Programming logical relations proofs

Brigitte Pientka

School of Computer Science McGill University Montreal, Canada

Joint work with Andrew Cave

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing languages and more generally software.
- Proofs (that a given property is satisfied) are an integral part of the software.

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing languages and more generally software.
- Proofs (that a given property is satisfied) are an integral part of the software.

What are good meta-languages to program and reason with formal systems and proofs?

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relation
- Writing a proof in Beluga . . .
- Conclusion and curent work

"The limits of my language mean the limits of my world."

- L. Wittgenstein

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga ...
- Conclusion and curent work

"The limits of my language mean the limits of my world."

- L. Wittgenstein

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types
$$A, B := i$$
 Terms M, N $:= x \mid \mathbf{c}$ $\mid \operatorname{lam} x.N$

Evaluation Judgment:
$$M \longrightarrow M'$$
 read as " M steps to M' "
$$\frac{}{\mathsf{app}\;(\mathsf{lam}\;x.M)\;N \longrightarrow [N/x]M}\;\mathsf{s/beta} \qquad \frac{}{M \longrightarrow M}\;\mathsf{s/refl}$$
$$\frac{M \longrightarrow M'}{\mathsf{app}\;M\;N \longrightarrow \mathsf{app}\;M'\;N}\;\mathsf{s/app} \qquad \frac{M \longrightarrow M'\;M' \longrightarrow N}{M \longrightarrow N}\;\mathsf{s/trans}$$

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types
$$A, B := i$$
 Terms $M, N := x \mid c$ $\mid lam \times M \mid ann M \mid$

Evaluation Judgment: $M \longrightarrow M'$

read as "M steps to M"

$$\frac{1}{\text{app (lam } x.M)} \underset{\text{App } M}{N \longrightarrow [N/x]M} \text{ s/beta} \qquad \frac{1}{M \longrightarrow M} \underset{\text{s/refl}}{\text{s/refl}}$$

$$\frac{M \longrightarrow M'}{\text{app } M \underset{\text{N}}{N \longrightarrow \text{app } M' \underset{\text{N}}{N}}} \text{ s/app} \qquad \frac{M \longrightarrow M' \underset{\text{M}}{M \longrightarrow N}}{M \longrightarrow N} \text{ s/trans}$$

$$\frac{M \longrightarrow M' \quad M' \longrightarrow N}{M \longrightarrow N} \text{ s/tran}$$

 $\frac{}{M \longrightarrow M}$ s/refl

read as "M has type A" (Gentzen-style)

$$\overline{x : A}$$
 u

$$\frac{M:B}{(\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x,u} \qquad \frac{M:(A \to B) \quad N:A}{(\operatorname{app} M N):B} \operatorname{app}$$

$$\frac{M:(A\to B) \quad N:A}{(\operatorname{app} M \ N):B} \operatorname{app}$$

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types
$$A, B := i$$
 Terms $M, N := x \mid c$ $\mid lam \times M \mid ann M \mid$

Evaluation Judgment: $M \longrightarrow M'$

read as "M steps to M'"

$$\frac{\text{app (lam}x.M) N \longrightarrow [N/x]M}{\text{app } M N \longrightarrow \text{app } M' N} \text{ s/app}$$

eta
$$\dfrac{M\longrightarrow M}{M\longrightarrow M}$$
 s/refl $\dfrac{M\longrightarrow M'\longrightarrow M'\longrightarrow N}{M\longrightarrow N}$ s/trans

Typing Judgment: $\Gamma \vdash M : A$

read as "M has type A in context Γ "

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\;\mathsf{lam}^x \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N\;A}{\Gamma\vdash (\mathsf{app}\;M\;N):B} \;\;\mathsf{app}$$

Context Γ ::= $\cdot \mid \Gamma, x : A$ We are introducing the variable x together with the assumption x : A

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\,M\,N):B} \;\; \mathsf{app}$$

$$\frac{\text{on rules}}{\text{app (lam } x.M) } \stackrel{N}{N} \longrightarrow [N/x]M \text{ beta } \frac{M \longrightarrow M'}{\text{app } M \ N \longrightarrow \text{app } M' \ N} \text{ app}$$

Typing rules

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\;M\;N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\operatorname{app}\;(\operatorname{lam}\;x.M)\;N\longrightarrow [N/x]M}\;\;\operatorname{beta}\;\;\frac{M\longrightarrow M'}{\operatorname{app}\;M\;N\longrightarrow\operatorname{app}\;M'\;N}\;\operatorname{app}$$

What kinds of variables are used?

