Beluga ${ }^{\mu}$: Programming proofs in context ...

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

Motivation

How to program and reason with formal systems and proofs?

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.
- Proofs (that a given property is satisfied) are an integral part of the software.

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing and implementing software.
- Proofs (that a given property is satisfied) are an integral part of the software.

> What are good meta-languages to program and reason with formal systems and proofs?

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness proof
- Writing a proof in Beluga ...
- Wanting more: Programming code transformations
- Sketching closure conversion
- Sketching normalization by evaluation
- Conclusion
"The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities."
- Edsger Dijkstra

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness proof
- Writing a proof in Beluga ...
- Wanting more: Programming code transformations
- Sketching closure conversion
- Sketching normalization by evaluation
- Conclusion
"The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities."
- Edsger Dijkstra

Simply typed lambda-calculus

Types and Terms
Types $T::=\quad \begin{aligned} & \text { nat } \\ & \mid \operatorname{arr} T_{1} T_{2}\end{aligned}$
Terms M ::= x
lam $x: T . M$
app $M N$

Simply typed lambda-calculus

Types and Terms

$$
\begin{aligned}
\text { Types } T::= & \text { nat } \\
& \mid \operatorname{arr} T_{1} T_{2}
\end{aligned}
$$

Typing Judgment: oft $M T$

Terms M ::= x
lam x :T.M app $M N$

Simply typed lambda-calculus

Types and Terms

$$
\begin{array}{rlrl}
\text { Types } T::= & \text { nat } \quad \text { Terms } M::= & x \\
& \mid \operatorname{arr} T_{1} T_{2} \quad & \mid \operatorname{|am} x: T . M \\
& \mid \operatorname{app} M N
\end{array}
$$

Typing Judgment: oft M T read as " M has type T "

Typing rules (Gentzen-style, context-free)

Simply typed lambda-calculus

Types and Terms

$$
\begin{array}{rlrl}
\text { Types } T::= & \text { nat } \quad \text { Terms } M::= & x \\
& \mid \operatorname{arr} T_{1} T_{2} & \mid \operatorname{|am} x: T . M \\
& \mid \operatorname{app} M N
\end{array}
$$

Typing Judgment: oft M T read as " M has type T "

Typing rules (Gentzen-style, context-free)

$$
\begin{gathered}
\frac{\operatorname{oft} \times T}{}{ }^{u} \\
\vdots \\
\frac{\text { oft } M S}{\text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \text { t_lam }^{\times, u} \quad \frac{}{\text { oft } M(\operatorname{arr} T S) \quad \text { oft } N T} \text { oft }(\operatorname{app} M N) S
\end{gathered} \text { t_app }
$$

Simply typed lambda-calculus

Types and Terms

$$
\begin{array}{rlrl}
\text { Types } T::= & \text { nat } & \text { Terms } M::= & x \\
& \left|\operatorname{arr} T_{1} T_{2} \quad\right| \operatorname{lam} x: T . M \\
& \mid \operatorname{app} M N
\end{array}
$$

Typing Judgment: oft M T
read as " M has type T "
Typing rules (Gentzen-style, context-free)

$$
\begin{aligned}
& \overline{\text { oft } \times T}{ }^{u} \\
& \frac{\text { oft } M S}{\text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \text { t_lam }^{x, u} \quad \frac{\text { oft } M(\operatorname{arr} T S) \quad \text { oft } N T}{\operatorname{oft}(\operatorname{app} M N) S} \text { t_app }
\end{aligned}
$$

Context $\Gamma \quad:=\cdot \mid \Gamma, x$, oft $x T$ We are introducing the variable x together with the assumption oft $x T$

Simply typed lambda-calculus

Types and Terms

$$
\begin{array}{ll}
\text { Types } T::= & \text { nat } \\
& \mid T_{1} \rightarrow T_{2}
\end{array}
$$

$$
\begin{aligned}
\text { Terms } M:= & x \\
& \mid \operatorname{lam} x: T . M \\
& \mid \operatorname{app} M N
\end{aligned}
$$

Typing Judgment: 「 \vdash oft M T
read as " M has type T in context Γ "
Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } \times T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam ${ }^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

Context $\Gamma \quad::=\quad \mid \Gamma, x$, oft $\times T$ We are introducing the variable x together with the assumption oft $\times T$

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \mathrm{t}_{\mathrm{lam}}{ }^{\times, u} \quad \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

Talking about derivations

Typing rules

$$
\begin{gathered}
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u \\
\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \mathrm{t}_{-} \operatorname{lam}^{\times, u} \quad \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \quad \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S} \text { t_app }
\end{gathered}
$$

- What kinds of variables are used?

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam ${ }^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \text { oft }(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \mathrm{t}_{-} \operatorname{lam}^{\times, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables
- What operations on variables are needed?

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam $^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam ${ }^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have?

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam ${ }^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \operatorname{oft}(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have? Every declaration is unique, weakening, substitution lemma, etc.

Talking about derivations

Typing rules

$$
\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u
$$

$\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam $^{x, u} \frac{\Gamma \vdash \text { oft } M(\operatorname{arr} T S) \Gamma \vdash \text { oft } N T}{\Gamma \vdash \text { oft }(\operatorname{app} M N) S}$ t_app

- What kinds of variables are used? Bound variables, Schematic variables in particular:Meta-variables, Parameter variables, Context variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- What properties do contexts have? Every declaration is unique, weakening, substitution lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a matter how much support one gets in a given meta-language.

