
Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: Programming proofs in context ...

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

B. Pientka Belugaµ:Programming proofs in context ... 1 / 32

Introduction Beluga:Design and implementation Prooofs in context

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

• Proofs (that a given property is satisfied) are an integral part of the
software.

What are good meta-languages to
program and reason with formal systems and proofs?

B. Pientka Belugaµ:Programming proofs in context ... 2 / 32

Introduction Beluga:Design and implementation Prooofs in context

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

• Proofs (that a given property is satisfied) are an integral part of the
software.

What are good meta-languages to
program and reason with formal systems and proofs?

B. Pientka Belugaµ:Programming proofs in context ... 2 / 32

Introduction Beluga:Design and implementation Prooofs in context

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

• Proofs (that a given property is satisfied) are an integral part of the
software.

What are good meta-languages to
program and reason with formal systems and proofs?

B. Pientka Belugaµ:Programming proofs in context ... 2 / 32

Introduction Beluga:Design and implementation Prooofs in context

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

• Proofs (that a given property is satisfied) are an integral part of the
software.

What are good meta-languages to
program and reason with formal systems and proofs?

B. Pientka Belugaµ:Programming proofs in context ... 2 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more: . . .
• Evaluation using closures
• Normalization

• Conclusion

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Belugaµ:Programming proofs in context ... 3 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more: . . .
• Evaluation using closures
• Normalization

• Conclusion

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Belugaµ:Programming proofs in context ... 3 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| arrT1 T2 | lam x :T .M

| app M N

Typing Judgment: oft M T read as “M has type T ”

Typing rules (Gentzen-style, context-free)

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

oft M (arr T S) oft N T

oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 4 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| arrT1 T2 | lam x :T .M

| app M N

Typing Judgment: oft M T read as “M has type T ”

Typing rules (Gentzen-style, context-free)

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

oft M (arr T S) oft N T

oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 4 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| arrT1 T2 | lam x :T .M

| app M N

Typing Judgment: oft M T read as “M has type T ”

Typing rules (Gentzen-style, context-free)

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

oft M (arr T S) oft N T

oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 4 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| arrT1 T2 | lam x :T .M

| app M N

Typing Judgment: oft M T read as “M has type T ”

Typing rules (Gentzen-style, context-free)

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

oft M (arr T S) oft N T

oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 4 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| arrT1 T2 | lam x :T .M

| app M N

Typing Judgment: oft M T read as “M has type T ”

Typing rules (Gentzen-style, context-free)

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

oft M (arr T S) oft N T

oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 4 / 32

Introduction Beluga:Design and implementation Prooofs in context

Simply typed lambda-calculus

Types and Terms

Types T ::= nat Terms M ::= x
| T1 → T2 | lam x :T .M

| app M N

Typing Judgment: Γ ` oft M T read as “M has type T in context Γ”

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

Context Γ ::= · | Γ, x , oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka Belugaµ:Programming proofs in context ... 5 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used?

Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed?

Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?

(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Talking about derivations

Typing rules

x , u : oft x T ∈ Γ

Γ ` oft x T
u

Γ, x , u : oft x T ` oft M S

Γ ` oft (lam x :T .M) (arr T S)
t lamx,u

Γ ` oft M (arr T S) Γ ` oft N T

Γ ` oft (app M N) S
t app

• What kinds of variables are used? Bound variables, Schematic variables
in particular:Meta-variables, Parameter variables, Context variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) Sequences, Every declaration is unique, weakening, substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Belugaµ:Programming proofs in context ... 6 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .

B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

Type uniqueness

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

Induction on first typing derivation D.

Case 1

D =

D1

Γ, x , u: oft x T ` oft M S
t lam

Γ ` oft (lam x :T .M) (arr T S)
C =

C1

Γ, x , u: oft x T ` oft M S ′

t lam
Γ ` oft (lam x :T .M) (arr T S ′)

E : eq S S ′ by i.h. using D1 and C1

E : eq S S and S = S ′ by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S ′) by reflexivity.