Typing rules

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^x \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\,M\,N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\operatorname{app (lam} \ x.M) \ N \longrightarrow [N/x]M} \ \text{beta} \ \frac{M \longrightarrow M'}{\operatorname{app} \ M \ N \longrightarrow \operatorname{app} \ M' \ N} \ \operatorname{app}$$

 What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\;M\;N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\operatorname{app (lam} \ x.M) \ N \longrightarrow [N/x]M} \ \text{beta} \ \frac{M \longrightarrow M'}{\operatorname{app} \ M \ N \longrightarrow \operatorname{app} \ M' \ N} \ \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed?

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\;M\;N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\operatorname{app (lam} \ x.M) \ N \longrightarrow [N/x]M} \ \text{beta} \ \frac{M \longrightarrow M'}{\operatorname{app} \ M \ N \longrightarrow \operatorname{app} \ M' \ N} \ \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\;M\;N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\text{app (lam } x.M) \ N \longrightarrow [N/x]M} \ \text{beta} \ \frac{M \longrightarrow M'}{\text{app } M \ N \longrightarrow \text{app } M' \ N} \ \text{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have?

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\,M\,N):B} \;\; \mathsf{app}$$

$$\frac{\text{Evaluation rules}}{\operatorname{app}\ (\operatorname{lam}\ x.M)\ N \longrightarrow [N/x]M} \ \operatorname{beta} \ \frac{M \longrightarrow M'}{\operatorname{app}\ M\ N \longrightarrow \operatorname{app}\ M'\ N} \ \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have? (Structured) sequences, Uniqueness of declaration, Weakening, Substitution lemma, etc.

Typing rules

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \quad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash (\mathsf{lam}\,x.M):(A\to B)} \;\; \mathsf{lam}^{\mathsf{x}} \quad \frac{\Gamma\vdash M:(A\to B) \quad \Gamma\vdash N:B}{\Gamma\vdash (\mathsf{app}\,M\,N):B} \;\; \mathsf{app}$$

Evaluation rules
$$\frac{M \longrightarrow M'}{\operatorname{app} \ (\operatorname{lam} x.M) \ N \longrightarrow [N/x]M} \ \operatorname{beta} \ \frac{M \longrightarrow M'}{\operatorname{app} \ M \ N \longrightarrow \operatorname{app} \ M' \ N} \ \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have? (Structured) sequences, Uniqueness of declaration, Weakening, Substitution lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a matter how much support one gets in a given meta-language.

Weak Normalization for Simply Typed Lambda-calculus

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If $\vdash M : A$ then M halts, i.e. there exists a value V s.t. $M \longrightarrow^* V$.

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If $\vdash M : A$ then M halts, i.e. there exists a value V s.t. $M \longrightarrow^* V$.

Proof.

1 Define reducibility candidate \mathcal{R}_A

$$\mathcal{R}_{\mathbf{i}} = \{M \mid M \text{ halts}\}\$$
 $\mathcal{R}_{A \to B} = \{M \mid M \text{ halts and } \forall N \in \mathcal{R}_A, (\text{app } M N) \in \mathcal{R}_B\}$

- 2 If $M \in \mathcal{R}_A$ then M halts.
- 3 Backwards closed: If $M' \in \mathcal{R}_A$ and $M \longrightarrow M'$ then $M \in \mathcal{R}_A$.
- 4 Fundamental Lemma: If $\vdash M : A$ then $M \in \mathcal{R}_A$. (Requires a generalization)

1

Lemma (Main lemma)

If $\mathcal{D}: \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}.$

where $\sigma \in \mathcal{R}_{\Gamma}$ is defined as:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x:A}}$$

Lemma (Main lemma)

If $\mathcal{D}: \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}.$

Lemma (Main lemma)

If $\mathcal{D}: \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}.$

Proof.