Type uniqueness

Theorem
 If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.
Case 1
\mathcal{D}_{1}
\mathcal{C}_{1}
$\mathcal{D}=\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam
$\Gamma, x, u:$ oft $\times T \vdash$ oft $M S^{\prime}$
$\mathcal{C}=\frac{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)\left(\operatorname{arr} T S^{\prime}\right)}{\text { t_lam }}$

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.
Case 1
\mathcal{D}_{1}
$\mathcal{D}=\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}$ t_lam
\mathcal{E} : eq $S S^{\prime}$

$$
\begin{aligned}
\mathcal{C}= & \frac{\Gamma, x, u: \text { oft } \times T \vdash \text { oft } M S^{\prime}}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)\left(\text { arr } T S^{\prime}\right)} \text { t_lam } \\
& \text { by i.h. using } \mathcal{D}_{1} \text { and } \mathcal{C}_{1}
\end{aligned}
$$

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.
Case 1
\mathcal{D}_{1}
$\Gamma, x, u:$ oft $\times T \vdash$ oft $M S$
$\Gamma, x, u:$ oft $\times T \vdash$ oft $M S^{\prime}$
$\mathcal{D}=\frac{\Gamma \vdash \mathrm{oft}(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}{\text { t.lam }}$
\mathcal{E} : eq $S S^{\prime}$
by i.h. using \mathcal{D}_{1} and \mathcal{C}_{1}
\mathcal{E} : eq $S S$ and $S=S^{\prime}$

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.

$$
\begin{aligned}
& \text { Case } 1 \begin{array}{c}
\mathcal{D}_{1} \\
\mathcal{D}=\frac{\mathcal{C}_{1}}{\Gamma, x, u: \text { oft } \times T \vdash \text { oft } M S} \\
\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S) \\
\text { t_lam } \\
\mathcal{E}: \text { eq } S S^{\prime}
\end{array} \\
& \mathcal{E}: \text { eq } S S \text { and } S=S^{\prime}
\end{aligned}
$$

Therefore there is a proof for eq (arr $T S$) (arr $T S^{\prime}$) by reflexivity.

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.

```
Case \(1 \quad \mathcal{D}_{1}\)
\(\mathcal{D}=\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}\) t_lam \(\mathcal{C}=\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S^{\prime}}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)\left(\operatorname{arr} T S^{\prime}\right)}\) t.lam
\(\mathcal{E}:\) eq \(S S^{\prime} \quad\) by i.h. using \(\mathcal{D}_{1}\) and \(\mathcal{C}_{1}\)
\(\mathcal{E}:\) eq \(S S\) and \(S=S^{\prime} \quad\) by inversion using reflexivity
```

Therefore there is a proof for eq (arr $T S$) (arr $T S^{\prime}$) by reflexivity.
Case 2
$\mathcal{D}=\frac{x, u: \text { oft } \times T \in \Gamma}{\Gamma \vdash \text { oft } x T} u$

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.
Case 1 \mathcal{D}_{1}

$$
\mathcal{D}=\frac{\Gamma, x, u: \text { oft } x T \vdash \text { oft } M S}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \text { t.lam }
$$

$$
\mathcal{E}: \text { eq } S S^{\prime}
$$

$$
\text { by i.h. using } \mathcal{D}_{1} \text { and } \mathcal{C}_{1}
$$

by inversion using reflexivity

Therefore there is a proof for eq (arr $T S$) (arr $T S^{\prime}$) by reflexivity.
Case 2
$\mathcal{D}=\frac{x, u: \text { oft } x T \in \Gamma}{\Gamma \vdash \text { oft } x T} u \quad \mathcal{C}=\frac{x, v: \text { oft } \times S \in \Gamma}{\Gamma \vdash \text { oft } \times S} v$

Type uniqueness

Theorem

If $\mathcal{D}: \Gamma \vdash$ oft $M T$ and $\mathcal{C}: \Gamma \vdash$ oft $M S$ then $\mathcal{E}:$ eq $T S$.
Induction on first typing derivation \mathcal{D}.

Case 1
\mathcal{D}_{1}
Γ, x, u : oft $\times T \vdash$ oft $M S$
$\mathcal{D}=\frac{\Gamma \vdash \mathrm{oft}(\operatorname{lam} x: T . M)(\operatorname{arr} T S)}{\text { t.lam }}$
\mathcal{E} : eq $S S^{\prime}$
and $S=S^{\prime}$
$\mathcal{C}=\frac{\Gamma, x, u: \text { oft } x^{\mathcal{C}} T \vdash \text { oft } M S^{\prime}}{\Gamma \vdash \text { oft }(\operatorname{lam} x: T . M)\left(\operatorname{arr} T S^{\prime}\right)} \mathrm{t}^{\text {_lam }}$
by i.h. using \mathcal{D}_{1} and \mathcal{C}_{1}
by inversion using reflexivity

Therefore there is a proof for eq (arr $T S$) (arr $T S^{\prime}$) by reflexivity.
Case 2
$\mathcal{D}=\frac{x, u: \text { oft } \times T \in \Gamma}{\Gamma \vdash \text { oft } x T} u \quad \mathcal{C}=\frac{x, v: \text { oft } \times S \in \Gamma}{\Gamma \vdash \text { oft } \times S} v$
Every variable x is associated with a unique typing assumption (property of the context), hence $v=u$ and $S=T$.

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga ...
- Wanting more: Programming code transformations
- Sketching closure conversion
- Sketching normalization by evaluation
- Conclusion

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
\rightsquigarrow support for α-renaming, substitution, adequate representations

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
\rightsquigarrow support for α-renaming, substitution, adequate representations
Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]
On paper proof
Proofs as functions in Beluga
Case analysis
Inversion
Induction Hypothesis

Case analysis and pattern matching Pattern matching using let-expression Recursive call

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
\rightsquigarrow support for α-renaming, substitution, adequate representations
Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof
Case analysis Inversion
Induction Hypothesis

Proofs as functions in Beluga
Case analysis and pattern matching Pattern matching using let-expression Recursive call

- Contextual types characterize contextual objects [NPP'08] \rightsquigarrow support well-scoped derivations

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
\rightsquigarrow support for α-renaming, substitution, adequate representations
Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof
Case analysis Inversion Induction Hypothesis

Proofs as functions in Beluga
Case analysis and pattern matching Pattern matching using let-expression Recursive call

- Contextual types characterize contextual objects [NPP'08] \rightsquigarrow support well-scoped derivations
- Context variables parameterize computations \rightsquigarrow fine grained invariants; distinguish between different contexts

Beluga ${ }^{\mu}$: two level approach

Logical framework LF [HHP'93]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types
\rightsquigarrow support for α-renaming, substitution, adequate representations
Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof
Case analysis Inversion Induction Hypothesis

Proofs as functions in Beluga
Case analysis and pattern matching Pattern matching using let-expression Recursive call