Case 2

D =
x , u: oft x T ∈ Γ

u
Γ ` oft x T

C =
x , v : oft x S ∈ Γ

v
Γ ` oft x S

Every variable x is associated with a unique typing assumption (property of the

context), hence v = u and S = T .
B. Pientka Belugaµ:Programming proofs in context ... 7 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more . . .
• Evaluation using closures
• Normalization

• Conclusion

B. Pientka Belugaµ:Programming proofs in context ... 8 / 32

Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: two level approach

Logical framework LF [HHP’93]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types

 support for α-renaming, substitution, adequate representations

Programming proofs [Pientka’08, Pientka,Dunfield’10]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together with domain-specific induction principle and recursive definitions

• Contextual LF: Contextual types characterize contextual objects [NPP’08]
 support well-scoped derivations
 abstract notion of contexts and substitution

• Recursive definitions = Indexed Recursive Types [Cave,Pientka’12]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 9 / 32

Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: two level approach

Logical framework LF [HHP’93]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

Programming proofs [Pientka’08, Pientka,Dunfield’10]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together with domain-specific induction principle and recursive definitions

• Contextual LF: Contextual types characterize contextual objects [NPP’08]
 support well-scoped derivations
 abstract notion of contexts and substitution

• Recursive definitions = Indexed Recursive Types [Cave,Pientka’12]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 9 / 32

Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: two level approach

Logical framework LF [HHP’93]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

Programming proofs [Pientka’08, Pientka,Dunfield’10]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together with domain-specific induction principle and recursive definitions

• Contextual LF: Contextual types characterize contextual objects [NPP’08]
 support well-scoped derivations
 abstract notion of contexts and substitution

• Recursive definitions = Indexed Recursive Types [Cave,Pientka’12]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 9 / 32

Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: two level approach

Logical framework LF [HHP’93]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

Programming proofs [Pientka’08, Pientka,Dunfield’10]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together with domain-specific induction principle and recursive definitions

• Contextual LF: Contextual types characterize contextual objects [NPP’08]
 support well-scoped derivations
 abstract notion of contexts and substitution

• Recursive definitions = Indexed Recursive Types [Cave,Pientka’12]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 9 / 32

Introduction Beluga:Design and implementation Prooofs in context

Belugaµ: two level approach

Logical framework LF [HHP’93]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

Programming proofs [Pientka’08, Pientka,Dunfield’10]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together with domain-specific induction principle and recursive definitions

• Contextual LF: Contextual types characterize contextual objects [NPP’08]
 support well-scoped derivations
 abstract notion of contexts and substitution

• Recursive definitions = Indexed Recursive Types [Cave,Pientka’12]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 9 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 1: Represent types and lambda-terms in LF

Types T ::= nat
| arr T1 T2

Terms M ::= x
| lam x :T .M
| app M N

LF representation in Beluga

datatype tp:type =
| nat: tp
| arr: tp → tp → tp;

datatype tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Typing rules

oft M (arr T S) oft N T

oft (app M N) S
t app

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

datatype oft: tm → tp → type =
| t_app: oft M (arr T S) → oft N T

→ oft (app M N) S
| t_lam: (Π x:tm.oft x T → oft (M x) S)

→ oft (lam T M) (arr T S);

B. Pientka Belugaµ:Programming proofs in context ... 10 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 1: Represent types and lambda-terms in LF

Types T ::= nat
| arr T1 T2

Terms M ::= x
| lam x :T .M
| app M N

LF representation in Beluga

datatype tp:type =
| nat: tp
| arr: tp → tp → tp;

datatype tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Typing rules

oft M (arr T S) oft N T

oft (app M N) S
t app

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

datatype oft: tm → tp → type =
| t_app: oft M (arr T S) → oft N T

→ oft (app M N) S
| t_lam: (Π x:tm.oft x T → oft (M x) S)

→ oft (lam T M) (arr T S);

B. Pientka Belugaµ:Programming proofs in context ... 10 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 1: Represent types and lambda-terms in LF

Types T ::= nat
| arr T1 T2

Terms M ::= x
| lam x :T .M
| app M N

LF representation in Beluga

datatype tp:type =
| nat: tp
| arr: tp → tp → tp;

datatype tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Typing rules

oft M (arr T S) oft N T

oft (app M N) S
t app

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

datatype oft: tm → tp → type =
| t_app: oft M (arr T S) → oft N T

→ oft (app M N) S
| t_lam: (Π x:tm.oft x T → oft (M x) S)

→ oft (lam T M) (arr T S);

B. Pientka Belugaµ:Programming proofs in context ... 10 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 1: Represent types and lambda-terms in LF

