Beluga^µ: Programming proofs in context ...

Brigitte Pientka

School of Computer Science McGill University Montreal. Canada

How to program and reason with formal systems and proofs?

How to program and reason with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.
- Proofs (that a given property is satisfied) are an integral part of the software.

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.
- Proofs (that a given property is satisfied) are an integral part of the software.

What are good meta-languages to program and reason with formal systems and proofs?

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness proof
- Writing a proof in Beluga . . .
- Wanting more: Programming code transformations
 - Sketching closure conversion
 - Sketching normalization by evaluation
- Conclusion

"The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities."

- Edsger Dijkstra

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness proof
- Writing a proof in Beluga . . .
- Wanting more: Programming code transformations
 - Sketching closure conversion
 - Sketching normalization by evaluation
- Conclusion

"The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities."
- Edsger Dijkstra

- Easger Dijkstra

Types and Terms

Types and Terms

Typing Judgment: oft M T read as "M has type T"

Types and Terms

```
Types T ::= nat Terms M ::= x | lam x:T.M | app M N
```

Typing Judgment: oft M T read as "M has type T"

Typing rules (Gentzen-style, context-free)

```
\frac{\overbrace{\text{oft } x \ T}^{u}}{\underbrace{\text{oft } M \ S}}

\frac{\text{oft } (\operatorname{lam} x: T.M) (\operatorname{arr} \ T \ S)}{\underbrace{\text{t_lam}^{x,u}}}
```

Types and Terms

Typing Judgment: oft M T read as "M has type T"

Typing rules (Gentzen-style, context-free)

$$\frac{\text{oft } x T}{\text{oft } M S} = \frac{\text{oft } M \text{ (arr } T \text{ S)} \quad \text{oft } N \text{ T}}{\text{oft } (\text{lam } x : T . M) \text{ (arr } T \text{ S)}} \text{ t_-lam}^{x,u} = \frac{\text{oft } M \text{ (arr } T \text{ S)} \quad \text{oft } N \text{ T}}{\text{oft } (\text{app } M \text{ N) } S} \text{ t_-app}$$

Types and Terms

Types
$$T$$
 ::= nat Terms M ::= x | lam x : T . M | app M N

Typing Judgment: oft M T read as "M has type T"

Typing rules (Gentzen-style, context-free)

Context $\Gamma ::= \cdot \mid \Gamma, x$, oft $x \mid T$ We are introducing the variable x together with the assumption oft $x \mid T$

Types and Terms

$$\begin{array}{cccc} \mathsf{Types} \ T & ::= & \mathsf{nat} \\ & \mid \ T_1 \to \ T_2 \end{array}$$

Terms M ::=
$$x$$

 $| lam x:T.M$
 $| app M N$

Typing Judgment: $\Gamma \vdash \text{ oft } M T$

read as "M has type T in context Γ "

Typing rules

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

Context
$$\Gamma$$
 ::= $\cdot \mid \Gamma, x$, oft $x \mid T$ We are introducing the variable x together with the assumption oft $x \mid T$

B. Pientka

$$\frac{x,\,u:\;\mathsf{oft}\;x\;T\in\Gamma}{\Gamma\vdash\;\mathsf{oft}\;x\;T}\;\;u$$

Typing rules

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

What kinds of variables are used?

Typing rules

$$\frac{x, u : \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u : \text{ oft } x \ T \vdash \text{ oft } M \ S}{\Gamma \vdash \text{ oft } (\text{lam } x : T.M) \text{ (arr } T \ S)} \ \text{ } t_\text{lam}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \ S) \quad \Gamma \vdash \text{ oft } N \ T}{\Gamma \vdash \text{ oft } (\text{app } M \ N) \ S} \ \text{ } t_\text{app}$$

• What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables

$$\frac{x,u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u : \text{ oft } x \ T \vdash \text{ oft } M \ S}{\Gamma \vdash \text{ oft } (\text{lam } x : T.M) \text{ (arr } T \ S)} \ \text{ } t_\text{lam}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \ S) \quad \Gamma \vdash \text{ oft } N \ T}{\Gamma \vdash \text{ oft } (\text{app } M \ N) \ S} \ \text{ } t_\text{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed?