- Contextual types characterize contextual objects [NPP'08] \rightsquigarrow support well-scoped derivations
- Context variables parameterize computations \rightsquigarrow fine grained invariants; distinguish between different contexts
- Recursive types express relationships between contexts and contextual objects \rightsquigarrow adds expressive power! (See POPL'12)

Step 1: Represent types and lambda-terms in LF

Types T ::= nat
$\mid \operatorname{arr} T_{1} T_{2}$

Terms $M \quad::=\quad x$
$\operatorname{lam} x: T . M$
$\operatorname{app} M N$

Step 1: Represent types and lambda-terms in LF

$$
\begin{aligned}
\text { Types } T::= & \text { nat } \\
& \mid \operatorname{arr} T_{1} T_{2}
\end{aligned}
$$

Terms $M \quad:=x$
lam $x: T . M$ app $M N$

LF representation in Beluga

```
datatype tp:type =
nat: tp
arr: tp \(\rightarrow\) tp \(\rightarrow\) tp;
```

```
datatype exp: type =
```

datatype exp: type =
| lam: tp \rightarrow (exp \rightarrow exp) $\rightarrow \exp$
| lam: tp \rightarrow (exp \rightarrow exp) $\rightarrow \exp$
app: $\exp \rightarrow \exp \rightarrow \exp ;$

```
app: \(\exp \rightarrow \exp \rightarrow \exp ;\)
```


Step 1: Represent types and lambda-terms in LF

$$
\begin{aligned}
\text { Types } T::= & \text { nat } \\
& \mid \operatorname{arr} T_{1} T_{2}
\end{aligned}
$$

Terms $M \quad:=x$
lam $x: T . M$ $\operatorname{app} M N$

LF representation in Beluga

```
datatype tp:type \(=\quad\) datatype exp: type \(=\)
nat: tp
arr: \(t p \rightarrow t p \rightarrow t p ;\)
```

```
| lam: tp \(\rightarrow\) (exp \(\rightarrow\) exp) \(\rightarrow \exp\)
```

| lam: tp \rightarrow (exp \rightarrow exp) $\rightarrow \exp$
| app: $\exp \rightarrow \exp \rightarrow \exp ;$

```

Typing rules
\[
\frac{\text { oft } M(\operatorname{arr} T S) \quad \text { oft } N T}{\operatorname{oft}(\operatorname{app} M N) S} \text { t_app }
\]
\[
\frac{\text { oft MS }}{\text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \text { t_lam }^{x, u}
\]

\section*{Step 1: Represent types and lambda-terms in LF}

Terms \(M \quad:=x\)
\(\operatorname{lam} x: T . M\) app \(M N\)

\section*{LF representation in Beluga}
```

datatype tp:type $=$
nat: tp
arr: tp \rightarrow tp \rightarrow tp;

```
```

datatype exp: type =

```
datatype exp: type =
| lam: tp }->\mathrm{ (exp }->\mathrm{ exp) }->\operatorname{exp
| lam: tp }->\mathrm{ (exp }->\mathrm{ exp) }->\operatorname{exp
app: exp }->\mathrm{ exp }->\mathrm{ exp;
```

app: exp }->\mathrm{ exp }->\mathrm{ exp;

```

Typing rules
\(\overline{\text { oft } \times T}{ }^{u}\)
\[
\frac{\text { oft } M(\operatorname{arr} T S) \quad \text { oft } N T}{\operatorname{oft}(\operatorname{app} M N) S} \text { t_app } \frac{\text { oft } M S}{\text { oft }(\operatorname{lam} x: T . M)(\operatorname{arr} T S)} \text { t_lam }{ }^{x, u}
\]
```

datatype oft: $\exp \rightarrow t p \rightarrow$ type $=$

```

```

 \(\rightarrow\) oft (app M N) S \(\quad \rightarrow\) oft (lam T M) (arr T S);
    ```

\section*{Step 2a: Theorem as type}

\section*{Step 2a: Theorem as type}

\begin{abstract}
Theorem
If \(\mathcal{D}: \Gamma \vdash\) oft \(M T\) and \(\mathcal{C}: \Gamma \vdash\) oft \(M S\) then \(\mathcal{E}:\) eq \(T S\).
\end{abstract}

\section*{Step 2a: Theorem as type}

\begin{abstract}
Theorem
If \(\mathcal{D}: \Gamma \vdash\) oft \(M T\) and \(\mathcal{C}: \Gamma \vdash\) oft \(M S\) then \(\mathcal{E}:\) eq \(T S\).
\end{abstract}
is represented as
Computation-level Type in Beluga
\[
\text { (g:ctx) [g.oft (M...) T] } \rightarrow \text { [g.oft (M...) S] } \rightarrow \text { [.eq T S] }
\]

Read as: "For all contexts g of the schema ctx, ...

\section*{Step 2a: Theorem as type}

\section*{Theorem}

If \(\mathcal{D}: \Gamma \vdash\) oft \(M T\) and \(\mathcal{C}: \Gamma \vdash\) oft \(M S\) then \(\mathcal{E}:\) eq \(T S\).
is represented as
Computation-level Type in Beluga
\[
\text { (g:ctx) [g.oft (M...) T] } \rightarrow \text { [g.oft (M...) S] } \rightarrow \text { [ .eq T S] }
\]

Read as: "For all contexts g of the schema ctx, ...
- [g.oft (M...) T] and [ .eq T S] are contextual types [NPP'08].
- ... describes dependency on context.

T is a closed object ( \(\mathrm{M} . . \mathrm{)}\) is an object which may depend on context g .

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga \\ \[
(\mathrm{g}: \mathrm{ctx})[\mathrm{g} . \mathrm{oft}(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \mathrm{oft}(\mathrm{M} . . .) \mathrm{S}] \rightarrow[. \text { eq } \mathrm{T} \mathrm{~S}]
\]}
- Parameterize computation over contexts, Distinguish between contexts.

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(g: c t x)[g . \text { oft }(M \ldots) T] \rightarrow[g . \text { oft }(M \ldots) S] \rightarrow[. \text {.... } T T S]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(g: c t x)[g . o f t(M \ldots) T] \rightarrow[g . \text { oft }(M \ldots) S] \rightarrow[. \text { eq } T S]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some \([T: t p]\) block \(x: \exp , u: o f t x T\).

