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Blast from the past – 25 years ago

Some time in the summer of 1997:

”In the report ’The practice of logical frameworks’ by Frank Pfenning (FB

Mathematik, February 1996, pre-print 1813) it is stated that the current

degree of automation in logical frameworks is not satisfactory. Therefore it is

suggested to look for ways to apply techniques from inductive theorem proving

in the realm of logical frameworks to automate some of these proofs. ”

This Talk:

A Modal Analysis of Dependently-Typed Meta-Programming
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What is meta-programming?



What is meta-programming?

The art of writing programs that

produce other programs.

• (Quasi)quotation of box(2 + 2) represents an abstract syntax tree (AST) of the

expression 2 + 2.

• Unquote splices in code fragments, for example box(2 + unbox(square 2)) evaluates

to the code box(2 + 2 * 2) provided square 2 generates code box(2 * 2).



What is meta-programming?

The art of writing programs that

produce and manipulate other programs
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Good and Bad of Meta-Programming

The Good:

• Widely used and supported

(Lisp, Scheme, TemplateHaskell, MetaML, TemplateCoq, . . .)

• Performance gains due to domain-specific optimizations

(example: matrix / vector multiplication in machine learning)

The Bad:

• Hard to test the code generation and the generated code

• Hard to reason about code generation and generated code

• Errors are caught during run-time instead of generation time

Types for the rescue!

• Catch errors early at compile-time / generation time

• Reason about code generation and generated code
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Promise and Reality of Meta-Programming in a Type Theory

The Promise: Write type-safe tactics or macros within the same language.

• users do not need to learn and use a separate tactic language

• we can prove properties about tactics themselves

• ultimately increases the trust in the overall proof and tactic development

Current Reality: Some external mechanisms requiring extra maintenance of their tactic

engines and tactics.
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A glimpse of the past

Simply-Typed Meta-Programming



Early 2000: A Modal Analysis of Simply-Typed Metaprogramming

1995 • F. Pfenning and Hao-Chi Wong. On a modal lambda calculus for S4, MFPS’95

1996 • R. Davies and F. Pfenning. A A modal analysis of staged computation, POPL’96

2001 • R. Davies and F. Pfenning. A modal analysis of staged computation, JACM’01

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic, MSCS’01

Key Idea: �τ describes closed code of type τ
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Early 2000...

1995 • F. Pfenning and Hao-Chi Wong. On a modal lambda calculus for S4, MFPS’95

1996 • R. Davies and F. Pfenning. A A modal analysis of staged computation, POPL’96

2001 • R. Davies and F. Pfenning. A modal analysis of staged computation, JACM’01

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic, MSCS’01

�τ describes closed code of type τ
Simply Typed Modal Lambda Calculus with box-modality

• Explicit Modal Lambda Calculus – with box and let-box

Distinguish between global and local assumptions – two zones

• Implicit Kripke-style Modal Lambda-Calculus with box and unbox

Kripke-style context stack Γ0; . . . ; Γn where variables at stage i are bound in

the context Γi
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The Unusual Effectiveness of Modal Types

Modal Lambda-Calculi directly derived from Pfenning and Davies’ work have been used

in a wide range of seemingly unconnected applications:

• Contextual Modal Type Theory [Pfenning, Nanevski, Pientka 2008]

• Modelling meta-variables and unification alg. [Abel, Pientka, Pfenning 2003, 2006,

2011 ]

• Mechanizing meta-theory [Pientka et al 2008,. . ., 2019]

• Modelling holes in proofs and programs [Pfenning, Pientka, Nanevski 2008, Cyrus et al

2019]

• Programming with algebraic effects [Nanevski et al 2021]

• Reasoning about universes in homotopy type [Licata, Shulman, et al 2015, 2018]

• . . .

Yet, a practical and sound modal type theory that supports meta-programming

has been elusive.
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A glimpse of the future



MINTS– a Modal INtuitionistic Type theory with Stages

Kripke-Style Martin-Löf type theory that supports homogeneous multi-staged

programming in the spirit of Scheme or Racket’s quote-unquote style.

supports large elimination and a full cumulative universe hierarchy.