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S}{\Gamma \vdash \text{ oft } (\text{lam } x: T.M) \text{ (arr } T \text{ } S)} \text{ } t_{\text{lam}}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \text{ } S) \quad \Gamma \vdash \text{ oft } N \text{ } T}{\Gamma \vdash \text{ oft } (\text{app } M \text{ } N) \text{ } S} \text{ } t_{\text{app}}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S}{\Gamma \vdash \text{ oft } (\text{lam } x: T.M) \text{ (arr } T \text{ } S)} \text{ } t_{\text{lam}}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \text{ } S) \quad \Gamma \vdash \text{ oft } N \text{ } T}{\Gamma \vdash \text{ oft } (\text{app } M \text{ } N) \text{ } S} \text{ } t_{\text{app}}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have?

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S}{\Gamma \vdash \text{ oft } (\text{lam } x: T.M) \text{ (arr } T \text{ } S)} \text{ } t_{\text{lam}}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \text{ } S) \quad \Gamma \vdash \text{ oft } N \text{ } T}{\Gamma \vdash \text{ oft } (\text{app } M \text{ } N) \text{ } S} \text{ } t_{\text{app}}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have? Every declaration is unique, weakening, substitution lemma, etc.

Typing rules

$$\frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} \ u$$

$$\frac{\Gamma, x, u : \text{ oft } x \ T \vdash \text{ oft } M \ S}{\Gamma \vdash \text{ oft } (\text{lam } x : T.M) \text{ (arr } T \ S)} \ \text{ } t_\text{lam}^{x,u} \quad \frac{\Gamma \vdash \text{ oft } M \text{ (arr } T \ S) \quad \Gamma \vdash \text{ oft } N \ T}{\Gamma \vdash \text{ oft } (\text{app } M \ N) \ S} \ \text{ } t_\text{app}$$

- What kinds of variables are used? Bound variables, Schematic variables in particular: Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have? Every declaration is unique, weakening, substitution lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a matter how much support one gets in a given meta-language.

Theorem

 $\text{If} \quad \mathcal{D}: \Gamma \vdash \text{oft } M \ T \quad \text{and} \quad \mathcal{C}: \Gamma \vdash \text{oft } M \ S \quad \text{then} \quad \mathcal{E}: \text{ eq } T \ S.$

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Case 1
$$\mathcal{D}_1$$
 \mathcal{C}_1

$$\mathcal{D} = \frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S}{\Gamma \vdash \text{ oft } (\text{lam } x:T.M) \text{ (arr } T \text{ } S)} \text{ t_lam} \quad \mathcal{C} = \frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S'}{\Gamma \vdash \text{ oft } (\text{lam } x:T.M) \text{ (arr } T \text{ } S')} \text{ t_lam}$$

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

$$\mathcal{C}_{ase 1} \qquad \mathcal{D}_{1} \\ \mathcal{D} = \frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S}{\Gamma \vdash \text{ oft } (\text{lam } x: T.M) \text{ (arr } T \text{ } S)} \text{ t_lam } \quad \mathcal{C} = \frac{\Gamma, x, u: \text{ oft } x \text{ } T \vdash \text{ oft } M \text{ } S'}{\Gamma \vdash \text{ oft } (\text{lam } x: T.M) \text{ (arr } T \text{ } S')} \text{ t_lam } \\ \mathcal{E} : \text{ eq } S \text{ } S' \qquad \qquad \text{by i.h. using } \mathcal{D}_{1} \text{ and } \mathcal{C}_{1}$$

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Therefore there is a proof for eq (arr T S) (arr T S') by reflexivity.

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Therefore there is a proof for eq. (arr T(S)) (arr T(S')) by reflexivity.

Case 2

$$\mathcal{D} = \frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} u$$

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Therefore there is a proof for eq. (arr T(S)) (arr T(S')) by reflexivity.

Case 2

$$\mathcal{D} = \frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} u \qquad \qquad \mathcal{C} = \frac{x, v: \text{ oft } x \ S \in \Gamma}{\Gamma \vdash \text{ oft } x \ S} v$$

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Induction on first typing derivation \mathcal{D} .

Therefore there is a proof for eq. (arr T S) (arr T S') by reflexivity.

Case 2

$$\mathcal{D} = \frac{x, u: \text{ oft } x \ T \in \Gamma}{\Gamma \vdash \text{ oft } x \ T} u \qquad \qquad \mathcal{C} = \frac{x, v: \text{ oft } x \ S \in \Gamma}{\Gamma \vdash \text{ oft } x \ S} v$$

Every variable x is associated with a unique typing assumption (property of the context), hence v = u and S = T.

