
Introduction Beluga:Design and implementation

Mechanizing Meta-Theory in Beluga

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

Joint work with Andrew Cave

B. Pientka Mechanizing Meta-Theory in Beluga 1 / 27

Introduction Beluga:Design and implementation

How to mechanize formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are an integral part of the
software (see: certified code, proof-carrying architectures).

Program
(in Assembler,

C, ML, Java, ...)

Properties

– Memory Safety:
Program does not crash

– Authenticity:
Communicates only within domain mcgill.ca

– Type Safety:
Execution of program does not go wrong

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 27

Introduction Beluga:Design and implementation

How to mechanize formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are an integral part of the
software (see: certified code, proof-carrying architectures).

Program
(in Assembler,

C, ML, Java, ...)

Properties

– Memory Safety:
Program does not crash

– Authenticity:
Communicates only within domain mcgill.ca

– Type Safety:
Execution of program does not go wrong

Meta-Theory

B. Pientka Mechanizing Meta-Theory in Beluga 2 / 27

Introduction Beluga:Design and implementation

Question

What are good meta-languages to program and

reason with formal systems and proofs?

B. Pientka Mechanizing Meta-Theory in Beluga 3 / 27

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 4 / 27

Introduction Beluga:Design and implementation

Proofs: The tip of the iceberg

Main Proof

Eigenvariables

Hypothesis Variables
Context

Renaming

Derivation TreeSubstitution

Scope Binding

“We may think of [the] proof as an iceberg. In the top of it, we find what
we usually consider the real proof; underwater, the most of the matter,
consisting of all mathematical preliminaries a reader must know in order to
understand what is going on.” S. Berardi [1990]

B. Pientka Mechanizing Meta-Theory in Beluga 5 / 27

Introduction Beluga:Design and implementation

Beluga: Programming Proofs in Context

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place; he concentrates on solving
his problem, and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]

B. Pientka Mechanizing Meta-Theory in Beluga 6 / 27

Introduction Beluga:Design and implementation

Beluga: Programming Proofs in Context

“The motivation behind the work in very-high-level languages is to ease the
programming task by providing the programmer with a language containing
primitives or abstractions suitable to his problem area. The programmer is
then able to spend his effort in the right place; he concentrates on solving
his problem, and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]

B. Pientka Mechanizing Meta-Theory in Beluga 6 / 27

Introduction Beluga:Design and implementation

Above and Below the Surface

Beluga: Dependently typed Programming and Proof Environment

Main Proof

Eigenvariables

Hypothesis
Context

Variables

Renaming

Derivation TreeSubstitution

Scope Binding

Contextual LF

Functional
Programmming
with Indexed Types

• Below the surface: Support for key concepts based on Contextual LF

• Above the surface: Proofs by structural Induction = Recursive Programs
First-order Logic over Contextual LF objects (i.e. Contexts, Derivation trees,

Substitutions, . . .) together with inductive definitions and induction principles

B. Pientka Mechanizing Meta-Theory in Beluga 7 / 27

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relation

• Writing a proof in Beluga . . .

• Conclusion and curent work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Mechanizing Meta-Theory in Beluga 8 / 27

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and curent work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

B. Pientka Mechanizing Meta-Theory in Beluga 8 / 27

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 9 / 27

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus (Gentzen-style)

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx,u M : A⇒ B N : A

app M N : B
app

B. Pientka Mechanizing Meta-Theory in Beluga 9 / 27

Introduction Beluga:Design and implementation

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lamx .M) N −→ [N/x]M
s/beta

M −→ M
s/refl

M −→ M ′

app M N −→ app M ′ N
s/app M −→ M ′ M ′ −→ N

M −→ N
s/trans

Typing Judgment: Γ ` M : A read as “M has type A in context Γ”

x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N A

Γ `app M N : B
app

Context Γ ::= · | Γ, x : A We are introducing the variable x together with
the assumption x : A

B. Pientka Mechanizing Meta-Theory in Beluga 10 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used?

Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed?

Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?

