [X. Leroy]
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Well-Understood for Functional Languages (more or less)
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But Mechanization of Process Calculi Remain Very Difficult

1995 • T. Melham: A mechanized theory of the π-calculus in

HOL. Nordic Journal of Computing, 1(1):50–76

1997 • D. Hirschkoff: A full formalisation of π-calculus

theory in the calculus of con- structions. TPHOL’97

2001 • Christine Röckl, Daniel Hirschkoff, Stefan Berghofer:

Higher-Order Abstract Syntax with Induction in

Isabelle/HOL: Formalizing the pi-Calculus and

Mechanizing the Theory of Contexts, Fossacs’01
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The Top 75% Are Tedious . . .

“approaches in the literature to the implementation of the π-calculus had

adopted either a direct first-order encoding or had dropped names tout court in

favour of de Brujin indexes. The user is hence overwhelmed by technical details

and lemmata about equivalence free names operators, substitution functions

and so ... out 600 of 800 proved lemmata concern the technical details of index

handling.”

F. Honsell, M. Miculan, I. Scagnetto, Pi-calculus in (Co)Inductive Type Theory, Theoretical

Computer Science, Vol 253, 2001
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Session Types in a Nutshell

• Message passing calculus (like the π-calculus) with a typing discipline for structured

interactions

“Session types are applied to a wide range of problems, and their properties, such

as deadlock-freedom, are well studied. These calculi are very expressive, and

rather complex, with features like: shared and linear communication channels,

name passing, and fresh name generation. Given this complexity, it is not sur-

prising that some innocent looking extensions violated the type safety properties

of the calculus in several literature (as pointed out by [23]). “

[Castro-Perez, Ferreira, and Yoshida’20]
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Recent Efforts on Mechanizing Session Types

• Functional language with session-typed communication [Thiemann’19] de Bruijn

• Type-checking session-typed pi-calculus with Coq [Zalakain’19]

combination of linearity/wf checks and explicit contexts

• Π with left-overs: A Mechanization in Agda. [Zalakain and Dardha’21]

explicit contexts with left-over constraints

• General framework of mechanizing session-typed process calculi in Coq.

[Castro-Perez, Ferreira, and Yoshida’20] locally nameless

• Concurrent Calculi Formalisation Benchmark [Ferreira, et. al. 2023]

It’s been difficult to encode session type systems . . .. The fact that there are different

formulations (GV, Multi-Party Session Types, etc.) isn’t helping. 8



A Logical View of Session Types



(Classical) Linear Logic – A Curry Howard View of Session Types

“A logic without weakening or contraction” [Girard 87]

⊢ A1, . . . ,An

A,B ::= A⊗ B (Tensor; multiplicative conjunction)

|A & B (With/and; additive conjunction)

|A` B (Par; multiplicative disjunction)

|A⊕ B (Plus; additive disjunction)

|1 (Unit of ⊗)

|⊥ (Unit of `)

Linear negation A⊥
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Linear Propositions as Session Types [Caires, Pfenning’10][ Wadler’12]

Linear Logic Message Passing Concurrency

Assumptions Channels

Linear Propositions Session types

Sequents Process Typing

Proofs Well-Typed Processes

Cut Parallel Composition

Cut elimination Communication
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Type Judgements - Classical Processes (CP) [Wadler’12]

Identity and Composition

fwd x y ⊢ x : A, y : A⊥ (Id)
P ⊢ ∆1, x : A Q ⊢ ∆2, x : A⊥

νx :A.(P ∥ Q) ⊢ ∆1,∆2
(Cut)

• Identity – Forwarding future communication between channels

• Composition – spawns processes P and Q that communicate along a bound private

channel x .