8



MINTS– a Modal INtuitionistic Type theory with Stages

Kripke-Style Martin-Löf type theory that supports homogeneous multi-staged

programming in the spirit of Scheme or Racket’s quote-unquote style.

supports large elimination and a full cumulative universe hierarchy.

• Extends Pfenning and Davies’ work to dependent types

• Generate and share code across multiple stages

• Specify strong guarantees of multi-staged program using dependent types

(especially large eliminations)

• Reason about multi-staged programs

and prove them correct
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How do we get there . . .?



Kripke-style modal lambda-calculus – simply typed!

Kripke Context Stack
−→
Γ

Γ0; . . . ; Γn `̀ t

Term

: τ

Type

• Each Kripke world of modal logic corresponds to a stage in the computation

• A term of type �τ corresponds to the code of a program of type τ in a future

stage of computation
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Kripke-style modal lambda-calculus – simply typed!

Local Variable
x :τ ∈ Γn

Γ0; . . . ; Γn `̀ x : τ

Box Introduction (push context onto context stack)
−→
Γ ; Γ; · `̀ t : τ

−→
Γ ; Γ `̀ box t : �τ

Unbox Elimination (pop context(s) of context stack)
−→
Γ ; Γ0 `̀ t : �τ

−→
Γ ; Γ0; Γ1; . . . ; Γn `̀ unboxn t : τ

The modal offset n corresponds to reflexivity and transitivity of the accessibility relation

between worlds in the Kripke semantics.
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Local structural properties and modal transformations

Local structural properties of a context Γi

• Weakening of a context Γi

• Substitution for assumptions in a context Γi

−→
Γ ; Γ0, x :τ ′ `̀ t : τ

−→
Γ ; Γ0 `̀ λx .t : τ ′ → τ

−→
Γ ; Γ0 `̀ t ′ : τ ′

−→
Γ ; Γ0 `̀ (λx .t) t ′ : τ =⇒

−→
Γ ; Γ0 `̀ [t ′/x ]t : τ

Modal transformations (MoTs) between context stacks

• Modal weakening and fusion of context stack
−→
Γ ; Γ0

−→
Γ ; Γ0; · `̀ t : τ

−→
Γ ; Γ0 `̀ box t : �τ

−→
Γ ; Γ0; Γ1; . . . ; Γn `̀ unboxn (box t) : τ =⇒

−→
Γ ; Γ0; Γ1; . . . ; Γn `̀ t ′ : τ

where t ′ is obtained from t by modal weakening / fusion.

Typically, local context and modal context stack transforma-

tions are thought of as separate concepts.

This is problematic, since simultaneous substitutions are central in

• Implementations based on explicit substitution

• Normalization proofs using logical relations

• Mechanizations based on de Bruijn
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Towards MINTS by examples



Example: Staged Power Function

pow : Nat → � (Nat → Nat)

pow zero = box λ x → 1

pow (succ n) = box λ x → ((unbox 1 (pow n)) x) * x

Typically, code generation does not evaluate code inside a box.

pow 2 = box λ x → ((unbox 1 (pow 1)) x) * x

= box λ x → ((unbox 1 (box λ y → ((unbox 1 (pow 0)) y) * y)) x) * x

= box λ x → ((λ y → ((unbox 1 (pow 0)) y) * y) x) * x

= box λ x → ((λ y → ((unbox 1 (box λ z → 1)) y) * y) x) * x

= box λ x → ((λ y → ((λ z → 1) y) * y) x) * x

What code shall we generate in a type theory? Evaluation = Normalization!