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(g: c t x)[g . \text { oft }(M \ldots) T] \rightarrow[g . \text { oft }(M \ldots) S] \rightarrow[. \text { eq } T S]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some [T:tp] block \(x: \exp , u: o f t x T\).
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as b1:block \(x: \exp , u: o f t x\) nat, \(b 2: b l o c k ~ y: e x p, v: o f t y(a r r ~ n a t ~ n a t) . ~\)

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(\mathrm{g}: \text { ctx) }[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{S}] \rightarrow[\text {.eq } T \mathrm{~S}]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some \([T: t p]\) block \(x: e x p, u: o f t x T\).
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as

- Well-formedness: b1:block \(x: \exp , \mathrm{u}:\) oft y nat is ill-formed. \(x: \exp , y: \exp , u: o f t x\) nat is ill-formed.

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(\mathrm{g}: \text { ctx) }[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{S}] \rightarrow[\text {.eq } T \mathrm{~S}]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some \([T: t p]\) block \(x: e x p, u: o f t x T\).
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as

- Well-formedness: b1:block \(x: e x p, u: o f t ~ y ~ n a t ~ i s ~ i l l-f o r m e d . ~\) \(\mathrm{x}: \exp , \mathrm{y}: \exp , \mathrm{u}:\) oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(\mathrm{g}: \text { ctx) }[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{S}] \rightarrow[\text {.eq } T \mathrm{~S}]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some \([T: t p]\) block \(x: e x p, u: o f t x T\).
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as

- Well-formedness: b1:block \(x: e x p, u: o f t ~ y ~ n a t ~ i s ~ i l l-f o r m e d . ~\) \(\mathrm{x}: \exp , \mathrm{y}: \exp , \mathrm{u}:\) oft x nat is ill-formed.
- Declarations are unique: b1 is different from b2
b1.1 is different from b2.1

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(\mathrm{g}: \text { ctx) }[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{S}] \rightarrow[\text {.eq } T \mathrm{~S}]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some [T:tp] block \(\mathrm{x}: \exp , \mathrm{u}:\) oft x T.
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as

- Well-formedness:
\(\begin{array}{llll}\text { - Declarations are unique: } & \text { b1 } & \text { is different from } & \text { b2 } \\ & \text { b1.1 } & \text { is different from } & \text { b2.1 }\end{array}\)
\(\begin{array}{llll}\text { - Declarations are unique: } & \text { b1 } & \text { is different from } & \text { b2 } \\ & \text { b1.1 } & \text { is different from } & \text { b2.1 }\end{array}\)
is ill-formed. is ill-formed.
- Later declarations overshadow earlier ones

\section*{Intrinsic support for contexts}

\section*{Computation-level Type in Beluga}
\[
(\mathrm{g}: \text { ctx) }[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{T}] \rightarrow[\mathrm{g} . \text { oft }(\mathrm{M} . . .) \mathrm{S}] \rightarrow[\text {.eq } T \mathrm{~S}]
\]
- Parameterize computation over contexts, Distinguish between contexts.
- Contexts are classified by context schemas schema ctx \(=\) some [T:tp] block \(\mathrm{x}: \exp , \mathrm{u}:\) oft x T.
- \(x, u\) : oft \(x\) nat, \(y, v\) : oft \(y\) (arr nat nat) is represented as

- Well-formedness:
- Declarations are unique: b1 is different from b2
b1.1 is different from b2.1
is ill-formed. is ill-formed.
- Later declarations overshadow earlier ones
- Weakening, Substitution lemma

\section*{Accessing objects in contexts}
- How do we access objects from a context?

\section*{Accessing objects in contexts}
- How do we access objects from a context?
\begin{tabular}{l|l} 
Context & Element \\
\hline \(\mathrm{b}:\) block \(\mathrm{x}: \exp , \mathrm{u}:\) oft x nat & \(\mathrm{b} .2 \quad\) concrete parameter \\
retrieves the second component of b
\end{tabular}

\section*{Accessing objects in contexts}
- How do we access objects from a context?
\begin{tabular}{l|l} 
Context & Element \\
\hline \(\mathrm{b}:\) block \(\mathrm{x}: \exp , \mathrm{u}:\) oft x nat & b .2 concrete parameter \\
retrieves the second component of b
\end{tabular}

\section*{Accessing objects in contexts}
- How do we access objects from a context?
\begin{tabular}{l|l} 
Context & Element \\
\hline b:block x:exp, u:oft x nat & \begin{tabular}{l} 
b.2 concrete parameter \\
retrieves the second component of b
\end{tabular} \\
\(\mathrm{g}, \mathrm{b}:\) block x:exp, u:oft x nat & \begin{tabular}{l} 
\#p.2 ... parameter variable \\
retrieves the second component of \\
a declaration in g
\end{tabular}
\end{tabular}

\section*{Accessing objects in contexts}
- How do we access objects from a context?
\begin{tabular}{l|l} 
Context & Element \\
\hline b:block x:exp, u:oft x nat & \begin{tabular}{l} 
b.2 concrete parameter \\
retrieves the second component of b
\end{tabular} \\
\(\mathrm{g}, \mathrm{b}:\) block x:exp, u:oft x nat & \begin{tabular}{l} 
\#p.2 ... parameter variable \\
retrieves the second component of \\
a declaration in g
\end{tabular} \\
&
\end{tabular}
- Allow projections on variables and parameter variables only

\section*{Accessing objects in contexts}
- How do we access objects from a context?
\begin{tabular}{l|l} 
Context & Element \\
\hline b:block x:exp, u:oft x nat & \begin{tabular}{l} 
b.2 concrete parameter \\
retrieves the second component of b
\end{tabular} \\
\(\mathrm{g}, \mathrm{b}:\) block x:exp, u:oft x nat & \begin{tabular}{l} 
\#p.2 ... parameter variable \\
retrieves the second component of \\
a declaration in g
\end{tabular} \\
&
\end{tabular}
- Allow projections on variables and parameter variables only
"Making something variable is easy. Controlling duration of constancy is the trick."