(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Derivations Under the Magnifying Glass

Typing rules
x : A ∈ Γ
Γ ` x : A

Γ, x : A `M : B

Γ `lam x .M : A⇒ B
lamx Γ `M : A⇒ B Γ `N : B

Γ `app M N : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
beta

M −→ M ′

app M N −→ app M ′ N
app

• What kinds of variables are used? Bound variables, Eigenvariables,
Schematic variables, Context variables

• What operations on variables are needed? Substitution and Renaming for
bound variable, Substitution for schematic variables, Substitution for
hypothesis and eigenvariables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues.

B. Pientka Mechanizing Meta-Theory in Beluga 11 / 27

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 27

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 27

Introduction Beluga:Design and implementation

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If ` M : A then M halts, i.e. there exists a value V s.t. M −→∗ V .

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA⇒B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

B. Pientka Mechanizing Meta-Theory in Beluga 12 / 27

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

where σ ∈ RΓ is defined as:

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

B. Pientka Mechanizing Meta-Theory in Beluga 13 / 27

Introduction Beluga:Design and implementation

Generalization of Fundamental Lemma

Lemma (Main lemma)

If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A⇒ B
lam

[σ](lam x .M) = lam x .([σ, x/x]M) by properties of substitution
halts (lam x .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

app (lam x . [σ, x/x]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA⇒B by definition

B. Pientka Mechanizing Meta-Theory in Beluga 14 / 27

Introduction Beluga:Design and implementation

Challenging Benchmark

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

• Binders: lambda-binder, ∀ in reducibility definition, quantification over

substitutions and contexts

• Contexts: Uniqueness of assumptions, weakening, etc.

• Simultanous substitution and algebraic properties:
Substitution lemma, composition, decomposition, associativity, identity, etc.

[·]M = M

[σ,N/x]M = [N/x][σ, x/x]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed

B. Pientka Mechanizing Meta-Theory in Beluga 15 / 27

Introduction Beluga:Design and implementation

Challenging Benchmark

“I discovered that the core part of the proof (here proving lemmas about
CR) is fairly straightforward and only requires a good understanding of the
paper version. However, in completing the proof I observed that in certain
places I had to invest much more work than expected, e.g. proving lemmas
about substitution and weakening.” T. Altenkirch [TLCA’93]

• Binders: lambda-binder, ∀ in reducibility definition, quantification over

substitutions and contexts

• Contexts: Uniqueness of assumptions, weakening, etc.

• Simultanous substitution and algebraic properties:
Substitution lemma, composition, decomposition, associativity, identity, etc.

[·]M = M

[σ,N/x]M = [N/x][σ, x/x]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed

B. Pientka Mechanizing Meta-Theory in Beluga 15 / 27

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and curent work

B. Pientka Mechanizing Meta-Theory in Beluga 16 / 27

Introduction Beluga:Design and implementation

Belugaµ: Two Level Approach

The Top: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

The Bottom: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 27

Introduction Beluga:Design and implementation

Belugaµ: Two Level Approach

The Top: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

The Bottom: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 27

Introduction Beluga:Design and implementation

Belugaµ: Two Level Approach

The Top: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

The Bottom: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 27

Introduction Beluga:Design and implementation

Belugaµ: Two Level Approach

The Top: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specifc domain (= contextual LF)
together inductive definitions (= relations) about domain objects and
domain-specific induction principle [TLCA’15]

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

The Bottom: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax trees and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

B. Pientka Mechanizing Meta-Theory in Beluga 17 / 27

Introduction Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx M : A⇒ B N : A

app M N : B
app

LF representation in Beluga

LF tp:type =
| i: tp
| arr: tp → tp → tp;

LF tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

B. Pientka Mechanizing Meta-Theory in Beluga 18 / 27

Introduction Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types A,B::= i Terms M, N ::= x | c
| A⇒ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

lam x .M : A⇒ B
lamx M : A⇒ B N : A

app M N : B
app

LF representation in Beluga

LF tp:type =
| i: tp
| arr: tp → tp → tp;

LF tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

B. Pientka Mechanizing Meta-Theory in Beluga 18 / 27

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[` tp]} {M:[` tm A]} type =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 27

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA⇒B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

stratified Reduce : {A:[` tp]} {M:[` tm A]} type =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