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga . . .
- Wanting more: Programming code transformations
 - Sketching closure conversion
 - Sketching normalization by evaluation
- Conclusion

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

 ⇒ support for α-renaming, substitution, adequate representations

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types \leadsto support for α -renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka, Dunfield'10, Cave, Pientka'12]

On paper proof	Proofs as functions in Beluga
Case analysis Inversion Induction Hypothesis	Case analysis and pattern matching Pattern matching using let-expression Recursive call

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

 ⇒ support for α-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka, Dunfield'10, Cave, Pientka'12]

On paper proof	Proofs as functions in Beluga
Case analysis	Case analysis and pattern matching
Inversion	Pattern matching using let-expression
Induction Hypothesis	Recursive call

Contextual types characterize contextual objects [NPP'08]

 ⇒ support well-scoped derivations

B. Pientka

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

 ⇒ support for α-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka, Dunfield'10, Cave, Pientka'12]

On paper proof	Proofs as functions in Beluga
Case analysis	Case analysis and pattern matching
Inversion	Pattern matching using let-expression
Induction Hypothesis	Recursive call

- Contextual types characterize contextual objects [NPP'08]
 support well-scoped derivations
- Context variables parameterize computations
 - → fine grained invariants; distinguish between different contexts

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
 → support for α-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka, Dunfield'10, Cave, Pientka'12]

On paper proof	Proofs as functions in Beluga
Case analysis Inversion Induction Hypothesis	Case analysis and pattern matching Pattern matching using let-expression Recursive call

- Contextual types characterize contextual objects [NPP'08]
 → support well-scoped derivations
- Context variables parameterize computations

 → fine grained invariants; distinguish between different contexts
- Recursive types express relationships between contexts and contextual objects
 adds expressive power! (See POPL'12)

Types
$$T$$
 ::= nat $| \operatorname{arr} T_1 T_2$ Terms M ::= x $| \operatorname{lam} x:T.M$ $| \operatorname{app} M N$

```
Types T ::= nat | \operatorname{arr} T_1 T_2 |
```

Terms
$$M ::= x$$

$$| lam x: T.M$$

$$| app M N$$

LF representation in Beluga

Types
$$T$$
 ::= nat $Terms M$::= x $| lam x: T. M$ $| app M N$

LF representation in Beluga

Typing rules

$$\frac{\text{oft } M \text{ (arr } T \text{ S)} \quad \text{oft } N \text{ T}}{\text{oft (app } M \text{ N) S}} \text{ t_app}$$

$$\frac{ \frac{1}{\text{oft } \times T} u}{\text{if } M S} \\
\frac{\text{oft } (\text{lam } x: T.M) (\text{arr } T S)}{\text{oft } (\text{lam } x: T.M) (\text{arr } T S)} t_{\text{lam}}^{x,u}$$

```
Types T ::= nat | \operatorname{arr} T_1 T_2  Terms M ::= x | \operatorname{lam} x:T.M  | \operatorname{app} M N
```

LF representation in Beluga

Typing rules

```
\frac{\text{oft } M \text{ (arr } T \text{ S)} \quad \text{oft } N \text{ T}}{\text{oft (app } M \text{ N) S}} \text{ t\_app}
```

```
\frac{\overbrace{\text{oft } x \ T}^{u}}{\overbrace{\text{oft } (\text{lam} x: T.M) (\text{arr } T \ S)}^{u}} t_{-\text{lam}^{x,u}}
```

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

is represented as

Computation-level Type in Beluga

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [ \ .eq \ T \ S]
```

Read as: "For all contexts g of the schema ctx, ...

Theorem

If $\mathcal{D}: \Gamma \vdash \text{ oft } M \ T$ and $\mathcal{C}: \Gamma \vdash \text{ oft } M \ S$ then $\mathcal{E}: \text{ eq } T \ S$.

is represented as

Computation-level Type in Beluga

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [ \ .eq \ T \ S]
```

Read as: "For all contexts g of the schema ctx, ...

- [g.oft (M...) T] and [.eq T S] are contextual types [NPP'08].
- ... describes dependency on context.
 T is a closed object (M ...) is an object which may depend on context g.

Computation-level Type in Beluga

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

• Parameterize computation over contexts, Distinguish between contexts.