\section*{Step 2b: Proofs as Programs}

\section*{Step 2b: Proofs as Programs}
rec unique: (g:ctx) [g.oft (M...) T] \(\rightarrow[\mathrm{g}\). oft (M...) S] \(\rightarrow\) [.eq \(T \mathrm{~S}]=\)

\section*{Step 2b: Proofs as Programs}
rec unique: (g:ctx) [g.oft (M...) T] \(\rightarrow[\mathrm{g}\). oft (M...) S] \(\rightarrow\) [.eq T S] \(=\) \(\mathbf{f n} d \Rightarrow \mathbf{f n} c \Rightarrow\) case \(d\) of

\section*{Step 2b: Proofs as Programs}
```

rec unique: (g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] $=$
$\mathbf{f n} d \Rightarrow \mathbf{f n} c \Rightarrow$ case d of
| [g.t_app (D1 ...) (D2 ...)] $\Rightarrow \quad$ \% Application Case
let $\left[g . t_{_} a p p(C 1 \ldots)(C 2 \ldots)\right]=c$ in
let [.e_ref] = unique [g.D1 ...] [g.C1 ...] in
[.e_ref]

```

\section*{Step 2b: Proofs as Programs}
```

rec unique: (g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
$\mathbf{f n} \mathrm{d} \Rightarrow \mathbf{f n} c \Rightarrow$ case d of
I [g.t_app (D1 ...) (D2 ...)] \Rightarrow \% Application Case
let $[\mathrm{g} . \mathrm{t}$ _app ($\mathrm{C} 1 . .).(\mathrm{C} 2 \ldots)]=\mathrm{c}$ in
let [.e_ref] = unique [g.D1 ...] [g.C1 ...] in
[.e_ref]
| [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{D} . . . \mathrm{x}$ u) $\Rightarrow \quad$ \% Abstraction Case
let [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{C} . . . \mathrm{x} u)]=\mathrm{c}$ in
let [.e_ref] = unique [g,b:block $x: \exp , \mathrm{u}:$ oft x _ . D ... b. 1 b.2]
[g,b . C... b. 1 b.2] in
[.e_ref]

```

\section*{Step 2b: Proofs as Programs}
```

rec unique: (g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn $d \Rightarrow$ fn $c \Rightarrow$ case d of
I [g.t_app (D1 ...) (D2 ...)] \Rightarrow \% Application Case
let [g.t_app (C1 ...) (C2 ...)] = c in
let [.e_ref] = unique [g.D1 ...] [g.C1 ...] in
[.e_ref]
| [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{D} . . . \mathrm{x}$ u) $\Rightarrow \quad$ \% Abstraction Case
let [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{C} . . . \mathrm{x} u)]=\mathrm{c}$ in
let [.e_ref] = unique [g,b:block $x: \exp , \mathrm{u}:$ oft x _ . D ... b. 1 b.2]
[g,b . C ... b. 1 b.2] in
[.e_ref]
l [g.\#q. $2 \ldots$...] $\Rightarrow \quad \% \mathrm{~d}$: oft (\#q. $1 . .$.) $\mathrm{T} \quad \%$ Assumption Case
let [g.\#r.2...] = c in \% c : oft (\#r.1...) S
[.e_ref] ;

```

\section*{Step 2b: Proofs as Programs}
```

rec unique: (g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn $d \Rightarrow \mathbf{f n} c \Rightarrow$ case d of
I [g.t_app (D1 ...) (D2 ...)] \Rightarrow \% Application Case
let [g.t_app (C1 ...) ($\mathrm{C} 2 \ldots$...)] = c in
let [.e_ref] = unique [g.D1 ...] [g.C1 ...] in
[.e_ref]
| [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{D} . . . \mathrm{x}$ u) $\Rightarrow \quad$ \% Abstraction Case
let [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{C} . . . \mathrm{x} u)$] = c in
let [.e_ref] = unique [g,b:block $x: \exp , \mathrm{u}:$ oft x _ . D... b. 1 b.2]
[g,b . C... b. 1 b.2] in
[.e_ref]
l [g.\#q. $2 \ldots$...] $\Rightarrow \quad \% \mathrm{~d}$: oft (\#q. $1 . .$.) $\mathrm{T} \quad \%$ Assumption Case
let [g.\#r. $2 \ldots$..] = c in \% c : oft (\#r. $1 .$.) S
[.e_ref] ;
Recalll:
\#q:block $x: \exp , u: o f t \mathrm{x}$ T
\#r:block x:exp, u:oft x S

```

\section*{Step 2b: Proofs as Programs}
```

rec unique: (g:ctx) [g.oft (M...) T] \rightarrow [g.oft (M...) S] \rightarrow [.eq T S] =
fn $d \Rightarrow \mathbf{f n} c \Rightarrow$ case d of
| [g.t_app (D1 ...) (D2 ...)] \Rightarrow \% Application Case
let [g.t_app (C1 ...) ($\mathrm{C} 2 \ldots$...)] = c in
let [.e_ref] = unique [g.D1 ...] [g.C1 ...] in
[.e_ref]
| [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{D} . . . \mathrm{x}$ u) $\Rightarrow \quad$ \% Abstraction Case
let [g.t_lam ($\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{C} . . . \mathrm{x} u)$] = c in
let [.e_ref] = unique [g,b:block $x: \exp , \mathrm{u}:$ oft x _ . D ... b. 1 b.2]
[g,b . C... b. 1 b.2] in
[.e_ref]
| [g.\#q. $2 \ldots$...] $\Rightarrow \quad \% \mathrm{~d}$: oft (\#q. $1 . .$.) $\mathrm{T} \quad \%$ Assumption Case
let [g.\#r.2...] = c in \% c : oft (\#r.1...) S
[.e_ref] ;

```

\section*{Recalll:}
```

\#q:block $x: \exp , u: o f t x$ T
\#r:block x:exp, u:oft x S

Step 2b: Proofs as Programs