Types T ::= nat
| arr T1 T2

Terms M ::= x
| lam x :T .M
| app M N

LF representation in Beluga

datatype tp:type =
| nat: tp
| arr: tp → tp → tp;

datatype tm: type =
| lam: tp → (tm → tm) → tm
| app: tm → tm → tm;

Typing rules

oft M (arr T S) oft N T

oft (app M N) S
t app

oft x T
u

...
oft M S

oft (lam x :T .M) (arr T S)
t lamx,u

datatype oft: tm → tp → type =
| t_app: oft M (arr T S) → oft N T

→ oft (app M N) S
| t_lam: (Π x:tm.oft x T → oft (M x) S)

→ oft (lam T M) (arr T S);

B. Pientka Belugaµ:Programming proofs in context ... 10 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2a: Theorem as type

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

is represented as

Computation-level Type in Beluga

(Γ:ctx) [Γ ` oft (M ...) T] → [Γ ` oft (M ...) S] → [` eq T S]

Read as: ”For all contexts Γ of the schema ctx, ...

• [Γ ` oft (M ...)T] and [` eq T S] are contextual types [NPP’08].

• ... describes dependency on context.
T is a closed object (M ...) is an object which may depend on context Γ.

• Contexts are structured sequences and are classified by context schemas

schema ctx = some [T:tp] block x:tm, u:oft x T.

B. Pientka Belugaµ:Programming proofs in context ... 11 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2a: Theorem as type

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

is represented as

Computation-level Type in Beluga

(Γ:ctx) [Γ ` oft (M ...) T] → [Γ ` oft (M ...) S] → [` eq T S]

Read as: ”For all contexts Γ of the schema ctx, ...

• [Γ ` oft (M ...)T] and [` eq T S] are contextual types [NPP’08].

• ... describes dependency on context.
T is a closed object (M ...) is an object which may depend on context Γ.

• Contexts are structured sequences and are classified by context schemas

schema ctx = some [T:tp] block x:tm, u:oft x T.

B. Pientka Belugaµ:Programming proofs in context ... 11 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2a: Theorem as type

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

is represented as

Computation-level Type in Beluga

(Γ:ctx) [Γ ` oft (M ...) T] → [Γ ` oft (M ...) S] → [` eq T S]

Read as: ”For all contexts Γ of the schema ctx, ...

• [Γ ` oft (M ...)T] and [` eq T S] are contextual types [NPP’08].

• ... describes dependency on context.
T is a closed object (M ...) is an object which may depend on context Γ.

• Contexts are structured sequences and are classified by context schemas

schema ctx = some [T:tp] block x:tm, u:oft x T.

B. Pientka Belugaµ:Programming proofs in context ... 11 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2a: Theorem as type

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

is represented as

Computation-level Type in Beluga

(Γ:ctx) [Γ ` oft (M ...) T] → [Γ ` oft (M ...) S] → [` eq T S]

Read as: ”For all contexts Γ of the schema ctx, ...

• [Γ ` oft (M ...)T] and [` eq T S] are contextual types [NPP’08].

• ... describes dependency on context.
T is a closed object (M ...) is an object which may depend on context Γ.

• Contexts are structured sequences and are classified by context schemas

schema ctx = some [T:tp] block x:tm, u:oft x T.

B. Pientka Belugaµ:Programming proofs in context ... 11 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2a: Theorem as type

Theorem

If D : Γ ` oft M T and C : Γ ` oft M S then E : eq T S .

is represented as

Computation-level Type in Beluga

(Γ:ctx) [Γ ` oft (M ...) T] → [Γ ` oft (M ...) S] → [` eq T S]

Read as: ”For all contexts Γ of the schema ctx, ...

• [Γ ` oft (M ...)T] and [` eq T S] are contextual types [NPP’08].

• ... describes dependency on context.
T is a closed object (M ...) is an object which may depend on context Γ.

• Contexts are structured sequences and are classified by context schemas

schema ctx = some [T:tp] block x:tm, u:oft x T.

