
POPLMark Reloaded:

Mechanizing Logical Relations Proofs

Brigitte Pientka

McGill University

Joint work with A. Abel (Chalmers), A. Hameer (McGill), A. Momigliano (Milan), S.

Schäfer (Saarbrücken), K. Stark (Saarbrücken)

Mechanizing formal systems

together with proofs establishes

trust.

Mechanizing formal systems

together with proofs establishes

trust. . . and avoid flaws.

Programs go wrong.

Testing correctness of C Compilers [Vu et.al PLDI’14]:

• GCC and LLVM had over 195 bugs

• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of

verified compilers. ”

[Vu et al PLDI’14]

1

Programs go wrong.

Testing correctness of C Compilers [Vu et.al PLDI’14]:

• GCC and LLVM had over 195 bugs

• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of

verified compilers. ”

[Vu et al PLDI’14]

1

Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

2

Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

2

Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)

2

Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)

2

It’s a tricky business

“The truth of the matter is that putting languages

together is a very tricky business. When one attempts to

combine language concepts, unexpected and

counterintuitive interactions arise. At this point, even the

most experienced designers intuition must be butressed

by a rigorous definition of what the language means. ”

- J. Reynolds

3

The problem: Correct proofs are tricky to write.

• a lot of overhead

(on paper and even more so in a proof assistant)

• challenging to keep track of details

• hard to understand interaction between different features

• difficulties increase with size

4

What are good high-level proof

languages that make it easier to

mechanize and maintain formal

guarantees?

POPLMark – A Look Back ...

POPLMark Challenge: Mechanize System F<
[Aydemir et. al. 2005]

Spotlight on

“type preservation and soundness, unique decomposition properties

of operational semantics, proofs of equivalence between algorithmic

and declarative versions of type systems.”

• Structural induction proofs (syntactic)

• Representing and reasoning about structures with binders

• Easy to be understood; text book description (TAPL)

• Small (can be mechanized in a couple of hours or days)

• Explore different encoding techniques for representing bindings

5

POPLMark Challenge – The Good

X Popularized the use of proof assistants

X Many submitted solutions

X Good way to learn about a technique

X Mechanizing proofs is addictive!

6

POPLMark Challenge – The Bad

• Did we achieve “a future where the papers in

conferences such as POPL and ICFP are routinely

accompanied by mechanically checkable proofs of

the theorems they claim.”?

• Did we get better tool support for mechanizing

proofs?

7

POPLMark Challenge – The Ugly

7 Did not identify bugs or flaws in existing systems

7 Did not inspire the development of new theoretical

foundations

7 Did not push existing systems to their limit

“Type soundness results are two a penny.”

Andrew Pitts

8

Beyond the POPLMark Challenge!

Beyond the POPLMark Challenge

“The POPLMark Challenge is not meant to be

exhaustive: other aspects of programming language

theory raise formalization difficulties that are interestingly

different from the problems we have proposed - to name

a few: more complex binding constructs such as mutually

recursive definitions, logical relations proofs, coinductive

simulation arguments, undecidability results, and linear

handling of type environments.” [Aydemir et. al. 2005]

9

POPLMark Reloaded –

Goals and Target Audience

User Community Including Students

• Learn logical relations proofs a modern way

• Be able to grow the development to rich type theories

(for example dependently typed systems)

• Understand the trade-offs in choosing a particular proof

environment when tackling such a proof

10

Framework Developers

• Highlight features that are ideally suited for built-in support

• Highlight current shortcomings (theoretical and practical) in

existing proof environments

• Signpost to advertise a given system

• Stimulate research on foundations of proof environments

• Benchmark for evaluating and comparing systems

11

POPLMark Reloaded:

Strong normalization for the

simply-typed lambda-calculus with

typed-reductions using Kripke-style

logical relations

Simply Typed λ-Calculus with Type-Directed Reductions

Simply Typed λ-calculus:

Terms M,N ::= x | λx :A.M | M N | ()

Types A,B ::= A⇒ B | unit

Type-directed reductions [Goguen’95]: Γ ` M −→ N : A

Γ ` λx :A.M : A⇒ B Γ ` N : A
Γ ` (λx :A.M) N −→ [N/x]M : B

β
M 6= ()

Γ ` M −→ () : unit

Γ ` M −→ M ′ : A⇒ B Γ ` N : A
Γ ` M N −→ M ′ N : B

Γ ` M : A⇒ B Γ ` N −→ N ′ : A
Γ ` M N −→ M N ′ : B

Γ, x :A ` M −→ M ′ : B

Γ ` λx :A.M −→ λx :A.M ′ : A⇒ B

12

Simply Typed λ-Calculus with Type-Directed Reductions

Simply Typed λ-calculus:

Terms M,N ::= x | λx :A.M | M N | ()

Types A,B ::= A⇒ B | unit

Type-directed reductions [Goguen’95]: Γ ` M −→ N : A

Γ ` λx :A.M : A⇒ B Γ ` N : A
Γ ` (λx :A.M) N −→ [N/x]M : B

β
M 6= ()

Γ ` M −→ () : unit

Γ ` M −→ M ′ : A⇒ B Γ ` N : A
Γ ` M N −→ M ′ N : B

Γ ` M : A⇒ B Γ ` N −→ N ′ : A
Γ ` M N −→ M N ′ : B

Γ, x :A ` M −→ M ′ : B

Γ ` λx :A.M −→ λx :A.M ′ : A⇒ B

12

Why Type-directed Reductions?

• Simplifies the study of its meta-theory.

• Concise presentation of the important issues that arise.

• Widely applicable in studying subtyping, type-preserving

compilation, etc.

• Types are necessary if we want η-expansion.

M 6= λy :A.M ′

Γ ` M −→ λx :A.M x : A⇒ B
∗

WARNING: This rule doesn’t actually work, if we want strong

normalization. Use at your own risk.

13

Normalization

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• A term M is said to be strongly normalising if all rewrite

sequences starting in M end eventually in a normal form.

14

Setting the Stage: How to Define Strong Normalization?

Often defined as an accessibility relation:

∀N. Γ ` M −→ N : A =⇒ Γ ` N : A ∈ sn
Γ ` M : A ∈ sn

“the reduct analysis becomes increasingly annoying in

normalization proofs for more and more complex

systems.” Joachimski and Matthes [2003]

15

IntuitionHow to Define Normalization

[F. van Raamsdonk and P. Severi 1995]

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• Set of all weakly normalising terms: the smallest set of all

normal forms closed under expansion.

How to obtain the set of all strongly normalising terms?

=⇒ Similar . . . with a few restrictions

16

IntuitionHow to Define Normalization

[F. van Raamsdonk and P. Severi 1995]

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• Set of all weakly normalising terms: the smallest set of all

normal forms closed under expansion.

How to obtain the set of all strongly normalising terms?

=⇒ Similar . . . with a few restrictions

16

IntuitionHow to Define Normalization

[F. van Raamsdonk and P. Severi 1995]

• A term M is said to be weakly normalising if there is a rewrite

sequence starting in M that eventually ends in a normal form.

• Set of all weakly normalising terms: the smallest set of all

normal forms closed under expansion.

How to obtain the set of all strongly normalising terms?

=⇒ Similar . . . with a few restrictions

16

A Modular Approach to Strongly Normalizing Terms

[F. van Raamsdonk and P. Severi 1995]

• Inductive characterization of normal forms (Γ ` M : A ∈ SN)

• Leads to modular proofs – on paper and in mechanizations

“the new proofs are essentially simpler than already

existing ones.” F. van Raamsdonk and P. Severi

17

Inductive definition of well-typed strongly normalizing terms

Neutral terms
x :A ∈ Γ

Γ ` x : A ∈ SNe

Γ ` R : A⇒ B ∈ SNe Γ ` M : A ∈ SN

Γ ` R M : B ∈ SNe

Normal terms

Γ ` () : unit ∈ SN

Γ ` R : A ∈ SNe

Γ ` R : A ∈ SN

Γ, x :A ` M : B ∈ SN

Γ ` λx :A.M : A⇒ B ∈ SN

Γ ` M −→SN M ′ : A Γ ` M ′ : A ∈ SN

Γ ` M : A ∈ SN

Strong head reduction Γ ` M ∈ SN

Γ ` M −→SN () : unit

Γ ` N : A ∈ SN Γ, x :A ` M : B

Γ ` (λx .M) N −→SN [N/x]M : B

Γ ` R −→SN R ′ : A⇒ B Γ ` M : A

Γ ` R M −→SN R ′ M
18

Challenge 1: Equivalence between

accessibility and inductive definition

of strongly normalizing terms:

Γ ` M : A ∈ sn iff Γ ` M : A ∈ SN.

Strong Normalization using Logical Relations

Definition (Reducibility Candidates: Γ ` M ∈ RA)

Γ ` M ∈ Runit iff Γ ` M : unit ∈ SN

Γ ` M ∈ RA⇒B iff Γ ` M : A⇒ B and

for all N,∆ such that Γ ≤ρ ∆,

if ∆ ` N ∈ RA then ∆ ` ([ρ]M)N ∈ RB .