```
rec unique: (g:ctx) [g.oft (M...) T] \(\rightarrow\) [g.oft (M...) S] \(\rightarrow\) [.eq T S] \(=\)
\(\mathbf{f n} \mathrm{d} \Rightarrow \mathbf{f n} c \Rightarrow\) case d of
| [g.t_app (D1 ...) (D2 ...)] \(\Rightarrow\) \% Application Case
    let [g.t_app (C1 ...) (C2 ...)] = c in
    let [ .e_ref] = unique [g.D1 ...] [g.C1 ...] in
        [ .e_ref]
    | [g.t_lam ( \(\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{D} . . . \mathrm{x}\) u) \(\Rightarrow \quad\) \% Abstraction Case
    let [g.t_lam ( \(\lambda \mathrm{x} . \lambda \mathrm{u} . \mathrm{C} . . . \mathrm{x} u)\) ] = c in
    let [ .e_ref] = unique [g,b:block \(x: \exp , \mathrm{u}:\) oft x _ . D... b. 1 b.2]
                        [g,b . C... b. 1 b.2] in
        [ .e_ref]
    | [g.\#q. \(2 \ldots\)...] \(\Rightarrow \quad \% \mathrm{~d}\) : oft (\#q. \(1 . .\). ) \(\mathrm{T} \quad \%\) Assumption Case
    let [g.\#r. 2 ...] = c in \% c : oft (\#r. \(1 . .\). ) S
        [ .e_ref] ;
```


Recalll:

```
\#q:block \(x: e x p, u: o f t x ~ T\)
\#r:block x:exp, u:oft x S
We also know: \(\quad\)\begin{tabular}{ll} 
\#r.1 & \(=\) \\
\#q.1 \\
Therefore: & T
\end{tabular}\(=\mathrm{S}\)
```


Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types
 Renaming, Substitution |
| α-renaming, β-reduction in LF | |

Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types |
| Renaming, Substitution | α-renaming, β-reduction in LF |
| Well-scoped derivation | Contextual types and objects |

Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types |
| Renaming,Substitution | α-renaming, β-reduction in LF |
| Well-scoped derivation | Contextual types and objects |
| Context | Context schemas |

Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types |
| Renaming,Substitution | α-renaming, β-reduction in LF |
| Well-scoped derivation | Contextual types and objects |
| Context | Context schemas |
| Properties of contexts
 (weakening, uniqueness) | Typing for schemas |
| | |

Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types |
| Renaming, Substitution | α-renaming, β-reduction in LF |
| Well-scoped derivation | Contextual types and objects |
| Context | Context schemas |
| Properties of contexts
 (weakening, uniqueness) | Typing for schemas |

- Compact representation of proofs as functions

Case analysis
Inversion
Induction Hypothesis

Case analysis and pattern matching
Pattern matching using let-expression Recursive call

Revisiting the design of Beluga

- Compact adequate representation of derivations and contexts

| On paper proof | Implementation in Beluga |
| :--- | :--- |
| Well-formed derivations | Dependent types |
| Renaming, Substitution | α-renaming, β-reduction in LF |
| Well-scoped derivation | Contextual types and objects |
| Context | Context schemas |
| Properties of contexts
 (weakening, uniqueness) | Typing for schemas |

- Compact representation of proofs as functions

Case analysis
Inversion
Induction Hypothesis

Case analysis and pattern matching
Pattern matching using let-expression Recursive call

Comparison

- Twelf [Pf,Sch'99]: Encode proofs as relations
- Requires lemma to prove injectivity of arr constructor.
- No explicit contexts (cannot express types T and S and eq T S are closed)
- Parameter case folded into abstraction case
- Delphin [Sch,Pos'08]: Encode proofs as functions
- Requires lemma to prove injectivity of constructor
- Cannot express that types T and S and eq T S are closed.
- Variable carrying continuation as extra argument to handle context lookup
- Abella [Gacek'08], Tac[Baelde'10]: Proof assistants
- Equality built-into the logic
- Contexts are represented as lists
- Requires lemmas about these lists (for example that all assumptions occur uniquely)

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga ...
- Wanting more: Programming code transformations
- Sketching closure conversion
- Sketching normalization by evaluation
- Conclusion

Three solitudes

Frameworks for reasoning with HOAS

Example: Closure conversion

- Translate λ-terms such that bodies only refer to their arguments

$$
\begin{array}{lc}
\text { Source language } & \text { Target language } \\
(\operatorname{lam} y \cdot x+y) 3 \Longrightarrow & (\text { lam env.env. } 2+\text { env.1) }(3, x)
\end{array}
$$

Example: Closure conversion

- Translate λ-terms such that bodies only refer to their arguments

$$
\begin{array}{lc}
\text { Source language } & \text { Target language } \\
(\operatorname{lam} y \cdot x+y) 3 \Longrightarrow & (\text { lam env.env. } 2+\text { env.1) }(3, x)
\end{array}
$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin

Example: Closure conversion

- Translate λ-terms such that bodies only refer to their arguments

$$
\begin{array}{lc}
\text { Source language } & \text { Target language } \\
(\operatorname{lam} y \cdot x+y) 3 \Longrightarrow & (\text { lam env.env. } 2+\text { env.1) }(3, x)
\end{array}
$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
- Distinguish between source language tm and target language ctm
- Translate [ψ.tm] where ψ is a source context to [$\phi . \mathrm{ctm}$] where ϕ is a target context

Example: Closure conversion

- Translate λ-terms such that bodies only refer to their arguments

$$
\begin{array}{lc}
\text { Source language } & \text { Target language } \\
(\text { lam } y \cdot x+y) 3 \Longrightarrow & \text { (lam env.env. } 2+\text { env.1) }(3, x)
\end{array}
$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
- Distinguish between source language tm and target language ctm
- Translate [ψ.tm] where ψ is a source context to [$\phi . \mathrm{ctm}$] where ϕ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel $[\psi][\phi] \rightarrow[\psi . \mathrm{tm}] \rightarrow[\phi . \mathrm{ctm}]$

Example: Closure conversion

- Translate λ-terms such that bodies only refer to their arguments

$$
\begin{array}{lc}
\text { Source language } & \text { Target language } \\
(\text { lam } y \cdot x+y) 3 \Longrightarrow & \text { (lam env.env. } 2+\text { env.1) }(3, x)
\end{array}
$$

- Challenge: Translation translates under binders
- Difficult for HOAS systems such as Twelf or Delphin
- Programming in context in Beluga
- Distinguish between source language tm and target language ctm
- Translate [ψ.tm] where ψ is a source context to [$\phi . \mathrm{ctm}$] where ϕ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel $[\psi][\phi] \rightarrow[\psi . \mathrm{tm}] \rightarrow[\phi . \mathrm{ctm}]$

Indexed recursive datatype (POPL'12)

- Example: Relating source and target context