Challenge

• Variable binding

• Splitting context and ensuring channel that no other channels are shared
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Type Judgements - Classical Processes (CP) [Wadler’12]

Internal and External Choice Duality of Plus and (Additive) With/And

(A⊗ B)⊥ = A⊥ ` B⊥

P ⊢ ∆, x : A

inlx P ⊢ ∆, x : A⊕ B
(⊕1)

P ⊢ ∆, x : B

inrx P ⊢ ∆, x : A⊕ B
(⊕2)

P ⊢ ∆, x : A Q ⊢ ∆, x : B

case x (P, Q) ⊢ ∆, x : A& B
(&)

• Send a “left” or “right” choice over x and continue with P

• Based on the received choice choose process P or Q

Challenges

• “Update” the type associated with the channel
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Type Judgements - Classical Processes (CP) [Wadler’12]

Channel Transmission Duality of (Multiplicative) Par and Tensor

(A` B)⊥ = A⊥ ⊗ B⊥

P ⊢ ∆1, y : A Q ⊢ ∆2, x : B

out x y ; (P ∥ Q) ⊢ ∆1,∆2, x : A⊗ B
(⊗)

P ⊢ ∆, x : B, y : A

inp x y ;P ⊢ ∆, x : A` B
(`)

• Out : Sends a channel name y across the channel x , and spawns concurrent

processes P and Q that provide channel y and x

• In : Receives a channel over x , binds it to a fresh name y , and proceeds as P.

Challenges

• “Update” the type associated with the channel x

• Variable binding

• Splitting context to ensure channels are not shared between P and Q
13



Type Judgements - Classical Processes (CP) [Wadler’12]

Termination

close x ⊢ x : 1
(1) P ⊢ ∆

wait x ;P ⊢ ∆, x : ⊥ (⊥)

• Termination and Waiting for termination

Challenges

• Ensure that there are no other left-over channels

• Consume channel x
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Reductions and Commuting Conversions

Reduction and Principal Reduction:

νx :A.(fwd x y ∥ Q) ⇒CP [y/x ]Q
(βfwd)

νx :A⊕ B.(inlx P ′ ∥ case x (Q1, Q2)) ⇒CP νx :A.(P ′ ∥ Q1)
(βinl)

Commuting Conversion:

νz :C .(inlx P ′ ∥ Q) ⇒CP inlx νz :C .(P ′ ∥ Q)
(κinl)

Congruence Rules including Associativity and Communicativity of parallel process

composition
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Main Property

Theorem: Type Preservation

If P ⊢ ∆ and P ⇒CP Q, then Q ⊢ ∆.
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Two main challenges

• How to deal with contexts?

• How to deal with channel names?

They are somewhat related ...
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Goal: Leverage HOAS

• Leverage binding infrastructure for modelling channel dependencies in processes

(inherit α-renaming, substitution operation, easy checking for variable dependencies, etc.)

• Leverage (ambient) context and hypothetical judgments

(inherit substitution property, context management including weakening, contraction,

uniqueness)

Problem

We have a linear context and we re-use channel names
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Goal: Leverage HOAS

• Leverage binding infrastructure for modelling channel dependencies in processes

(inherit α-renaming, substitution operation, easy checking for variable dependencies, etc.)

• Leverage (ambient) context and hypothetical judgments

(inherit substitution property, context management including weakening, contraction,

uniqueness)

Solution

1. Linear Context:

• Adapt idea from Crary [ICFP’12] to session types

• Define and use linearity predicate to ensure a channel name occurs only once

• If a channel name occurs once, any assumption involving it can only be used once

2. Continuation Channels to avoid re-using channel names
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Listen to LF

“You have to listen to the logical framework, as it were, and take its advice in

guiding you towards a better way to formulate your system. We learned this

lesson many years ago when we first invented LF — the exercise of formalizing

a logic in LF does wonders for the logic.”

Bob Harper’s post to the POPLmark-list 2 May 2006
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A Structural Process Calculus (SCP)

[Sano, Kavanagh, Pientka’23]



Making the continuation channel explicit in SCP

Previous rule for A⊕ B (Plus; additive disjunction)

P ⊢ ∆, x : A

inlx P ⊢ ∆, x : A⊕ B
(⊕1)

P ⊢ ∆, x : B

inrx P ⊢ ∆, x : A⊕ B
(⊕2)

Restating inlx P and inrx P with an explicit continuation channel w

P ⊩ Γ, x : A⊕ B,w : A

inl x ; w .P ⊩ Γ, x : A⊕ B
[⊕1]