B. Pientka Mechanizing Meta-Theory in Beluga 19 / 27

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 27

Introduction Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

inductive RedSub : (Γ:ctx){σ: ` Γ} type =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

B. Pientka Mechanizing Meta-Theory in Beluga 20 / 27

Introduction Beluga:Design and implementation

Theorems as Computation-level Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] = ? ;

B. Pientka Mechanizing Meta-Theory in Beluga 21 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] →Reduce [` A] [` M] = ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] →Reduce [` A] [` M σ] =

mlam Γ⇒mlam M ⇒ fn rs ⇒ case [Γ ` M] of

| [Γ `#p] ⇒lookup [Γ] [Γ `#p] rs % Variable

| [Γ ` app M1 M2] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1] rs in
f [` _] (main [Γ] [Γ ` M2] rs)

| [Γ ` lam λx. M1] ⇒ % Abstraction
Arr [` h/value s/refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value s/refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

B. Pientka Mechanizing Meta-Theory in Beluga 22 / 27

Introduction Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and curent work

B. Pientka Mechanizing Meta-Theory in Beluga 23 / 27

Introduction Beluga:Design and implementation

Revisiting the Design of Beluga

• Top : Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call

• Bottom: Contextual LF

On paper proof In Beluga [IJCAR’10,CADE’15]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]

Context Context schemas

Properties of contexts Typing for schemas

(weakening, uniqueness)

Substitutions Substitution type [LFMTP’13]

(composition, identity)
B. Pientka Mechanizing Meta-Theory in Beluga 24 / 27

Introduction Beluga:Design and implementation

Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 25 / 27

Introduction Beluga:Design and implementation

Alternatives

General Theorem Proving Environments

• Calculus of Construction (Coq) / Martin Löf Type Theory (Agda)
No special support for variables, assumptions, derivation trees, etc.

About a dozen extra lemmas

• Isabelle / Nominal
support for variable names, but not for assumptions, derivation trees, etc.

based on nominal set theory; about a dozen extra lemmas

Domain-specific Provers (Higher-Order Abstract Syntax (HOAS))

• Abella: encode second-order hereditary Harrop (HH) logic in G, an
extension of first-order logic with a new quantifier ∇, and develop inductive
proofs in G by reasoning about the size of HH derivations .

diverges a bit from on-paper proof; 4 additional lemmas

• Twelf: Too weak for directly encoding such proofs; implement auxiliary

logic.

B. Pientka Mechanizing Meta-Theory in Beluga 25 / 27

Introduction Beluga:Design and implementation

Current Work

• Prototype in OCaml (ongoing - last release March 2015)
providing an interactive programming mode, totality checker [CADE’15]

https://github.com/Beluga-lang/Beluga

• Mechanizing Types and Programming Languages - A companion:

https://github.com/Beluga-lang/Meta

• Coinduction in Beluga (D. Thibodeau, A. Cave)

Extending work on simply-typed copatterns [POPL’13] to Beluga

Long term: reason about reactive systems [POPL’14]

• Case study: Certified compiler (O. Savary Belanger) [CPP’13]

• Extending Beluga to full dependent types (A. Cave)

• Type reconstruction (F. Ferreira [PPDP’14] and [JFP’13])

• ORBI - Benchmarks for comparing systems supporting HOAS
encodings [JAR’15,LFMTP’15] (A. Felty, A. Momigliano, March 2015)

B. Pientka Mechanizing Meta-Theory in Beluga 26 / 27

https://github.com/Beluga-lang/Beluga
https://github.com/Beluga-lang/Meta

Introduction Beluga:Design and implementation

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Thanks go to: Andrew Cave, Joshua Dunfield, Olivier Savary Be-
langer, Matthias Boespflug, Scott Cooper, Francisco Ferreira, Aidan
Marchildon, Stefan Monnier, Agata Murawska, Nicolas Jeannerod,
David Thibodeau, Shawn Otis, Rohan Jacob Rao, Shanshan Ruan,
Tao Xue

“A language that doesn’t affect the way you think about
programming, is not worth knowing.“ - Alan Perlis

B. Pientka Mechanizing Meta-Theory in Beluga 27 / 27

	Introduction
	Beluga:Design and implementation