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.

```
(\texttt{g:ctx}) \ [\texttt{g.oft} \ (\texttt{M} \dots) \ \texttt{T}] \ \rightarrow \ [\texttt{g.oft} \ (\texttt{M} \dots) \ \texttt{S}] \ \rightarrow \ [.\mathsf{eq} \ \texttt{T} \ \texttt{S}]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat).

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat).
- Well-formedness: b1:block x:exp,u:oft y nat is ill-formed. x:exp, y:exp, u:oft x nat is ill-formed.

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat).
- Well-formedness: b1:block x:exp,u:oft y nat is ill-formed.
 x:exp, y:exp, u:oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat).
- Well-formedness: b1:block x:exp, u:oft y nat is ill-formed.
 x:exp, y:exp, u:oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2.1

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat).
- Well-formedness: b1:block x:exp, u:oft y nat is ill-formed.
 x:exp, y:exp, u:oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2.1
 b1.1 is different from b2.1
- Later declarations overshadow earlier ones

```
(g:ctx) \ [g.oft \ (M ...) \ T] \ \rightarrow \ [g.oft \ (M ...) \ S] \ \rightarrow \ [.eq \ T \ S]
```

- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas
 schema ctx = some [T:tp] block x:exp, u:oft x T.
- x, u: oft x nat, y, v: oft y (arr nat nat) is represented as
 b1:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .
- Well-formedness: b1:block x:exp, u:oft y nat is ill-formed.
 x:exp, y:exp, u:oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2
 b1.1 is different from b2.1
- Later declarations overshadow earlier ones
- Weakening, Substitution lemma

How do we access objects from a context?

• How do we access objects from a context?

Context	Element
b:block x:exp, u:oft x nat	b.2 concrete parameter retrieves the second component of ь

How do we access objects from a context?

Context	Element
b:block x:exp, u:oft x nat	b.2 concrete parameter retrieves the second component of b
1.111	

g, b:block x:exp, u:oft x nat

How do we access objects from a context?

Context	Element
b:block x:exp, u:oft x nat	b.2 concrete parameter retrieves the second component of ь
g, b: block x:exp, u:oft x nat	#p.2 parameter variable retrieves the second component of a declaration in g

How do we access objects from a context?

Context	Element
b:block x:exp, u:oft x nat	b.2 concrete parameter retrieves the second component of ъ
g, b: block x:exp, u:oft x nat	#p.2 parameter variable retrieves the second component of a declaration in g

Allow projections on variables and parameter variables only

How do we access objects from a context?

Context	Element
b:block x:exp, u:oft x nat	b.2 concrete parameter retrieves the second component of ь
g, b:block x:exp, u:oft x nat	#p.2 parameter variable retrieves the second component of a declaration in g

Allow projections on variables and parameter variables only

"Making something variable is easy. Controlling duration of constancy is the trick."

Alan Perlis

```
\textbf{rec} \ \ \texttt{unique:(g:ctx)} \ \ [\texttt{g.oft} \ \ (\texttt{M} \, ...) \ \texttt{T}] \ \rightarrow \ [\texttt{g.oft} \ \ (\texttt{M} \, ...) \ \texttt{S}] \ \rightarrow \ [\texttt{.eq} \ \texttt{T} \ \texttt{S}] \ = \ \texttt{T} \ \texttt{S}
```

```
rec unique:(g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] = fn d \Rightarrow fn c \Rightarrow case d of
```

B. Pientka

```
rec unique:(g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn d \Rightarrow fn c \Rightarrow case d of
| [g.t_app (D1...) (D2...)] \Rightarrow
                                                       % Application Case
  let [g.t_app (C1...) (C2...)] = c in
  let [ .e_ref] = unique [g.D1 ...] [g.C1 ...] in
    [ .e_ref]
| [g.t_lam (\lambda x. \lambda u. D... x u) \Rightarrow
                                                       % Abstraction Case
  let [g.t_lam (\lambda x. \lambda u. C... x u)] = c in
  let [ .e_ref] = unique [g,b:block x:exp, u:oft x _ . D ... b.1 b.2]
                            [g,b . C ... b.1 b.2] in
   [ .e_ref]
% Assumption Case
    [ .e refl :
```

```
rec unique:(g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn d \Rightarrow fn c \Rightarrow case d of
| [g.t_app (D1...) (D2...)] \Rightarrow
                                                       % Application Case
  let [g.t_app (C1...) (C2...)] = c in
  let [ .e_ref] = unique [g.D1 ...] [g.C1 ...] in
    [ .e_ref]
| [g.t_lam (\lambda x. \lambda u. D... x u) \Rightarrow
                                                       % Abstraction Case
  let [g.t_lam (\lambda x. \lambda u. C... x u)] = c in
  let [ .e_ref] = unique [g,b:block x:exp, u:oft x _ . D ... b.1 b.2]
                            [g,b . C ... b.1 b.2] in
   [ .e_ref]
% Assumption Case
    [ .e_ref] ;
Recalli:
#q:block x:exp, u:oft x T
#r:block x:exp, u:oft x S
```