Case
$$\mathcal{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A} \ var$$

$$\sigma \in \mathcal{R}_{\Gamma}$$

$$g \in \mathcal{K}_{\Gamma}$$

$$[\sigma](x)=M\in\mathcal{R}_A$$

by assumption

by lookup in $\sigma \in \mathcal{R}_{\Gamma}$ and substitution property

Lemma (Main lemma)

If $\mathcal{D}: \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}.$

Proof.

Case
$$\mathcal{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A} \text{ var}$$

$$\sigma \in \mathcal{R}_{\Gamma}$$

by assumption

by assumption

by i.h. \mathcal{D}_2

by i.h. \mathcal{D}_1

$$[\sigma](x) = M \in \mathcal{R}_A$$

by lookup in $\sigma \in \mathcal{R}_\Gamma$ and substitution property

Case
$$\mathcal{D} = \begin{array}{ccc} \mathcal{D}_1 & \mathcal{D}_2 \\ \hline \Gamma \vdash M : A \rightarrow B & \Gamma \vdash N : A \\ \hline \Gamma \vdash \mathsf{app} \ M \ N : B \end{array}$$
 app

$$\sigma \in \mathcal{R}_{\Gamma}$$

$$N \in \mathcal{R}_A$$

$$M \in \mathcal{R}_{A \to B}$$

$$M$$
 halts and $\forall N' \in \mathcal{R}_A$. (app M N') $\in \mathcal{R}_B$ app M $N \in \mathcal{R}_B$

by definition by previous lines $(\forall -elim)$

Lemma (Main lemma)

If $\mathcal{D}: \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}.$

Proof.

Case
$$\mathcal{D} = \frac{\mathcal{D}_1}{\Gamma, x: A \vdash M : B} \frac{\Gamma, x: A \vdash M : B}{\Gamma \vdash \text{lam } x.M : A \rightarrow B} lam$$

$$[\sigma](\operatorname{lam} x.M) = \operatorname{lam} x.([\sigma, x/x]M)$$
 halts $(\operatorname{lam} x.[\sigma, x/x]M)$ Suppose $N \in \mathcal{R}_A$.

$$[\sigma, N/x]M \in \mathcal{R}_B$$

 $[N/x][\sigma, x/x]M \in \mathcal{R}_B$

app (lam
$$x$$
. $[\sigma,x/x]M$) $N\in\mathcal{R}_B$

Hence
$$[\sigma](\operatorname{Iam} x.M) \in \mathcal{R}_{A \to B}$$

by properties of substitution since it is a value

by I.H. on \mathcal{D}_1 since $\sigma \in \mathcal{R}_{\Gamma}$ by properties of substitution

by Backwards closure

by definition

Challenging Benchmark

- Model different level of bindings lambda-binder, \forall in reducibility definition \mathcal{R} , quantification over substitutions and contexts
- Simultanous substitution and algebraic properties Substitution lemma, Reason about composition, decomposition, associativity, identity, etc.

$$[\cdot]M = M$$

$$[\sigma, N/x]M = [N/x][\sigma, x/x]M$$

$$[\sigma_1][\sigma_2]M = [[\sigma_1]\sigma_2]M$$

a dozen such properties are needed

- Main known approaches
 - Coq/Agda lack support for substitutions and binders
 - Twelf, Delphin are too weak (to do it directly)
 - Abella allows normalization proofs but lacks support for contexts; still need to implement some substitution/context properties

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga . . .
- Conclusion and curent work

Level 1: Contextual logical framework LF [HHP'93,TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

Level 1: Contextual logical framework LF [HHP'93,TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
 - \leadsto support for lpha-renaming, substitution, adequate representations
- Contextual LF: Contextual types characterize contextual objects [TOCL'08]
 support well-scoped derivations
 - → abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 1: Contextual logical framework LF [HHP'93,TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
 - ightsquigarrow support for lpha-renaming, substitution, adequate representations
- Contextual LF: Contextual types characterize contextual objects [TOCL'08]
 support well-scoped derivations
 - → abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 2: Functional programming with indexed types [POPL'08,POPL'12]