• Contexts arise naturally.

• They are necessary!

• The definition scales to dependently typed setting and stating

properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use

Kripke-style context extensions?

19

Strong Normalization using Logical Relations

Definition (Reducibility Candidates: Γ ` M ∈ RA)

Γ ` M ∈ Runit iff Γ ` M : unit ∈ SN

Γ ` M ∈ RA⇒B iff Γ ` M : A⇒ B and

for all N,∆ such that Γ ≤ρ ∆,

if ∆ ` N ∈ RA then ∆ ` ([ρ]M)N ∈ RB .

• Contexts arise naturally.

• They are necessary!

• The definition scales to dependently typed setting and stating

properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use

Kripke-style context extensions?

19

Strong Normalization using Logical Relations

Definition (Reducibility Candidates: Γ ` M ∈ RA)

Γ ` M ∈ Runit iff Γ ` M : unit ∈ SN

Γ ` M ∈ RA⇒B iff Γ ` M : A⇒ B and

for all N,∆ such that Γ ≤ρ ∆,

if ∆ ` N ∈ RA then ∆ ` ([ρ]M)N ∈ RB .

• Contexts arise naturally.

• They are necessary!

• The definition scales to dependently typed setting and stating

properties about type-directed equivalence of lambda-terms.

Do we really need the weakening substitution ρ?

19

Strong Normalization using Logical Relations

Definition (Reducibility Candidates: Γ ` M ∈ RA)

Γ ` M ∈ Runit iff Γ ` M : unit ∈ SN

Γ ` M ∈ RA⇒B iff Γ ` M : A⇒ B and

for all N,∆ such that Γ ≤ρ ∆,

if ∆ ` N ∈ RA then ∆ ` ([ρ]M)N ∈ RB .

• Contexts arise naturally.

• They are necessary!

• The definition scales to dependently typed setting and stating

properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use

Kripke-style context extensions?

19

Challenge 2: Strong normalization

for simply typed λ-calculus

CR 1 : If Γ ` M ∈ RA then Γ ` M : A ∈ SN.

CR 2 : If Γ ` R : A ∈ SNe then Γ ` R ∈ RA.

CR 3 : If Γ ` M −→SN M ′ : A and Γ ` M ′ ∈ RA

then Γ ` M ∈ RA.

Main fundamental lemma:

If Γ ` M : A and Γ′ ` σ ∈ RΓ then Γ′ ` [σ]M ∈ RA.

Challenges in the Proof(s)

• Definitions use well-typed terms

• Stratified definitions for reducibility candidates

(not strictly positive!)

• Simultaneous substitutions and weakenings

• Basic infrastructure

- Substitution properties about terms

- Weakening and Strengthening of type-directed reductions

- Weakening, Exchange, and Strengthening for typing

- Weakening, Anti-weakening for strongly normalizing terms

- Weakening for reducibility candidates

• Induction principles

20

Towards solving the challenge

problems

Beluga: Programming and Proof Environment

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Weakening

Derivation TreeSubstitution

Scope Binding

Contextual
Logical Framework LF

Functional Programs with
Indexed (Co)data Types

• Below the surface: Support for key concepts based on Contextual LF

[TOCL’08,POPL’08,LFMTP’13, ESOP’17, . . .]

• Above the surface: (Co)Inductive Proofs

as (Co)Recursive Programs using (Co)pattern Matching

[POPL’08,IJCAR’10, POPL’12,POPL’13,CADE’15,ICFP’16, . . .]
21

A Quick Guided Tour

Demo

22

Mechanization of Strong Normalization for STLC in Beluga

• Use HOAS to characterize simply typed terms

• Define SN inductively

• Use stratified definition for reducibility

• Extension to disjoint sums.

23

Lessons Learned – The Good, the Bad and the Ugly

X HOAS is great to model binding structure!

X Built-in support for substitutions and weakening is very useful!

X Take advantage of dependent types to model intrinsically

typed terms, typed-reductions, typed SN, etc.

X Compact (256 lines total)

X Great to investigate and motivate extensions, first-class

weakenings, to the theory of simultaneous substitutions

Unification in the presence of renamings.

X Great to find bugs and make system more robust.