We typically identify terms up to βη (and for example normalize under a λ-abstraction. )

=⇒ Consequently we normalize also under a box!
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Example: Staged Power Function

pow : Nat → � (Nat → Nat)

pow zero = box λ x → 1

pow (succ n) = box λ x → ((unbox 1 (pow n)) x) * x

Evaluation by Normalization :

pow 2 = box λ x → ((unbox 1 (pow 1)) x) * x

= box λ x → ((unbox 1 (box λ y → ((unbox 1 (pow 0)) y) * y)) x) * x

= box λ x → ((λ y → ((unbox 1 (pow 0)) y) * y) x) * x

= box λ x → (((unbox 1 (pow 0)) x) * x) * x

= box λ x → (((λ z → 1) x) * x) * x

= box λ x → x * x

Avoids administrative redeces!
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Example: Generating N-ary Sum Function

Idea:

• If n is zero, then we return zero;

• If n is one, then we return the identity function;

• If n is two, then we return the function that sums up two arguments, i.e.

box λ x y → x + y.

• etc.

Step 1: Type-level function nary n which computes the type of an n-ary function:

nary : Nat → Se

nary zero = Nat

nary (succ n) = Nat → nary n

Step 2: Define n-ary-sum : (n : Nat) → � (nary (unbox1 (lift n)))

14
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Example: Checking that implementation works as intended

Step 3: Test that n-ary-sum works as intended.

nary -sum -3 : nary -sum 3 ≡ box λ x y z → (x + y) + z

nary -sum -3 = refl

Step 4: Prove more general soundness theorems

Summing over a list l of n natural numbers returns the same result as generating

code using nary-sum n and then applying it to all the numbers in l.

16



A glimpse of MINTS:

A Kripke-Style Modal Type Theory



Kripke-style Explicit Formulation: box - unbox (REVISITED)

Kripke Context Stack
−→
Γ

Γ0; . . . ; Γn `̀ t

Term

: τ

Type

Local Variable
x :τ ∈ Γn

Γ0; . . . ; Γn `̀ x : τ

The Problem in the Dependently Typed Setting:

We have dependencies within one context and across the context stack!

17
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Kripke-style Explicit Formulation: box - unbox (REVISITED)

Kripke Context Stack
−→
Γ

Γ0; . . . ; Γn `̀ t

Term

: τ

Type

Local Variable
Γn = Γ, x :τ, Γ′

Γ0; . . . ; Γn `̀ x : [wk]τ

The Problem in the Dependently Typed Setting:

We have dependencies within one context and across the context stack!

Solution: Ordinary weakening wrt to a context 17



Revisiting Box Elimination

Unbox Elimination (pop context(s) of context stack)
−→
Γ ; Γ0 `̀ t : �τ

−→
Γ ; Γ0; Γ1 . . . ; Γn `̀ unboxn t : τ

The Problem in the Dependently Typed Setting:

For the premise we have:

•
−→
Γ ; Γ0; · `̀ τ : Se

In the conclusion we need:

•
−→
Γ ; Γ0;Γ1 . . . ; Γn `̀ τ : Se

Required: Weaken with Γ1 and Modal Weakening wrt context stack Γ2; . . . Γn

18
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A general transformation between context stacks

Unified (Simultaneous) Substitutions

Local Context Γ,∆ := · | Γ, x :τ Local Substitution σ := · | σ, t/x

Context Stack
−→
Γ ,
−→
∆ := ε; Γ |

−→
Γ ; Γ Substitution Stack −→σ := ε;σ | −→σ ;⇑nσ

−→
Γ `̀ −→σ :

−→
∆

−→
Γ ; Γ1; . . . ; Γn `̀ σ : ∆

−→
Γ ; Γ1; . . . ; Γn `̀ −→σ ;⇑nσ :

−→
∆; ∆

19



Unified Substitution Operation

[−→σ ;⇑kσ]x := σ(x) lookup x in σ

[−→σ ;⇑kσ](λx .t) := λx .[−→σ ;⇑k(σ, x/x)]t

[−→σ ;⇑kσ](s t) := [−→σ ;⇑kσ]s [−→σ ;⇑kσ]t

[−→σ ;⇑kσ](box t) := box [−→σ ;⇑kσ;⇑1·]t
[−→σ ;⇑kσ](unboxn t) :=?