B. Pientka Belugaµ:Programming proofs in context ... 11 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Step 2b: Proofs as Programs

rec unique:(Γ:ctx)[Γ `oft (M ...)T] →[Γ `oft (M ...)S] →[`eq T S] =

fn d ⇒ fn c ⇒ case d of

| [Γ ` t_app (D1 ...) (D2 ...)] ⇒ % Application Case
let [Γ ` t_app (C1 ...) (C2 ...)] = c in
let [` e_ref] = unique [Γ ` D1 ...] [Γ ` C1 ...] in

[` e_ref]

| [Γ ` t_lam (λx.λu. D ... x u) ⇒ % Abstraction Case
let [Γ ` t_lam (λx.λu. C ... x u)] = c in
let [` e_ref] = unique [Γ,b:block x:tm, u:oft x _ ` D ... b.1 b.2]

[Γ,b ` C ... b.1 b.2] in
[` e_ref]

| [Γ ` #q.2 ...] ⇒ % d : oft (#q.1 ...) T % Assumption Case
let [Γ ` #r.2 ...] = c in % c : oft (#r.1 ...) S

[` e_ref] ;

Recalll:
#q:block x:tm, u:oft x T

#r:block x:tm, u:oft x S

We also know: #r.1 = #q.1

Therefore: T = S

B. Pientka Belugaµ:Programming proofs in context ... 12 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Revisiting the design of Beluga

• Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga [IJCAR’10]

Well-formed derivations Dependent types

Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects

Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

• Compact representation of proofs as functions [POPL’08,PPDP08]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Belugaµ:Programming proofs in context ... 13 / 32

Introduction Beluga:Design and implementation Prooofs in context

Comparison

• Twelf [Pf,Sch’99]: Encode proofs as relations

– Requires lemma to prove injectivity of arr constructor.
– No explicit contexts (cannot express types T and S and eq T S are

closed)
– Parameter case folded into abstraction case

• Delphin [Sch,Pos’08]: Encode proofs as functions

– Requires lemma to prove injectivity of constructor
– Cannot express that types T and S and eq T S are closed.
– Variable carrying continuation as extra argument to handle context

lookup

• Abella [Gacek’08], Tac[Baelde’10]: Proof assistants based on proof theory

– Equality built-into the logic
– Contexts are represented as lists
– Requires lemmas about these lists (for example that all assumptions

occur uniquely)

B. Pientka Belugaµ:Programming proofs in context ... 14 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more . . .
• Evaluation using closures
• Normalization

• Conclusion

B. Pientka Belugaµ:Programming proofs in context ... 15 / 32

Introduction Beluga:Design and implementation Prooofs in context

Example: Evaluator using closures

• Lambda-terms and closures

Terms M,N := x | λx .M | M N
Closures C := Cl(x .M, ρ)
Environment ρ := · | ρ, (x ,C)

• Meaning of Cl(x .M, ρ): ρ provides instantiations for all the free
variables in x .M.

• Environment ρ is a mapping from variables to closures

• Evaluation : (M, ρ) ⇓ C

lookup x ρ = C

(x , ρ) ⇓ C (λx .M , ρ) ⇓ Cl(x .M, ρ)

(M1, ρ) ⇓ Cl(x .N, ρ′) (M2, ρ) ⇓ C (N, ρ′, (x ,C)) ⇓ C ′

(M1 M2, ρ) ⇓ C ′

B. Pientka Belugaµ:Programming proofs in context ... 16 / 32

Introduction Beluga:Design and implementation Prooofs in context

Example: Evaluator using closures

• Lambda-terms and closures

Terms M,N := x | λx .M | M N
Closures C := Cl(x .M, ρ)
Environment ρ := · | ρ, (x ,C)

• Meaning of Cl(x .M, ρ): ρ provides instantiations for all the free
variables in x .M.

• Environment ρ is a mapping from variables to closures

• Evaluation : (M, ρ) ⇓ C

lookup x ρ = C

(x , ρ) ⇓ C (λx .M , ρ) ⇓ Cl(x .M, ρ)

(M1, ρ) ⇓ Cl(x .N, ρ′) (M2, ρ) ⇓ C (N, ρ′, (x ,C)) ⇓ C ′

(M1 M2, ρ) ⇓ C ′

B. Pientka Belugaµ:Programming proofs in context ... 16 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms, contexts and closures

LF representation in Beluga

datatype tm: type =
lam: (tm → tm) → tm
app: tm → tm → tm ;

schema ctx = tm; % Define context schema

Computation-level data types in Beluga

datatype Clos : ctype =
Cl : (ψ:ctx) [ψ, x:tm ` tm] → ([ψ ` tm] → Clos)→ Clos ;

Note: → is overloaded.