Proof term language for first-order logic over a specifc domain (= contextual LF) together with domain-specific induction principle and recursive definitions (= indexed recursive types)

Level 1: Contextual logical framework LF [HHP'93,TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
 - \leadsto support for lpha-renaming, substitution, adequate representations
- Contextual LF: Contextual types characterize contextual objects [TOCL'08]
 support well-scoped derivations
 - → abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 2: Functional programming with indexed types [POPL'08,POPL'12]

Proof term language for first-order logic over a specifc domain (= contextual LF) together with domain-specific induction principle and recursive definitions (= indexed recursive types)

On paper proof	Proofs as functions in Beluga
Case analysis Inversion	Case analysis and pattern matching Pattern matching using let-expression
Induction Hypothesis	Recursive call

Step 1: Represent Types and Lambda-terms in LF

Types and Terms

LF representation in Beluga

Step 1: Represent Types and Lambda-terms in LF

Types and Terms

LF representation in Beluga

Reducibility candidates for terms $M \in \mathcal{R}_A$:

$$\mathcal{R}_{\mathbf{i}} = \{M \mid \text{halts } M\}$$
 $\mathcal{R}_{A \to B} = \{M \mid \text{halts } M \text{ and } \forall N \in \mathcal{R}_A, (\text{app } M N) \in \mathcal{R}_B\}$

Reducibility candidates for terms $M \in \mathcal{R}_A$:

```
\mathcal{R}_{\mathbf{i}} = \{M \mid \text{halts } M\}
\mathcal{R}_{A \to B} = \{M \mid \text{halts } M \text{ and } \forall N \in \mathcal{R}_A, (\text{app } M N) \in \mathcal{R}_B\}
```

Computation-level data types in Beluga

- [⊢app M N] and [⊢arr A B] are contextual types [TOCL'08].
- Note: → is overloaded.
 - \rightarrow is the LF function space : binders in the object language are modelled by LF functions (used inside [])
 - → is a computation-level function (used outside [])
- Not strictly positive definition, but stratified.

Reducibility candidates for substitutions $\sigma \in \mathcal{R}_{\Gamma}$:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x:A}}$$

Reducibility candidates for substitutions $\sigma \in \mathcal{R}_{\Gamma}$:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x:A}}$$

Computation-level data types in Beluga

```
\begin{array}{lll} \textbf{datatype} & \texttt{RedSub} \; : \; (\Gamma : \texttt{ctx}) \{ \sigma \colon \vdash \Gamma \} \; \textbf{ctype} \; = \\ | \; \texttt{Nil} \; : \; \texttt{RedSub} \; [\; \vdash \; \; \; ] \\ | \; \texttt{Cons} \; : \; \texttt{RedSub} \; [\; \vdash \sigma ] \; \to \; \texttt{Reduce} \; [\; \vdash \; \texttt{A}] \; [\; \vdash \; \texttt{M}] \; \to \; \texttt{RedSub} \; [\; \vdash \sigma \; \texttt{M} \; ] \; ; \end{array}
```

- Contexts are structured sequences and are classified by context schemas
 schema ctx = x:tm A.
- Substitution τ are first-class and have type Ψ ⊢ Φ providing a mapping from Φ to Ψ.

Theorems as Computation-level Types

Lemma (Backward closed)

If $M \longrightarrow M'$ and $M' \in \mathcal{R}_A$ then $M \in \mathcal{R}_A$.

```
\textbf{rec} \ \ \texttt{closed} \ : \ [\ \vdash \texttt{mstep} \ \texttt{M} \ \texttt{M'}] \ \to \ \texttt{Reduce} \ [\ \vdash \texttt{A}] \ [\ \vdash \texttt{M'}] \ \to \ \texttt{Reduce} \ [\ \vdash \texttt{A}] \ [\ \vdash \texttt{M}] \ = \ ? \ ;
```

Lemma (Main lemma)

