
POPLMark Reloaded:

Mechanizing Logical Relations Proofs

Brigitte Pientka

McGill University

Joint work with A. Abel (Chalmers), A. Hameer (McGill), A. Momigliano (Milan), S.
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Mechanizing formal systems

together with proofs establishes

trust.



Mechanizing formal systems

together with proofs establishes

trust. . . and avoid flaws.



Programs go wrong.

Testing correctness of C Compilers [Vu et.al PLDI’14]:

• GCC and LLVM had over 195 bugs

• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of

verified compilers. ”

[Vu et al PLDI’14]
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Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)
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It’s a tricky business

“The truth of the matter is that putting languages

together is a very tricky business. When one attempts to

combine language concepts, unexpected and

counterintuitive interactions arise. At this point, even the

most experienced designers intuition must be butressed

by a rigorous definition of what the language means. ”

- J. Reynolds
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The problem: Correct proofs are tricky to write.

• a lot of overhead

(on paper and even more so in a proof assistant)

• challenging to keep track of details

• hard to understand interaction between different features

• difficulties increase with size
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What are good high-level proof

languages that make it easier to

mechanize and maintain formal

guarantees?



POPLMark – A Look Back ...



POPLMark Challenge: Mechanize System F<
[Aydemir et. al. 2005]

Spotlight on

“type preservation and soundness, unique decomposition properties

of operational semantics, proofs of equivalence between algorithmic

and declarative versions of type systems.”

• Structural induction proofs (syntactic)

• Representing and reasoning about structures with binders

• Easy to be understood; text book description (TAPL)

• Small (can be mechanized in a couple of hours or days)

• Explore different encoding techniques for representing bindings
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POPLMark Challenge – The Good

X Popularized the use of proof assistants

X Many submitted solutions

X Good way to learn about a technique

X Mechanizing proofs is addictive!
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POPLMark Challenge – The Bad

• Did we achieve “a future where the papers in

conferences such as POPL and ICFP are routinely

accompanied by mechanically checkable proofs of

the theorems they claim.”?

• Did we get better tool support for mechanizing

proofs?
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POPLMark Challenge – The Ugly

7 Did not identify bugs or flaws in existing systems

7 Did not inspire the development of new theoretical

foundations

7 Did not push existing systems to their limit

“Type soundness results are two a penny.”

Andrew Pitts
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Beyond the POPLMark Challenge!



Beyond the POPLMark Challenge

“The POPLMark Challenge is not meant to be

exhaustive: other aspects of programming language

theory raise formalization difficulties that are interestingly

different from the problems we have proposed - to name

a few: more complex binding constructs such as mutually

recursive definitions, logical relations proofs, coinductive

simulation arguments, undecidability results, and linear

handling of type environments.” [Aydemir et. al. 2005]
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POPLMark Reloaded –

Goals and Target Audience



User Community Including Students

• Learn logical relations proofs a modern way

• Be able to grow the development to rich type theories

(for example dependently typed systems)

• Understand the trade-offs in choosing a particular proof

environment when tackling such a proof
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Framework Developers

• Highlight features that are ideally suited for built-in support

• Highlight current shortcomings (theoretical and practical) in

existing proof environments

• Signpost to advertise a given system

• Stimulate research on foundations of proof environments

• Benchmark for evaluating and comparing systems
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POPLMark Reloaded:

Strong normalization for the

simply-typed lambda-calculus with

typed-reductions using Kripke-style

logical relations



Simply Typed λ-Calculus with Type-Directed Reductions

Simply Typed λ-calculus:

Terms M,N ::= x | λx :A.M | M N | ()

Types A,B ::= A⇒ B | unit

Type-directed reductions [Goguen’95]: Γ ` M −→ N : A

Γ ` λx :A.M : A⇒ B Γ ` N : A
Γ ` (λx :A.M) N −→ [N/x ]M : B

β
M 6= ()

Γ ` M −→ () : unit

Γ ` M −→ M ′ : A⇒ B Γ ` N : A
Γ ` M N −→ M ′ N : B

Γ ` M : A⇒ B Γ ` N −→ N ′ : A
Γ ` M N −→ M N ′ : B

Γ, x :A ` M −→ M ′ : B

Γ ` λx :A.M −→ λx :A.M ′ : A⇒ B
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Why Type-directed Reductions?

• Simplifies the study of its meta-theory.

• Concise presentation of the important issues that arise.