Particularly coverage and termination checking

7 Interactive proof development mode clearly needs work.

7 No proof automation – know what you want to do.

24

Other Mechanizations:

Agda [A. Abel] and Coq [S. Schäfer, K. Stark]

Common set up:

• Use well-typed de Bruijn encoding for simply typed terms

• Model typed reduction

• Weakenings (renamings) are functions Nat -> Nat

Where they differ at the moment

• Coq: Accessibility characterization of SN

• Agda : Inductive def. of SN

25

Other Mechanizations: The Good, the Bad, and the Ugly

X Everything could be proven ”as expected”

X Substitution lemmas

• Coq (Well-scoped): Autosubst

• Coq (Well-typed): (≈ 180 lines of code) (proof scripts)

• Agda (Well-typed): (≈ 270 lines of code) (proof terms)

7 Still need to work with de Bruijn encodings

7 Need to apply equational theory of substitution

can be partially automated using tactics in Coq

26

Isn’t proving strong normalization in

a proof assistant an old hat?

Just Following Girard’s “Proofs and Types”

An Incomplete Bibliography

T. Altenkirch [TLCA’93] : SN for System F

B. Barras and B. Werner [1997] : SN for CoC

C. Coquand [1999] : NbE for λσ

S. Berghofer [TYPES 2004] : WN for STL

Characteristic Features:

• Terms are not well-scoped or well-typed

• Candidate relation is untyped and does not enforce

well-scoped terms

=⇒ does not scale to typed-directed evaluation or equivalence

=⇒ today we may have better techniques to structure proofs

(inductive def. of SN)

27

Beyond strong normalization ...

Additional Challenge Problems

• Weak normalization

(good starting point) [LFMTP’13,MSCS’17] X

• Type-directed algorithmic equality

(Tutorial by K. Crary in ATPL; similar issues as in strong

normalization with typed reductions) [LFMTP’15,MSCS’17] X

• Adding η-expansion ?

• Normalization of System F

(excellent suggestion) 7

Let’s systematically compare different mechanization.

28

Benchmarks can be great!

A Call for Action• Choose your favorite proof assistant

• Complete the challenge

• Let’s stick to the given set up

in particular the inductive def. of SN . . .

https://github.com/andreasabel/strong-normalization/

blob/master/sn-proof/sn-proof.pdf

X makes it easier to compare mechanization

X it’s good for you :-)

• Be part of formulating and tackling the challenge and building

a repository for challenge problems

29

https://github.com/andreasabel/strong-normalization/blob/master/sn-proof/sn-proof.pdf
https://github.com/andreasabel/strong-normalization/blob/master/sn-proof/sn-proof.pdf

Let’s get started... talk to me for

the challenge problem set up and

questions to keep in mind.

Thank you!

If you submit a solution, please

answer the following set of

questions to help us compare and

evaluate different mechanizations.

Questions About the Set Up

• How are bindings, substitutions, and necessary infrastructre

represented? How big is your initial set up? – If you use

libraries, explain briefly what they are.

• How are well-typed terms modelled?

• How are Kripke-style context extensions modelled?

• How does the formalization deal with renaminigs /

weakenings?

30

Questions About the Proof Development

• How does it compare to the proof given in the online tutorial?

• Were there any additional lemmas required besides the ones

given in the tutorial?

• How straightforward was it to extend the language to unit and

disjoint sums? Did anything in the set-up needed to be

changed?

31

Questions About General Lessons

• Did you find solving the problem interesting? Did it expose

you to a new perspective on logical relations proofs?

• Did solving this problem expose any issues with the system

you were working with? Did it inspire extensions?

• Do you have any general lessons / take-aways?

32

Let’s get started... We are looking

forward seeing your solutions.

	Mechanizing formal systems together with proofs establishes trust.
	Mechanizing formal systems together with proofs establishes trust… orangeand avoid flaws.
	What are good high-level proof languages that make it easier to mechanize and maintain formal guarantees?
	POPLMark – A Look Back ...
	Beyond the POPLMark Challenge!
	POPLMark Reloaded – Goals and Target Audience
	POPLMark Reloaded: orangeStrong normalization for the simply-typed lambda-calculus with typed-reductions using Kripke-style logical relations
	Challenge 1: Equivalence between accessibility and inductive definition of strongly normalizing terms: M : A sn iff M : A SN.
	Challenge 2: Strong normalization for simply typed -calculus 1exCR 1 : If M RA then M : A SN. CR 2 : If R : A SNe then R RA.CR 3 : If M -3muSNM': A and M' RA then M RA. 1exMain fundamental lemma: If M : A and ' R then ' []M RA.
	Towards solving the challenge problems
	Isn't proving strong normalization in a proof assistant an old hat?
	Beyond strong normalization ...
	Benchmarks can be great!
	Let's get started... talk to me for the challenge problem set up and questions to keep in mind. orangeThank you!
	If you submit a solution, please answer the following set of questions to help us compare and evaluate different mechanizations.
	Let's get started... We are looking forward seeing your solutions.