```
rec unique:(g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn d \Rightarrow fn c \Rightarrow case d of
| [g.t_app (D1...) (D2...)] \Rightarrow
                                                          % Application Case
  let [g.t_app (C1...) (C2...)] = c in
  let [ .e_ref] = unique [g.D1 ...] [g.C1 ...] in
     [ .e_ref]
| [g.t_lam (\lambda x. \lambda u. D... x u) \Rightarrow
                                                          % Abstraction Case
  let [g.t_lam (\lambda x. \lambda u. C... x u)] = c in
  let [ .e_ref] = unique [g,b:block x:exp, u:oft x _ . D ... b.1 b.2]
                              [g,b . C ... b.1 b.2] in
   [ .e_ref]
| [g.#q.2...] \Rightarrow % d : oft (#q.1...) T
                                                            % Assumption Case
  let [g.#r.2...] = c in % c : oft (#r.1...) S
     [ .e_ref] ;
Recalli:
                                          We also know: \#r.1 = \#g.1
#q:block x:exp, u:oft x T
#r:block x:exp, u:oft x S
```

```
rec unique:(g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn d \Rightarrow fn c \Rightarrow case d of
| [g.t_app (D1 ...) (D2 ...)] \Rightarrow
                                                        % Application Case
  let [g.t_app (C1...) (C2...)] = c in
  let [ .e_ref] = unique [g.D1 ...] [g.C1 ...] in
    [ .e_ref]
| [g.t_lam (\lambda x. \lambda u. D... x u) \Rightarrow
                                                        % Abstraction Case
  let [g.t_lam (\lambda x. \lambda u. C... x u)] = c in
  let [ .e_ref] = unique [g,b:block x:exp, u:oft x _ . D ... b.1 b.2]
                             [g,b . C ... b.1 b.2] in
   [ .e_ref]
| [g.#q.2...] \Rightarrow % d : oft (#q.1...) T
                                                           % Assumption Case
  let [g.#r.2...] = c in % c : oft (#r.1...) S
    [ .e_ref] ;
RecallI:
                                         We also know: \#r.1 = \#q.1
#q:block x:exp, u:oft x T
                                         Therefore: T = S
#r:block x:exp, u:oft x S
```

On paper proof	Implementation in Beluga
Well-formed derivations Renaming,Substitution	Dependent types α -renaming, β -reduction in LF

On paper proof	Implementation in Beluga
Well-formed derivations Renaming,Substitution Well-scoped derivation	Dependent types α -renaming, β -reduction in LF Contextual types and objects

On paper proof	Implementation in Beluga
Well-formed derivations Renaming, Substitution Well-scoped derivation Context	Dependent types α -renaming, β -reduction in LF Contextual types and objects Context schemas

On paper proof	Implementation in Beluga
Well-formed derivations Renaming,Substitution	Dependent types α -renaming, β -reduction in LF
Well-scoped derivation	Contextual types and objects
Context	Context schemas
Properties of contexts (weakening, uniqueness)	Typing for schemas

Revisiting the design of Beluga

Compact adequate representation of derivations and contexts

On paper proof		Implementation in Beluga
Well-formed derive Renaming, Substite Well-scoped derive Context Properties of context (weakening, unique	ution ation texts	Dependent types α -renaming, β -reduction in LF Contextual types and objects Context schemas Typing for schemas

Compact representation of proofs as functions

Case analysis	Case analysis and pattern matching
Inversion	Pattern matching using let-expression
Induction Hypothesis	Recursive call

Revisiting the design of Beluga

Compact adequate representation of derivations and contexts

On paper proof		Implementation in Beluga
Well-formed derive Renaming, Substite Well-scoped derive Context Properties of context (weakening, unique	ution ation texts	Dependent types α -renaming, β -reduction in LF Contextual types and objects Context schemas Typing for schemas

Compact representation of proofs as functions

Case analysis	Case analysis and pattern matching
Inversion	Pattern matching using let-expression
Induction Hypothesis	Recursive call

Comparison

- Twelf [Pf,Sch'99]: Encode proofs as relations
 - Requires lemma to prove injectivity of arr constructor.
 - No explicit contexts (cannot express types \mathtt{T} and \mathtt{S} and \mathtt{eq} \mathtt{T} \mathtt{S} are closed)
 - Parameter case folded into abstraction case
- Delphin [Sch,Pos'08]: Encode proofs as functions
 - Requires lemma to prove injectivity of constructor
 - Cannot express that types T and S and eq T S are closed.
 - Variable carrying continuation as extra argument to handle context lookup
- Abella [Gacek'08], Tac[Baelde'10]: Proof assistants
 - Equality built-into the logic
 - Contexts are represented as lists
 - Requires lemmas about these lists (for example that all assumptions occur uniquely)

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga . . .
- Wanting more: Programming code transformations
 - Sketching closure conversion
 - Sketching normalization by evaluation
- Conclusion

Three solitudes

Programming

Frameworks for reasoning with HOAS

• Translate λ -terms such that bodies only refer to their arguments

Source language Target language
$$(lam y.x + y) 3 \implies (lam env.env.2 + env.1) (3, x)$$

• Translate λ -terms such that bodies only refer to their arguments

Source language Target language
$$(lam y.x + y) 3 \implies (lam env.env.2 + env.1) (3, x)$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin

• Translate λ -terms such that bodies only refer to their arguments

Source language Target language
$$(lam y.x + y) 3 \implies (lam env.env.2 + env.1) (3, x)$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
 - Distinguish between source language tm and target language ctm
 - Translate [ψ .tm] where ψ is a source context to [ϕ .ctm] where ϕ is a target context

• Translate λ -terms such that bodies only refer to their arguments

Source language Target language
$$(lam y.x + y) 3 \implies (lam env.env.2 + env.1) (3, x)$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
 - Distinguish between source language tm and target language ctm
 - Translate [ψ .tm] where ψ is a source context to [ϕ .ctm] where ϕ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel
$$[\psi]$$
 $[\phi] \rightarrow [\psi. tm] \rightarrow [\phi.ctm]$

• Translate λ -terms such that bodies only refer to their arguments

Source language Target language
$$(lam y.x + y) 3 \implies (lam env.env.2 + env.1) (3, x)$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
 - Distinguish between source language tm and target language ctm
 - Translate [ψ .tm] where ψ is a source context to [ϕ .ctm] where ϕ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel
$$[\psi]$$
 $[\phi] \rightarrow [\psi. tm] \rightarrow [\phi.ctm]$

Example: Relating source and target context

Computation-level data types in Beluga

Example: Type preserving context relation

Computation-level data types in Beluga

Example: Type preserving context relation

Computation-level data types in Beluga

Example: Wrapper for contextual objects.

Example: Type preserving context relation

Computation-level data types in Beluga

Example: Wrapper for contextual objects.