```
Computation-level data types in Beluga
datatype Ctx_rel : {g:ctx}{h:cctx} ctype =
| Rnil : Ctx_rel [] []
| Rsnoc : Ctx_rel [g] [h]
    ->Ctx_rel [g, x:tm] [h,x:ctm] ;
```


Indexed recursive datatype (POPL'12)

- Example: Type preserving context relation

```
Computation-level data types in Beluga
datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =
| Rnil : Ctx_trel [] []
| Rsnoc : Ctx_trel [g] [h] -> Tp_rel [. T] [. S]
    Ctx_trel [g, x:tm T] [h,x:ctm S] ;
```


Indexed recursive datatype (POPL'12)

- Example: Type preserving context relation

Computation-level data types in Beluga

```
datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =
| Rnil : Ctx_trel [] []
| Rsnoc : Ctx_trel [g] [h] -> Tp_rel [. T] [. S]
    Ctx_trel [g, x:tm T] [h,x:ctm S] ;
```

- Example: Wrapper for contextual objects.

```
datatype TmVar : {g:tctx} [.tp] -> ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T]
;
datatype CtxObj : {h:cctx} ctype =
| Ctx : {h:cctx} CtxObj [h] ;
```


Indexed recursive datatype (POPL'12)

- Example: Type preserving context relation

Computation-level data types in Beluga

```
datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =
| Rnil : Ctx_trel [] []
| Rsnoc : Ctx_trel [g] [h] -> Tp_rel [. T] [. S]
    Ctx_trel [g, x:tm T] [h,x:ctm S] ;
```

- Example: Wrapper for contextual objects.

```
datatype TmVar : {g:tctx} [.tp] -> ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T]
;
datatype CtxObj : {h:cctx} ctype =
| Ctx : {h:cctx} CtxObj [h] ;
```

- Choice how much to push to the computation level

Replacing variables with their projections

- Traverse term in target language by pattern matching on the context

Replacing variables with their projections

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e w where e:envr.

Replacing variables with their projections

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e w where e:envr.
- Guarantee that all variables have been replaced.

Replacing variables with their projections

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e w where e:envr.
- Guarantee that all variables have been replaced.

Computation in Beluga

```
rec addProjs : (g:cctx) [.nat] -> [g, e:envr . ctm] -> [e:envr . ctm] =
fn n = fn m }=>\mathrm{ case m of
| [ e:envr . M e ] => [e:envr . M e]
| [ g, x:ctm , e:envr . M .. x e] }
    let [.N] = n in addProjs [.s N] [g, e:envr . M .. (proj e N) e]
```

;

Replacing variables with their projections

- Traverse term in target language by pattern matching on the context
- Use built-in substitutions to replace x with its corresponding projection proj e w where e:envr.
- Guarantee that all variables have been replaced.

Computation in Beluga

```
rec addProjs : (g:cctx) [.nat] }->\mathrm{ [g, e:envr . ctm] }->\mathrm{ [e:envr . ctm] =
fn n = fn m m case m of
| [ e:envr . M e ] => [e:envr . M e]
| [g, x:ctm , e:envr . M .. x e] }
    let [.N] = n in addProjs [.s N] [g, e:envr . M .. (proj e N) e]
```

;

- Terminates since context decreases

Converting context to environment

LF representation in Beluga

```
datatype envr: type =
| nil : envr
| snoc: envr }->\mathrm{ ctm }->\mathrm{ envr
and ctm : type = ... ;
```


Computation in Beluga

```
rec ctxToEnv : CtxObj [h] }->\mathrm{ [h . envr] =
fn ctx }=>\mathrm{ case ctx of
| Ctx [] => [ . nil]
| Ctx [h,x:ctm] =>
    let [h' . Env .. ] = ctxToEnv (Ctx [h]) in
        [h', x:ctm . snoc (Env ..) x]
```

;

- Convert context to list
- Pattern matching on context

Example: Closure conversion

- Naive Closure conversion [Cave, Pientka'12]
- Type-preserving closure conversion [O. Savary Belanger, M. Boespflug, S. Monnier, B.Pientka]
- Compact elegant representation
- Only abstract over the free variables in an expression
- Enforces also scope preservation
- Almost proof-less
- Lessons learned:
- Programming in context requires a new look at existing algorithms
- Distinguishing between different context natural
- Indexed data types are key to finding elegant solutions

This talk

Design and implementation of Beluga

- Introduction
- Example: Type uniqueness
- Writing a proof in Beluga ...
- Wanting more: Programming code transformations
- Sketching closure conversion
- Sketching normalization by evaluation
- Conclusion

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
- Twelf, Delphin are too weak (to do it directly)
- Licata and Harper [ICFP'09] cannot express type preservation
- Coq/Agda lack support for substitutions and binders

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
- Twelf, Delphin are too weak (to do it directly)
- Licata and Harper [ICFP'09] cannot express type preservation
- Coq/Agda lack support for substitutions and binders
- General idea of NBE in Beluga

> Source

LF objects

Computation-level objects

Lambda Terms
Non-normal
eval

Target
Lambda Terms
beta-eta normal
reflect / reify

Normalization by evaluation

- Reuse evaluation of computation language to normalize terms in the object language [Berger, Schwichtenberg 91]
- Good benchmark
- Twelf, Delphin are too weak (to do it directly)
- Licata and Harper [ICFP'09] cannot express type preservation
- Coq/Agda lack support for substitutions and binders
- General idea of NBE in Beluga Source

Target

LF objects

Lambda Terms
beta-eta normal
reflect / reify

Computation-level objects
Semantic representation

- Evaluation is easy, normalization is hard

NBE in context

| Source of type T | Target of type T |
| :--- | :--- |
| $\Gamma \vdash T$ | $\Gamma \vdash_{n} T$ - Normal terms |
| | $\Gamma \vdash_{r} T$ - Neutral terms |$|$

- Types: $T, S::=T \Rightarrow S \mid i$
- Definition of semantic values

$$
\begin{array}{rll}
\ulcorner\vDash i & \equiv_{d e f} & \Gamma \vdash_{n} i \\
\Gamma \vDash S \Rightarrow T & \equiv_{d e f} & \forall \Gamma^{\prime} \geq \Gamma .\left(\Gamma^{\prime} \vDash S\right) \rightarrow\left(\Gamma^{\prime} \vDash T\right)
\end{array}
$$

NBE in context

| Source of type T | Target of type T |
| :--- | :--- |
| $\Gamma \vdash T$ | $\Gamma \vdash_{n} T$ - Normal terms |
| | $\Gamma \vdash_{r} T$ - Neutral terms |$|$

- Types: $T, S::=T \Rightarrow S \mid i$
- Definition of semantic values

$$
\begin{array}{rll}
\Gamma \vDash i & \equiv_{\text {def }} & \Gamma \vdash_{n} i \\
\Gamma \vDash S \Rightarrow T & \equiv_{d e f} & \forall \Gamma^{\prime} \geq \Gamma .\left(\Gamma^{\prime} \vDash S\right) \rightarrow\left(\Gamma^{\prime} \vDash T\right)
\end{array}
$$

Representation of syntax straightforward

- Source represented in LF using type tm T.
- Target represented in LF using type norm T and neut T .

NBE in context

| Source of type T | Target of type T |
| :--- | :--- |
| $\Gamma \vdash T$ | $\Gamma \vdash_{n} T$ - Normal terms |
| | $\Gamma \vdash_{r} T-$ Neutral terms |$|$

- Types: $T, S::=T \Rightarrow S \mid i$
- Definition of semantic values

$$
\begin{array}{rll}
\Gamma \vDash i & \equiv_{\text {def }} & \Gamma \vdash_{n} i \\
\Gamma \vDash S \Rightarrow T & \equiv_{d e f} & \forall \Gamma^{\prime} \geq \Gamma .\left(\Gamma^{\prime} \vDash S\right) \rightarrow\left(\Gamma^{\prime} \vDash T\right)
\end{array}
$$

Representation of syntax straightforward

- Source represented in LF using type tm T.
- Target represented in LF using type norm T and neut T .

How to represent semantic values and context relations?

Defining context extensions using indexed types

- Context g is a prefix of context h