If $\Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_{A}$.

```
\textbf{rec} \ \ \texttt{main} \ : \ \{ \texttt{\Gamma} : \texttt{ctx} \} \{ \texttt{M} : [\texttt{\Gamma} \vdash \texttt{tm} \ \texttt{A}] \} \ \ \texttt{RedSub} \ [ \ \vdash \sigma ] \ \to \ \texttt{Reduce} \ [ \ \vdash \ \texttt{A} ] \ [ \ \vdash \ \texttt{M} \ \sigma ] \ = \ ? \ ;
```

```
rec closed : [\vdashmstep M M'] \rightarrowReduce [\vdashA] [\vdashM'] \rightarrowReduce [\vdashA] [\vdashM] = ?; rec main : {\Gamma:ctx}{M:[\Gamma\vdashtm A]} RedSub [\vdash\sigma] \rightarrowReduce [\vdashA] [\vdashM \sigma] = mlam \Gamma\Rightarrowmlam M \Rightarrowfn rs \Rightarrow case [\Gamma\vdashM...] of | [\Gamma\vdash#p...] \Rightarrowlookup [\Gamma] [\Gamma\vdash#p...] rs % Variable
```

```
\mathbf{rec} \ \mathsf{closed} \ : \ [\ \vdash \mathsf{mstep} \ \mathsf{M} \ \mathsf{M}'] \ \to \mathsf{Reduce} \ [\ \vdash \mathsf{A}] \ [\ \vdash \mathsf{M}'] \ \to \mathsf{Reduce} \ [\ \vdash \mathsf{A}] \ [\ \vdash \mathsf{M}] \ = \ ? \ ;
rec main: \{\Gamma: \operatorname{ctx}\}\{M: \Gamma \vdash \operatorname{tm} A\} RedSub \Gamma \vdash \sigma \longrightarrow \operatorname{Reduce} \Gamma \vdash A \Gamma \vdash M \sigma = \Gamma
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M ...] of
| [\Gamma \vdash \#p ...] \Rightarrow lookup [\Gamma] [\Gamma \vdash \#p ...] rs
                                                                                                                        % Variable
| [\Gamma \vdash app (M1 ...) (M2 ...)] \Rightarrow
                                                                                                                         % Application
   let Arr ha f = main [[] [[ ⊢ M1...] rs in
   f \vdash | (main \mid \Gamma \mid \Gamma \vdash M2 \dots \mid rs)
| [\Gamma \vdash lam (\lambda x. M1... x)] \Rightarrow
                                                                                                                        % Abstraction
   Arr [ ⊢ h/value s/refl v/lam]
      (mlam N \Rightarrow fn rN \Rightarrow closed [\vdash s/beta]
                                                            (main [\Gamma, x:tm_] [\Gamma, x \vdash M1 ... x] (Cons rs rN)))
| \Gamma \vdash c \Rightarrow I \vdash h/value s/refl v/c];
                                                                                                                         % Constant
```

```
\mathbf{rec} \ \mathsf{closed} \ : \ [\ \vdash \mathsf{mstep} \ \mathsf{M} \ \mathsf{M}'] \ \to \mathsf{Reduce} \ [\ \vdash \mathsf{A}] \ [\ \vdash \mathsf{M}'] \ \to \mathsf{Reduce} \ [\ \vdash \mathsf{A}] \ [\ \vdash \mathsf{M}] \ = \ ? \ ;
rec main: \{\Gamma: \operatorname{ctx}\}\{M: \Gamma \vdash \operatorname{tm} A\} RedSub \Gamma \vdash \sigma \longrightarrow \operatorname{Reduce} \Gamma \vdash A \Gamma \vdash M \sigma = \Gamma
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M ...] of
| [\Gamma \vdash \#p ...] \Rightarrow lookup [\Gamma] [\Gamma \vdash \#p ...] rs
                                                                                                                       % Variable
| [\Gamma \vdash app (M1 ...) (M2 ...)] \Rightarrow
                                                                                                                         % Application
   let Arr ha f = main [[] [[ ⊢ M1...] rs in
   f [\vdash_] (main [\Gamma] [\Gamma\vdash M2...] rs)
\mid [\Gamma \vdash lam (\lambda x. M1... x)] \Rightarrow
                                                                                                                       % Abstraction
   Arr [ ⊢ h/value s/refl v/lam]
      (mlam N \Rightarrow fn rN \Rightarrow closed [\vdash s/beta]
                                                            (main [\Gamma, x:tm_] [\Gamma, x \vdash M1 ... x] (Cons rs rN)))
| [\Gamma \vdash c] \Rightarrow I [\vdash h/value s/refl v/c];
                                                                                                                        % Constant
```