• tm → tm is the LF function space : binders in the object language are
modelled by LF functions

• [ψ `tm] → Clos is a computation-level function mapping variables of
type tm in the context ψ to closures.

B. Pientka Belugaµ:Programming proofs in context ... 17 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms, contexts and closures

LF representation in Beluga

datatype tm: type =
lam: (tm → tm) → tm
app: tm → tm → tm ;

schema ctx = tm; % Define context schema

Computation-level data types in Beluga

datatype Clos : ctype =
Cl : (ψ:ctx) [ψ, x:tm ` tm] → ([ψ ` tm] → Clos)→ Clos ;

Note: → is overloaded.

• tm → tm is the LF function space : binders in the object language are
modelled by LF functions

• [ψ `tm] → Clos is a computation-level function mapping variables of
type tm in the context ψ to closures.

B. Pientka Belugaµ:Programming proofs in context ... 17 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms, contexts and closures

LF representation in Beluga

datatype tm: type =
lam: (tm → tm) → tm
app: tm → tm → tm ;

schema ctx = tm; % Define context schema

Computation-level data types in Beluga

datatype Clos : ctype =
Cl : (ψ:ctx) [ψ, x:tm ` tm] → ([ψ ` tm] → Clos)→ Clos ;

Note: → is overloaded.

• tm → tm is the LF function space : binders in the object language are
modelled by LF functions

• [ψ `tm] → Clos is a computation-level function mapping variables of
type tm in the context ψ to closures.

B. Pientka Belugaµ:Programming proofs in context ... 17 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms, contexts and closures (revised)

LF representation in Beluga

datatype tm: type =
lam: (tm → tm) → tm
app: tm → tm → tm ;

schema ctx = tm; % Define context schema

Computation-level data types in Beluga

datatype Var : {ψ:ctx} ctype = V : {#p:[ψ ` tm]} Var [ψ];

datatype Clos : ctype =
Cl : (ψ:ctx) [ψ, x:tm ` tm] → (Var [ψ] → Clos)→ Clos ;

Note: Index computation-level types [POPL’12]

• Var [ψ] is an indexed type

• V : {#p:[ψ . tm]} Var [ψ] defines a constructor V which takes variables
of type tm in the context ψ as argument (Cast)

B. Pientka Belugaµ:Programming proofs in context ... 18 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms, contexts and closures (revised)

LF representation in Beluga

datatype tm: type =
lam: (tm → tm) → tm
app: tm → tm → tm ;

schema ctx = tm; % Define context schema

Computation-level data types in Beluga

datatype Var : {ψ:ctx} ctype = V : {#p:[ψ ` tm]} Var [ψ];

datatype Clos : ctype =
Cl : (ψ:ctx) [ψ, x:tm ` tm] → (Var [ψ] → Clos)→ Clos ;

Note: Index computation-level types [POPL’12]

• Var [ψ] is an indexed type

• V : {#p:[ψ . tm]} Var [ψ] defines a constructor V which takes variables
of type tm in the context ψ as argument (Cast)

B. Pientka Belugaµ:Programming proofs in context ... 18 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

Define recursive program parametric in context
rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])

| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Evaluation using closures

rec eval: (ψ:ctx) [ψ `tm] → (Var [ψ] → Clos) → Clos =

fn e ⇒ fn env ⇒ case e of

| [ψ `#p ...] ⇒env (V [ψ `#p ...])
| [ψ `lam λx. E ...x] ⇒ Cl [ψ,x:tm `E ...x] env

| [ψ ` app (E1 ...) (E2 ...)] ⇒
let Cl [φ,x:tm ` E ... x] env’ = eval [ψ ` E1 ...] env in
let w = eval [ψ ` E2 ...] env in

eval [φ,x:tm ` E ... x]
(fn x ⇒ case x of

| V [φ, x:tm ` x] ⇒ w
| V [φ, x:tm ` #p ...] ⇒ env’ (V [φ ` #p ...])