P ⊩ Γ, x : A⊕ B,w : B

inr x ; w .P ⊩ Γ, x : A⊕ B
[⊕2]

Using explicit continuation channel also for case x (P, Q)

P ⊩ Γ, x : A& B,w : A Q ⊩ Γ, x : A& B,w : B

case x (w .P, w .Q) ⊩ Γ, x : A& B
[&]
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Ensuring internal bindings are linear in SCP

Idea: Check linearity for fresh channels

P ⊩ Γ, x : A lin(x , P) Q ⊩ Γ, x : A⊥ lin(x , Q)

νx :A.(P ∥ Q) ⊩ Γ
[Cut]

How does this work for when we reach a channel name?

close x ⊩ Γ, x : 1
[1]

P ⊩ Γ, x : ⊥
wait x ; P ⊩ Γ, x : ⊥ [⊥]
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Localize Linearity - Linearity Predicate

fn(P) - “The set of free channel names in P.”

lin(x , P) - “Channel x and its continuations are used linearly in P.”

lin(x , close x)
Lclose

lin(w , P) x /∈ fn(P)

lin(x , inl x ; w .P)
Linl

lin(z , P) z /∈ fn(Q)

lin(z , νx :A.(P ∥ Q)) Lν1
lin(z , Q) z /∈ fn(P)

lin(z , νx :A.(P ∥ Q)) Lν2

Note: We can check x /∈ fn(P) exploiting the powers of higher-order unification in HOAS

systems where we check and encode variable dependencies.
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Key Principle to Allow for Extensions

• Does the construct bind any new linear channels?

If yes, then the typing judgment must check their linearity.

• Does the construct requires the absence of other linear assumptions?

If yes, then there should be no congruence rules for the linearity predicate.

• Does the construct use a continuation channel?

If yes, then the linearity predicate should check that the continuation channel is used

linearly. Otherwise,the linearity predicate should be an axiom.

• Are linear channels shared between subterms composed by the construct?

If they are not shared, then the linearity predicate must ensure that no sharing occurs.

23



Encoding SCP in Beluga



The Tip of the Iceberg: Beluga [POPL’08, IJCAR’10, POPL’12, CADE’15, ICFP’16,. . .]

Main Proof

Eigen
varia

bles

Hypothesis
Context

Variables
Renaming

Der
ivat

ion
Tre

e

Substitution

Scope Binding

Contextual
Logical Framework LF Γ;Ψ ⊢⊢ M : A

Proofs
as Functional Programs

Γ ⊢⊢ t : T

Terms t ::= ⌈Ψ ⊢ M⌉ | . . .
Types T ::= ⌈Ψ ⊢ A⌉ | . . .

PPDP Test of Time Award in 2018
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Encoding Processes using (weak) HOAS

Processes P,Q ::= fwd x y | close x | wait x ; P | νx :A.(P ∥ Q) |
inl x ; w .P | inr x ; w .P | case x (w .P, w .Q) |
out x ; (y .P ∥ w .Q) | inp x (w .y .P)

LF Representation

fwd : name → name → proc.

close : name → proc.

wait : name → proc → proc.

pcomp : tp → (name → proc) → (name → proc) → proc.

inl : name → (name → proc) → proc.

inr : name → (name → proc) → proc.

case : name → (name → proc) → (name → proc) → proc.

inp : name → (name → name → proc) → proc.

out : name → (name → proc) → (name → proc) → proc.
25



Representing Session Typing in LF

wtp: proc → type P ⊢ x1 : A1, . . . , xn : An

wtp fwd : dual A A’

→ {X:name}hyp X A

→ {Y:name}hyp Y A’

→ wtp (fwd X Y).

fwd x y ⊩ Γ, x : A, y : A⊥ [Id]

wtp close : {X:name}hyp X 1

→ wtp (close X).
close x ⊩ Γ, x : 1

[1]

wtp pcomp : dual A A’

→ ({x:name} hyp x A → wtp (P x))

→ ({x:name} hyp x A’ → wtp (Q x))

→ linear P → linear Q

→ wtp (pcomp A P Q).