Recall – Unbox Elimination (pop context(s) of context stack)
−→
Γ ; Γ0 `̀ t : �τ

−→
Γ ; Γ0; . . . ; Γn `̀ unboxn t : τ

=⇒ truncate the unified substitution [−→σ ;⇑kσ] to apply it to t on the rhs
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Truncation and Truncation Offset

Typing of unified substitution:
−→
Γ `̀ −→σ :

−→
∆.

Truncation : −→σ | n

• Returns a prefix of −→σ with domain context stack
−→
∆ | n

Truncation Offset O(−→σ , n) = k

• Sums over all the modal offsets in the the truncated part of −→σ
• Used to adjust the range

−→
Γ s.t. −→σ | n remains well-typed.

Typing of truncated substitution: (
−→
Γ | k) `̀ (−→σ | n) : (

−→
∆ | n)
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Revisiting Unbox

Typing

−→
Γ ; Γ0 `̀ t : �τ

−→
Γ ; Γ0; · `̀ τ : Sei `̀

−→
Γ ; Γ0; Γ1; . . . ; Γn

−→
Γ ; Γ0; Γ1; . . . ; Γn `̀ unboxn t : [

−→
I ;⇑n ·]τ

Applying unified substitution

[−→σ ;⇑kσ](unboxn t) := unboxn′ [−→σ ′]t

where −→σ ′ = (−→σ ;⇑kσ) | n︸ ︷︷ ︸
Truncate −→σ ;⇑kσ

and n′ = O((−→σ ;⇑kσ) , n)︸ ︷︷ ︸
Compute the truncation offset

22



Unified Substitutions are key.



Point 1: Unified Substitutions enable normalization for MINTS

Normalization by Evaluation algorithm for MINTS following Abel’13

• Algebraic uniform characterization of the Kripke-structure based on unified

substitutions (syntax) using untyped modal transformation (semantics)

• A core modal dependent type theory as an explicit substitution calculus

−→ our NbE algorithm applies to all 4 subsystems of S4

• Completeness proof for the NbE algorithm uses a partial equivalence relation (PER)

model for the untyped domain terms together with untyped modal transformations.

• Soundness proof for the NbE algorithm based on a Kripke glueing model

Exploits a special class of unified substitutions, restricted to weakenings.

• NbE soundness and completeness mechanized in Agda (11K) only exploits function

extensionality and induction-recursion

• Mechanization exposes common oversimplification in how cumulativity of universes

23



Point 2: Contextual Box and Unbox to Handle Open Code

Types τ := . . . | box (
−→
∆ ` τ)

Terms t := . . . | box (
−→
∆ ` t) | unbox (t ,

⇀
σ ) where

⇀
σ is a partial unified substitution.

Introduction −→
Γ ;
−→
∆ `̀ t : τ

−→
Γ `̀ box (

−→
∆ ` t) : box (

−→
∆ ` τ)

Elimination
−→
Γ | n `̀ t : box (

−→
∆ ` τ)

−→
Γ `̀ ⇀

σ ::
−→
∆

−→
Γ `̀ unbox (t ,

⇀
σ ) : [

−→
I ;

⇀
σ ]τ

where O(
⇀
σ ) = n

• Previously: The modal offset at the unbox only allowed for modal weakening

• Now: Unified substitution allow for modal weakening and instantiation of the variables
−→
∆
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Current Status

• MINTS: Kripke-style modal type theory (joint work with J. Z. Hu and J.

Jang)

• Categorical view of modal lambda-calculi (joint work with J. Z. Hu) [MFPS’22]

• System F-style meta-programming with pattern matching (joint work with J. Jang,

S. Gélineau, S. Monnier) [POPL’22]
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What I Learned

Lesson 1: Logic through the Curry-Howard isomorphism allows us to gain a deeper

understanding of computational phenomena.

Lesson 2: While other approaches exist to support type-safe generation of typed code,

they are not logically motivated.

Lesson 3: Unified substitutions provide a general concept to capture transformation

between context stacks both syntactically and semantically.

Lesson 4: Good first step towards a dependently typed foundation for

meta-programming!

What’s next? – How to support pattern matching in MINTS.
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