```
datatype TmVar : {g:tctx} [.tp] → ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T]
;
datatype CtxObj : {h:cctx} ctype =
| Ctx : {h:cctx} CtxObj [h] ;
```

• Choice how much to push to the computation level

Traverse term in target language by pattern matching on the context

B. Pientka

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e N where e:envr.

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e N where e:envr.
- Guarantee that all variables have been replaced.

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e N where e:envr.
- Guarantee that all variables have been replaced.

Computation in Beluga

```
rec addProjs : (g:cctx) [.nat] → [g, e:envr . ctm] → [e:envr . ctm] =
fn n ⇒ fn m ⇒ case m of
| [ e:envr . M e ] ⇒ [e:envr . M e]
| [ g, x:ctm , e:envr . M .. x e] ⇒
| let [.N] = n in addProjs [.s N] [g, e:envr . M .. (proj e N) e]
;
```

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e N where e:envr.
- Guarantee that **all** variables have been replaced.

Computation in Beluga

```
rec addProjs : (g:cctx) [.nat] \rightarrow [g, e:envr . ctm] \rightarrow [e:envr . ctm] =
fn n \Rightarrow fn m \Rightarrow case m of
| [ e:envr . M e ] \Rightarrow [e:envr . M e]
| [ g, x:ctm , e:envr . M .. x e] \Rightarrow
let [.N] = n in addProjs [.s N] [g, e:envr . M .. (proj e N) e]
;
```

Terminates since context decreases

Converting context to environment

LF representation in Beluga

```
datatype envr: type = | nil : envr | snoc: envr → ctm → envr and ctm : type = ...;
```

Computation in Beluga