)

Features

• Pattern matching on contextual objects and computation-level data
constructors

• Matching on contexts to lookup variables

B. Pientka Belugaµ:Programming proofs in context ... 19 / 32

Introduction Beluga:Design and implementation Prooofs in context

Weak Normalization

• Good benchmark
- Twelf, Delphin are too weak (to do it directly)
- Coq/Agda lack support for substitutions and binders
- Abella allows normalization proofs but lacks support for contexts

• Weak normalization for simply typed lambda calculus

Theorem

If ` M : A then M halts.

Proof.

1 Define reducibility candidate RA

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

• We will use intrinsically typed terms.

B. Pientka Belugaµ:Programming proofs in context ... 20 / 32

Introduction Beluga:Design and implementation Prooofs in context

Weak Normalization

• Good benchmark
- Twelf, Delphin are too weak (to do it directly)
- Coq/Agda lack support for substitutions and binders
- Abella allows normalization proofs but lacks support for contexts

• Weak normalization for simply typed lambda calculus

Theorem

If ` M : A then M halts.

Proof.

1 Define reducibility candidate RA

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

• We will use intrinsically typed terms.B. Pientka Belugaµ:Programming proofs in context ... 20 / 32

Introduction Beluga:Design and implementation Prooofs in context

Representing terms and evaluation in LF

Revisiting our definition of lambda-terms

datatype tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

Operational semantics

datatype mstep : tm A → tm A → type =
| s/beta : mstep (app (lam M) N) (M N)
| s/app : mstep M M’ → mstep (app M N) (app M’ N)
| s/refl : mstep M M
| s/trans: mstep M M’ → mstep M’ N → mstep M N;

A term M halts if there exists a value V s.t. M −→∗ V .

datatype halts : tm A → type =
| h/value : mstep M M’ → value M’ → halts M;

B. Pientka Belugaµ:Programming proofs in context ... 21 / 32

Introduction Beluga:Design and implementation Prooofs in context

Reducibility Candidates

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[` tp]} {M:[` tm A]} ctype =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• Not strictly positive definition, but stratified.

Reducibility candidates for substitutions σ ∈ RΓ :

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

B. Pientka Belugaµ:Programming proofs in context ... 22 / 32

Introduction Beluga:Design and implementation Prooofs in context

Reducibility Candidates

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[` tp]} {M:[` tm A]} ctype =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• Not strictly positive definition, but stratified.

Reducibility candidates for substitutions σ ∈ RΓ :

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

B. Pientka Belugaµ:Programming proofs in context ... 22 / 32

Introduction Beluga:Design and implementation Prooofs in context

Reducibility Candidates

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[` tp]} {M:[` tm A]} ctype =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• Not strictly positive definition, but stratified.

Reducibility candidates for substitutions σ ∈ RΓ :

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

B. Pientka Belugaµ:Programming proofs in context ... 22 / 32

Introduction Beluga:Design and implementation Prooofs in context

Generalization of Fundamental Lemma

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case
Γ, x :A ` M : B

Γ ` λx .M : A→ B

[σ](λx .M) = λx .([σ, x/x]M) by properties of substitution
halts (λx .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

(λx .([σ, x/x]M)) N ∈ RB by Backwards closure

Hence [σ](λx .M) ∈ RA→B by definition

B. Pientka Belugaµ:Programming proofs in context ... 23 / 32

Introduction Beluga:Design and implementation Prooofs in context

Theorems as Computation-level Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

Computation-level Type in Beluga

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Computation-level Type in Beluga

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] = ? ;

B. Pientka Belugaµ:Programming proofs in context ... 24 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ `#p ...] ⇒lookup [Γ] [Γ `#p ...] rs

| [Γ ` lam (λx. M1 ... x)] ⇒
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` app (M1 ...) (M2 ...)] ⇒
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` c] ⇒ I [` h/value s/refl v/c];

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code
B. Pientka Belugaµ:Programming proofs in context ... 25 / 32

Introduction Beluga:Design and implementation Prooofs in context

Other examples and comparison

• Other examples:

- Weak normalization for which evaluates under lambda-abstraction
- Algorithmic equality for LF (A. Cave) (draft available)

=⇒ Sufficient evidence that Beluga is ideally suited to support such
advanced proofs

• Comparison (concentrating on the given weak normalization proof)

- Coq/Agda formalization with well-scoped de Bruijn indices: dozen
additional lemmas

- Abella: 4 additional lemmas and diverges a bit from on-paper proof
- Twelf: Too weak to for directly encoding such proofs; Implement

auxiliary logic.