• Widely applicable in studying subtyping, type-preserving

compilation, etc.

• Types are necessary if we want η-expansion.

M 6= λy :A.M ′

Γ ` M −→ λx :A.M x : A⇒ B
∗

WARNING: This rule doesn’t actually work, if we want strong

normalization. Use at your own risk.
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Normalization

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• A term M is said to be strongly normalising if all rewrite

sequences starting in M end eventually in a normal form.
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Setting the Stage: How to Define Strong Normalization?

Often defined as an accessibility relation:

∀N. Γ ` M −→ N : A =⇒ Γ ` N : A ∈ sn
Γ ` M : A ∈ sn

“the reduct analysis becomes increasingly annoying in

normalization proofs for more and more complex

systems.” Joachimski and Matthes [2003]
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Intuition ....How to Define Normalization

[F. van Raamsdonk and P. Severi 1995]

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• Set of all weakly normalising terms: the smallest set of all

normal forms closed under expansion.

How to obtain the set of all strongly normalising terms?

=⇒ Similar . . . with a few restrictions
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A Modular Approach to Strongly Normalizing Terms

[F. van Raamsdonk and P. Severi 1995]

• Inductive characterization of normal forms (Γ ` M : A ∈ SN)

• Leads to modular proofs – on paper and in mechanizations

“the new proofs are essentially simpler than already

existing ones.” F. van Raamsdonk and P. Severi
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Inductive definition of well-typed strongly normalizing terms

Neutral terms
x :A ∈ Γ

Γ ` x : A ∈ SNe

Γ ` R : A⇒ B ∈ SNe Γ ` M : A ∈ SN

Γ ` R M : B ∈ SNe

Normal terms

Γ ` () : unit ∈ SN

Γ ` R : A ∈ SNe

Γ ` R : A ∈ SN

Γ, x :A ` M : B ∈ SN

Γ ` λx :A.M : A⇒ B ∈ SN

Γ ` M −→SN M ′ : A Γ ` M ′ : A ∈ SN

Γ ` M : A ∈ SN

Strong head reduction Γ ` M ∈ SN

Γ ` M −→SN () : unit

Γ ` N : A ∈ SN Γ, x :A ` M : B

Γ ` (λx .M) N −→SN [N/x ]M : B

Γ ` R −→SN R ′ : A⇒ B Γ ` M : A

Γ ` R M −→SN R ′ M
18



Challenge 1: Equivalence between

accessibility and inductive definition

of strongly normalizing terms:

Γ ` M : A ∈ sn iff Γ ` M : A ∈ SN.



Strong Normalization using Logical Relations

Definition (Reducibility Candidates: Γ ` M ∈ RA)

Γ ` M ∈ Runit iff Γ ` M : unit ∈ SN

Γ ` M ∈ RA⇒B iff Γ ` M : A⇒ B and

for all N,∆ such that Γ ≤ρ ∆,

if ∆ ` N ∈ RA then ∆ ` ([ρ]M)N ∈ RB .

• Contexts arise naturally.

• They are necessary!

• The definition scales to dependently typed setting and stating

properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use

Kripke-style context extensions?
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Challenge 2: Strong normalization

for simply typed λ-calculus

CR 1 : If Γ ` M ∈ RA then Γ ` M : A ∈ SN.

CR 2 : If Γ ` R : A ∈ SNe then Γ ` R ∈ RA.

CR 3 : If Γ ` M −→SN M ′ : A and Γ ` M ′ ∈ RA

then Γ ` M ∈ RA.

Main fundamental lemma:

If Γ ` M : A and Γ′ ` σ ∈ RΓ then Γ′ ` [σ]M ∈ RA.



Challenges in the Proof(s)

• Definitions use well-typed terms

• Stratified definitions for reducibility candidates

(not strictly positive!)

• Simultaneous substitutions and weakenings

• Basic infrastructure

- Substitution properties about terms

- Weakening and Strengthening of type-directed reductions

- Weakening, Exchange, and Strengthening for typing

- Weakening, Anti-weakening for strongly normalizing terms

- Weakening for reducibility candidates

• Induction principles
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Towards solving the challenge

problems



Beluga: Programming and Proof Environment

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Weakening

Derivation TreeSubstitution

Scope Binding

Contextual
Logical Framework LF

Functional Programs with
Indexed (Co)data Types

• Below the surface: Support for key concepts based on Contextual LF

[TOCL’08,POPL’08,LFMTP’13, ESOP’17, . . .]