- Direct encoding of on-paper proof
- Equations about substitution properties automatically discharged (amounts to roughly a dozen lemmas about substitution and weakening)
- Total encoding about 75 lines of Beluga code

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga . . .
- Conclusion and curent work

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming,Substitution	Dependent types α -renaming, β -reduction in LF

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming, Substitution	Dependent types α -renaming, β -reduction in LF
Well-scoped derivation Context Properties of contexts (weakening, uniqueness) Substitutions	Contextual types and objects [TOCL'08] Context schemas Typing for schemas Substitution type [LFMTP'13]
(composition, identity)	-

Revisiting the Design of Beluga

Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming,Substitution	Dependent types α -renaming, β -reduction in LF
Well-scoped derivation Context Properties of contexts (weakening, uniqueness) Substitutions (composition, identity)	Contextual types and objects [TOCL'08] Context schemas Typing for schemas Substitution type [LFMTP'13]

Level 2: Functional programming with indexed types [POPL'08,POPL'12]

Case analysis Inversion Induction hypothesis Case analysis and pattern matching Pattern matching using let-expression Recursive call

Other Examples and Comparison

- Other examples using logical relations:
 - Weak normalization which evaluates under lambda-abstraction
 - Algorithmic equality for LF (A. Cave) (draft available)
 - ⇒ Sufficient evidence that Beluga is ideally suited to support such advanced proofs
- Comparison (concentrating on the given weak normalization proof)
 - Coq/Agda formalization with well-scoped de Bruijn indices: dozen additional lemmas
 - Abella: 4 additional lemmas and diverges a bit from on-paper proof
 - Twelf: Too weak to for directly encoding such proofs; Implement auxiliary logic.

What Have We Achieved?

- Foundation for programming proofs in context [POPL'12]
 - Proof term language for first-order logic over contextual LF as domain
 - Uniform treatment of contextual types, context, ...
 - Modular foundation for dependently-typed programming with phase-distinction \Rightarrow Generalization of DML and ATS
- Extending contextual LF with first-class substitutions and their equational theory [LFMTP'13]
- Rich set of examples
 - Type-preserving compiler for simply typed lambda-calculus (joint work with O. Savary Belanger, S. Monnier [CPP'13])
 - (Weak) Normalization proofs (A. Cave)
- Latest release in Jan'14: Support for indexed data types, first-class substitutions, equational theory behind substitutions
 - "A language that doesn't affect the way you think about programming, is not worth knowing." Alan Perlis

Current Work

- Prototype in OCaml (ongoing next release Aug 2014) providing an interactive programming mode
- Structural recursion (S. S. Ruan, A. Abel)
 Develops a foundation of structural recursive functions for Beluga; proof of normalization; prototype implementation under way
- Coinduction in Beluga (D. Thibodeau, A. Cave)
 Extending work on simply-typed copatterns [POPL'13] to Beluga
- Case study:
 - Certified compiler (O. Savary Belanger, CPP'13)
 - Proof-carrying authorization with constraints (Tao Xue)
- Extending Beluga to full dependent types (A. Cave)
- Type reconstruction for dependently typed programs (F. Ferreira, PPDP'14)
- ORBI Benchmarks for comparing systems supporting HOAS encodings (A. Felty, A. Momigliano, March 2014)

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians: Brigitte Pientka, Mathias Puech, Tao Xue, Olivier Savary Belanger, Andrew Cave, Francisco Ferreira, Stefan Monnier, David Thibodeau, Sherry Shanshan Ruan, Shawn Otis