```
rec ctxToEnv : CtxObj [h] \rightarrow [h . envr] =
fn ctx \Rightarrow case ctx of
| Ctx [] \Rightarrow [ . nil]
| Ctx [h,x:ctm] \Rightarrow
let [h' . Env . .] = ctxToEnv (Ctx [h]) in
        [h', x:ctm . snoc (Env . .) x]
;
```

- Convert context to list.
- Pattern matching on context

- Naive Closure conversion [Cave, Pientka'12]
- Type-preserving closure conversion [O. Savary Belanger, M. Boespflug, S. Monnier, B.Pientka]
 - Compact elegant representation
 - Only abstract over the free variables in an expression
 - Enforces also scope preservation
 - Almost proof-less
- Lessons learned:
 - Programming in context requires a new look at existing algorithms
 - Distinguishing between different context natural
 - Indexed data types are key to finding elegant solutions

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga . . .
- Wanting more: Programming code transformations
 - Sketching closure conversion
 - Sketching normalization by evaluation
- Conclusion

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
 - Twelf, Delphin are too weak (to do it directly)
 - Licata and Harper [ICFP'09] cannot express type preservation
 - Coq/Agda lack support for substitutions and binders

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
 - Twelf, Delphin are too weak (to do it directly)
 - Licata and Harper [ICFP'09] cannot express type preservation
 - Coq/Agda lack support for substitutions and binders
- General idea of NBE in Beluga
 Source
 Target

 Lambda Terms
 Non-normal

 eval

 reflect / reify

 Computation-level objects

 Semantic representation

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
 - Twelf, Delphin are too weak (to do it directly)
 - Licata and Harper [ICFP'09] cannot express type preservation
 - Coq/Agda lack support for substitutions and binders
- General idea of NBE in Beluga
 Source
 Target

 Lambda Terms
 Non-normal

 eval

 reflect / reify

 Computation-level objects

 Semantic representation
- Evaluation is easy, normalization is hard

NBE in context

Source of type T	Target of type T
$\Gamma \vdash T$	$\Gamma \vdash_n T$ – Normal terms
	$\Gamma \vdash_r T$ – Neutral terms
Semantic Values of type T $\Gamma \vDash T$	

- Types: $T, S ::= T \Rightarrow S \mid i$
- Definition of semantic values

$$\Gamma \vDash i \quad \equiv_{def} \quad \Gamma \vdash_{n} i$$

$$\Gamma \vDash S \Rightarrow T \quad \equiv_{def} \quad \forall \Gamma' \ge \Gamma. \ (\Gamma' \vDash S) \to (\Gamma' \vDash T)$$

NBE in context

Source of type T	Target of type T
$\Gamma \vdash T$	$\Gamma \vdash_n T$ – Normal terms
	$\Gamma \vdash_r T$ – Neutral terms
Semantic Values of type T $\Gamma \vDash T$	

- Types: $T, S ::= T \Rightarrow S \mid i$
- Definition of semantic values

$$\Gamma \vDash i \quad \equiv_{def} \quad \Gamma \vdash_{n} i$$

$$\Gamma \vDash S \Rightarrow T \quad \equiv_{def} \quad \forall \Gamma' \ge \Gamma. \ (\Gamma' \vDash S) \to (\Gamma' \vDash T)$$

Representation of syntax straightforward

- Source represented in LF using type tm T.
- Target represented in LF using type norm T and neut T.

NBE in context

Source of type T	Target of type T
$\Gamma \vdash T$	$\Gamma \vdash_n T$ – Normal terms
	$\Gamma \vdash_r T$ – Neutral terms
Semantic Values of type T $\Gamma \vDash T$	

- Types: $T, S ::= T \Rightarrow S \mid i$
- Definition of semantic values

$$\begin{array}{ccc} \Gamma \vDash i & \equiv_{def} & \Gamma \vdash_n i \\ \Gamma \vDash S \Rightarrow T & \equiv_{def} & \forall \Gamma' \geq \Gamma. \ (\Gamma' \vDash S) \rightarrow (\Gamma' \vDash T) \end{array}$$

Representation of syntax straightforward

- Source represented in LF using type tm T.
- Target represented in LF using type norm T and neut T.

How to represent semantic values and context relations?

Defining context extensions using indexed types

Context g is a prefix of context h

Computation-level data types in Beluga