• Above the surface: (Co)Inductive Proofs

as (Co)Recursive Programs using (Co)pattern Matching

[POPL’08,IJCAR’10, POPL’12,POPL’13,CADE’15,ICFP’16, . . .]
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A Quick Guided Tour

Demo
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Mechanization of Strong Normalization for STLC in Beluga

• Use HOAS to characterize simply typed terms

• Define SN inductively

• Use stratified definition for reducibility

• Extension to disjoint sums.
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Lessons Learned – The Good, the Bad and the Ugly

X HOAS is great to model binding structure!

X Built-in support for substitutions and weakening is very useful!

X Take advantage of dependent types to model intrinsically

typed terms, typed-reductions, typed SN, etc.

X Compact (256 lines total)

X Great to investigate and motivate extensions, first-class

weakenings, to the theory of simultaneous substitutions

Unification in the presence of renamings.

X Great to find bugs and make system more robust.

Particularly coverage and termination checking

7 Interactive proof development mode clearly needs work.

7 No proof automation – know what you want to do.
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Other Mechanizations:

Agda [A. Abel] and Coq [S. Schäfer, K. Stark]

Common set up:

• Use well-typed de Bruijn encoding for simply typed terms

• Model typed reduction

• Weakenings (renamings) are functions Nat -> Nat

Where they differ at the moment ....

• Coq: Accessibility characterization of SN

• Agda : Inductive def. of SN
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Other Mechanizations: The Good, the Bad, and the Ugly

X Everything could be proven ”as expected”

X Substitution lemmas

• Coq (Well-scoped): Autosubst

• Coq (Well-typed): (≈ 180 lines of code) (proof scripts)

• Agda (Well-typed): (≈ 270 lines of code) (proof terms)

7 Still need to work with de Bruijn encodings

7 Need to apply equational theory of substitution

can be partially automated using tactics in Coq
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Isn’t proving strong normalization in

a proof assistant an old hat?



Just Following Girard’s “Proofs and Types”

An Incomplete Bibliography

T. Altenkirch [TLCA’93] : SN for System F

B. Barras and B. Werner [1997] : SN for CoC

C. Coquand [1999] : NbE for λσ

S. Berghofer [TYPES 2004] : WN for STL

Characteristic Features:

• Terms are not well-scoped or well-typed

• Candidate relation is untyped and does not enforce

well-scoped terms

=⇒ does not scale to typed-directed evaluation or equivalence

=⇒ today we may have better techniques to structure proofs

(inductive def. of SN)
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Beyond strong normalization ...



Additional Challenge Problems

• Weak normalization

(good starting point) [LFMTP’13,MSCS’17] X

• Type-directed algorithmic equality

(Tutorial by K. Crary in ATPL; similar issues as in strong

normalization with typed reductions) [LFMTP’15,MSCS’17] X

• Adding η-expansion ?

• Normalization of System F

(excellent suggestion) 7

Let’s systematically compare different mechanization.
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Benchmarks can be great!



A Call for Action• Choose your favorite proof assistant

• Complete the challenge

• Let’s stick to the given set up

in particular the inductive def. of SN . . .

https://github.com/andreasabel/strong-normalization/

blob/master/sn-proof/sn-proof.pdf

X makes it easier to compare mechanization

X it’s good for you :-)

• Be part of formulating and tackling the challenge and building

a repository for challenge problems

29
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Let’s get started... talk to me for

the challenge problem set up and

questions to keep in mind.

Thank you!



If you submit a solution, please

answer the following set of

questions to help us compare and

evaluate different mechanizations.



Questions About the Set Up

• How are bindings, substitutions, and necessary infrastructre

represented? How big is your initial set up? – If you use

libraries, explain briefly what they are.

• How are well-typed terms modelled?

• How are Kripke-style context extensions modelled?

• How does the formalization deal with renaminigs /

weakenings?
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Questions About the Proof Development

• How does it compare to the proof given in the online tutorial?

• Were there any additional lemmas required besides the ones

given in the tutorial?

• How straightforward was it to extend the language to unit and

disjoint sums? Did anything in the set-up needed to be

changed?
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Questions About General Lessons

• Did you find solving the problem interesting? Did it expose

you to a new perspective on logical relations proofs?

• Did solving this problem expose any issues with the system

you were working with? Did it inspire extensions?

• Do you have any general lessons / take-aways?
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Let’s get started... We are looking

forward seeing your solutions.
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