P ⊩ Γ, x : A lin(x , P) Q ⊩ Γ, x : A⊥ lin(x , Q)

νx :A.(P ∥ Q) ⊩ Γ
[Cut]
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Encoding the Linearity Predicate

linear : (name → proc) → type. lin(x , P)

l close : linear (λx. close x). lin(x , close x)
Lclose

l wait : linear (λx. wait x P).

x /∈ fn(P)

lin(x , wait x ; P)
Lwait

l inl : linear P

→ linear (λx. inl x P).

lin(w , P) x /∈ fn(P)

lin(x , inl x ; w .P)
Linl

l out : linear Q

→ linear (λx. out x P Q).

lin(w , Q) x /∈ fn(P) ∪ fn(Q)

lin(x , out x ; (y .P ∥ w .Q))
Lout
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Encoding Reductions

For example:

νx :A⊕ B.(inl x ; w .P ∥ case x (w .Q, w .R)) ⇒SCP νw :A.(P ∥ Q) [βinl]

is translated to:

β inl : step (pcomp (A ⊕B) (λx. inl x P) (λx. case x Q R)) (pcomp A P Q).
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Implementing Type Preservation



The Tip of the Iceberg: Beluga [POPL’08, IJCAR’10, POPL’12, CADE’15, ICFP’16,. . .]

Main Proof
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Main Property – Revisited in Beluga

Theorem: Type Preservation of CP

If P ⊢ ∆ and P ⇒CP Q, then Q ⊢ ∆.

rec wtp s : (Γ : ctx) [Γ ⊢ wtp P ] → [Γ ⊢ step P Q ] → [Γ ⊢ wtp Q ]

and

rec lin s : (Γ : ctx) [Γ, x:name, h:hyp x A[] ⊢ wtp P[..,x] ]

→ [Γ ⊢ linear (λx. P [.., x ])]

→ [Γ, x:name ⊢ step P[..,x] Q [.., x] ]

→ [Γ ⊢ linear (λx. Q [.., x ])]

• Uses contextual objects

• Abstract over the set of channel names and assumptions about channels
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Summary of SCP

• Unrestricted context and linearity predicate precisely characterize linearity.

• Continuation channels make channel dependencies explicit.

• Equivalence between CP and SCP

lin(x , P) for all x ∈ Γ

CP P ⊩ Γ

P ⊢ ∆

P ⊩ Γε(P) ⊩ ∆

SCP
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Mechanizations of Sub-Structural Systems in Beluga

• SCP [C. Sano, R. Kavanagh] Type Preservation

About 10 lemmas, in particular strengthening lemmas that would be difficult to state in a

system like Twelf; (1+1)x2 main theorems for reductions and equivalences

• CP with explicit contexts and continuation channels [D. Zackon]

approx. 90 lemmas just about context management in CP Equivalence to SCP

Type Preservation

• CP with explicit contexts and updating of channel names [D. Zackon]

Equivalence of between two formulations of CP

32



What’s next?



What’s next?

ToDo 1: Exploring how reusable the infrastructure for explicitly managing contexts is in

other sub-structural settings

ToDo 2: Mechanize deadlock freedom for SCP (and CP) (Seems relatively straightforward)

ToDo 3: Add more type constructors such as exponentials !A and ?A to the

mechanization

ToDo 4: Mechanize other theorems about session types

ToDo 5: Mechanize other session type systems [Vasconcelos’12] and Concurrent Calculi

Formalisation Benchmark [Ferreira, et. al. 2023]
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What I Learned

Lesson 1: Explicit linearity predicate is surprisingly effective.

Lesson 2: HOAS is a surprisingly effective way to re-think and encode sub-structural

systems (channel name binding, context management, free variable condition checks).

Lesson 3: Apply these ideas to other sub-structural systems such as for example Quiper

(Quantum Programming Language)

Lesson 4: The approach should also scale to systems such as Coq where we can take

advantage of existing infrastructure for contexts and variable bindings for intuitionistic

systems (i.e. re-use the Auto-Subst library; still need to implement free variable checks)

Lesson 5: Most session types are simply typed – can we provide stronger static

guarantees about processes? (ongoing work with Ryan Kavanagh)
34
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