B. Pientka Belugaµ:Programming proofs in context ... 26 / 32

Introduction Beluga:Design and implementation Prooofs in context

What have we achieved?

• Foundation for programming proofs in context
(joint work with A. Cave [POPL’12])

- Proof term language for first-order logic over contextual LF as domain
- Uniform treatment of contextual types, context, . . .
- Modular foundation for dependently-typed programming with

phase-distinction ⇒ Generalization of DML and ATS
- Non-termination or effects are allowed, although we often want to

concentrate on pure total programs.

• Extending contextual LF with first-class substitutions and their
equational theory (joint work with A. Cave [LFMTP’13])

• Rich set of examples

- Type-preserving compiler for simply typed lambda-calculus (joint work
with O. Savary Belanger, S. Monnier [CPP’13])

- (Weak) Normalization proofs (A. Cave)

• Latest release in Jan’14: Support for indexed data types, first-class
substitutions, equational theory behind substitutions

B. Pientka Belugaµ:Programming proofs in context ... 27 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more . . .
• Evaluation using closures
• Normalization

• Conclusion

B. Pientka Belugaµ:Programming proofs in context ... 28 / 32

Introduction Beluga:Design and implementation Prooofs in context

This talk

Design and implementation of Beluga

• Introduction

• Example: Simply typed lambda calculus

• Writing a proof in Beluga . . .

• Wanting more . . .
• Evaluation using closures
• Normalization

• Conclusion

B. Pientka Belugaµ:Programming proofs in context ... 29 / 32

Introduction Beluga:Design and implementation Prooofs in context

Conclusion

Belugaµ: programming proofs in context

• Level 1: Contextual LF
- Supports for specifying formal systems in LF
- Embed contexts and contextual LF objects into computations and types
- First-class substitution and contexts together with rich equational

theory

• Level 2: Functional programming language supporting indexed types

• Pattern match and manipulate contextual LF objects
• Proof terms language for first-order logic over contextual LF
• Supports indexed recursive types

=⇒ Elegant and compact framework for programming proofs.

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka Belugaµ:Programming proofs in context ... 30 / 32

Introduction Beluga:Design and implementation Prooofs in context

Current work

• Prototype in OCaml (ongoing)
(providing an interactive programming mode)

• Structural recursion (S. S. Ruan, A. Abel)
Develops a foundation of structural recursive functions for Beluga; proof of

normalization; prototype implementation under way

• Coinduction in Beluga (D. Thibodeau)
Extending work on simply-typed copatterns [POPL’13] to Beluga

• Case study:

- Certified compiler (O. Savary Belanger, CPP’13)
- Proof-carrying authorization with constraints (Tao Xue)

• Extending Beluga to full dependent types (A. Cave)

• Type reconstruction for dependently typed programs (F. Ferreira)

• ORBI - Benchmarks for comparing systems supporting HOAS
encodings (A. Felty, A. Momigliano)

B. Pientka Belugaµ:Programming proofs in context ... 31 / 32

Introduction Beluga:Design and implementation Prooofs in context

Current work

• Prototype in OCaml (ongoing)
(providing an interactive programming mode)

• Structural recursion (S. S. Ruan, A. Abel)
Develops a foundation of structural recursive functions for Beluga; proof of

normalization; prototype implementation under way

• Coinduction in Beluga (D. Thibodeau)
Extending work on simply-typed copatterns [POPL’13] to Beluga

• Case study:

- Certified compiler (O. Savary Belanger, CPP’13)
- Proof-carrying authorization with constraints (Tao Xue)

• Extending Beluga to full dependent types (A. Cave)

• Type reconstruction for dependently typed programs (F. Ferreira)

• ORBI - Benchmarks for comparing systems supporting HOAS
encodings (A. Felty, A. Momigliano)

B. Pientka Belugaµ:Programming proofs in context ... 31 / 32

Introduction Beluga:Design and implementation Prooofs in context

The end

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians: Brigitte Pientka, Mathias Puech, Tao Xue, Olivier
Savary Belanger, Andrew Cave, Francisco Ferreira, Stefan Monnier, David

Thibodeau, Sherry Shanshan Ruan, Shawn Otis

B. Pientka Belugaµ:Programming proofs in context ... 32 / 32

	Introduction
	Beluga:Design and implementation
	Prooofs in context