```
datatype Extends : {g:ctx} {h:ctx} ctype =
| Zero : Extends [g] [g]
| Succ : Extends [g] [h] → Extends [g] [h,x:neut A]
;
```

- Use indexed types keyword: ctype
- Note: → is overloaded.
 - tm → tm is the LF function space : binders in the object language are modelled by LF functions
 - Extends [g] [h] → Extends [g] [h,x:neut A] is a computation-level function

Programming in context

Representing target semantic values using indexed types

Representation of semantics using computation-level functions

$$\Gamma \vDash i \quad \equiv_{def} \quad \Gamma \vdash_{n} i$$

$$\Gamma \vDash S \Rightarrow T \quad \equiv_{def} \quad \forall \Gamma' \ge \Gamma. \ (\Gamma' \vDash S) \to (\Gamma' \vDash T)$$

Computation-level data types in Beluga

```
datatype Sem : {g:ctx} [. tp] \rightarrow ctype =
| Syn : [g . neut (atomic P)] \rightarrow Sem [g] [ .atomic P]
| Slam : ({h:ctx} Extends [g] [h] \rightarrow Sem [h] [ .S] \rightarrow Sem [h] [ .T])
\rightarrow Sem [g] [ . arr S T];
```

 Not a positive definition - we are making no claims regarding strong normalization.

Sketch of normalization by evaluation

Define mutual recursive functions reflect and reify

Sketch of normalization by evaluation

• Define mutual recursive functions reflect and reify

Map between vars in the source language and their semantic values

```
\begin{array}{lll} \textbf{datatype} & \texttt{TmVar} : \{g:\texttt{tctx}\} \; [.tp] \; \rightarrow \; \textbf{ctype} \; = \\ | \; \texttt{TmVar} : \; \{\#p:[g.tm \; T]\} \; \texttt{TmVar} \; [g] \; [.T]; \\ & \texttt{typedef Map} : \{g:\texttt{tctx}\} \{h:\texttt{ctx}\} \; \textbf{ctype} \; = \; \{T:[.tp]\} \; \texttt{TmVar} \; [g] \; [.T] \; \rightarrow \; \texttt{Sem} \; [h] \; [.T]; \end{array}
```

Generalized evaluation and normalization followed by reification

Sketch of normalization by evaluation

Define mutual recursive functions reflect and reify

```
rec reflect : [g. neut T] \rightarrow Sem [g] [ .T] % Recursion on T
and reify : Sem [g] [ .T] \rightarrow [g.norm T] % Recursion on T
```

• Map between vars in the source language and their semantic values

```
datatype TmVar : {g:tctx} [.tp] → ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T];
typedef Map : \{g:tctx\}\{h:ctx\}\ ctype = \{T:[.tp]\}\ TmVar [g] [.T] \rightarrow Sem [h] [.T];
```

Generalized evaluation and normalization followed by reification

```
rec eval
                   : \ \texttt{Map [g] [h]} \ \rightarrow \ \texttt{[g. tm S]} \ \rightarrow \ \texttt{Sem [h] [.S]} \ = \ \ldots
rec evaluate : [. tm S] \rightarrow Sem [] [.S] = fn t \Rightarrow (eval initialMap t)
rec nbe
                   : [. tm T] \rightarrow [. norm T] = fn e \Rightarrow reify (evalualte e)
```

Almost a consistency proof! Currently no termination or positivity checking.

What have we achieved?

- Revised foundation for programming with contexts and contextual LF (joint work with A. Cave [POPL'12])
- Uniform treatment of contextual types, context, . . .
- Modular foundation for dependently-typed programming with phase-distinction
 - ⇒ Generalization of DML and ATS
- Non-termination or effects are allowed
- Effectively write programs to manipulate rich abstract syntax trees and express properties about them
- Release in Sept'12: Support for indexed data types; coverage; type reconstruction; environment-based interpreter; support for holes (partial programs)

Result:

Compact and elegant programming (with) inductive proofs in context

Current work

- Prototype in OCaml (ongoing)
- Extension to coinduction (D. Thibodeau, A. Abel)
- Termination checking (C. Badescu)
- Mixing computations in computation-level types (A. Cave)
- Case study: Certified compiler (O. Savary Belanger)
- Compiling contexts and contextual objects (F. Ferreira)

The end

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians: Brigitte Pientka, Mathieu Boespflug, Costin Badescu, Olivier Savary Belanger, Andrew Cave, Francisco Ferreira, Stefan Monnier, David Thibodeau

Interested? - Talk to me! We have funded postdoc and funded PhD positions.