```
Computation-level data types in Beluga
datatype Extends : {g:ctx} {h:ctx} ctype =
| Zero : Extends [g] [g]
| Succ : Extends [g] [h] -> Extends [g] [h,x:neut A]
```

- Use indexed types - keyword: ctype
- Note: \rightarrow is overloaded.
- $\mathrm{tm} \rightarrow \mathrm{tm}$ is the LF function space : binders in the object language are modelled by LF functions
- Extends [g] [h] \rightarrow Extends [g] [h,x:neut A] is a computation-level function

Representing target semantic values using indexed types

- Represenation of semantics using computation-level functions

$$
\begin{array}{rll}
\Gamma \vDash i & \equiv_{d e f} & \Gamma \vdash_{n} i \\
\Gamma \vDash S \Rightarrow T & \equiv_{d e f} & \forall \Gamma^{\prime} \geq \Gamma .\left(\Gamma^{\prime} \vDash S\right) \rightarrow\left(\Gamma^{\prime} \vDash T\right)
\end{array}
$$

Computation-level data types in Beluga

```
datatype Sem : {g:ctx} [. tp] -> ctype =
| Syn : [g . neut (atomic P)] -> Sem [g] [ .atomic P]
| Slam : ({h:ctx} Extends [g] [h] -> Sem [h] [ .S] -> Sem [h] [ .T])
    Sem [g] [ . arr S T]
```

;

- Not a positive definition - we are making no claims regarding strong normalization.

Sketch of normalization by evaluation

- Define mutual recursive functions reflect and reify

```
rec reflect : [g. neut T] }->\mathrm{ Sem [g] [ .T] % Recursion on T
and reify : Sem [g] [ .T] }->\mathrm{ [g.norm T] % Recursion on T
```


Sketch of normalization by evaluation

- Define mutual recursive functions reflect and reify

```
rec reflect : [g. neut T] }->\mathrm{ Sem [g] [ .T] % Recursion on T
and reify : Sem [g] [ .T] -> [g.norm T] % Recursion on T
```

- Map between vars in the source language and their semantic values

```
datatype TmVar : {g:tctx} [.tp] -> ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T];
typedef Map : {g:tctx}{h:ctx} ctype = {T:[.tp]} TmVar [g] [.T] -> Sem [h] [.T];
```

- Generalized evaluation and normalization followed by reification

```
rec eval : Map [g] [h] }->\mathrm{ [g. tm S] }->\mathrm{ Sem [h] [.S] = ...
rec evaluate : [. tm S] }->\mathrm{ Sem [ ] [.S] = fn t # (eval initialMap t)
rec nbe : [. tm T] }->\mathrm{ [. norm T] = fn e = reify (evalualte e)
```


Sketch of normalization by evaluation

- Define mutual recursive functions reflect and reify

```
rec reflect : [g. neut T] }->\mathrm{ Sem [g] [ .T] % Recursion on T
and reify : Sem [g] [.T] }->\mathrm{ [g.norm T] % Recursion on T
```

- Map between vars in the source language and their semantic values

```
datatype TmVar : {g:tctx} [.tp] -> ctype =
| TmVar : {#p:[g.tm T]} TmVar [g] [.T];
typedef Map : {g:tctx}{h:ctx} ctype = {T:[.tp]} TmVar [g] [.T] -> Sem [h] [.T];
```

- Generalized evaluation and normalization followed by reification

```
rec eval : Map [g] [h] -> [g. tm S] -> Sem [h] [.S] = ...
rec evaluate : [. tm S] }->\mathrm{ Sem [ ] [.S] = fn t }=>\mathrm{ (eval initialMap t)
rec nbe : [. tm T] }->\mathrm{ [. norm T] = fn e = reify (evalualte e)
```

- Almost a consistency proof! Currently no termination or positivity checking.

What have we achieved?

- Revised foundation for programming with contexts and contextual LF (joint work with A. Cave [POPL'12])
- Uniform treatment of contextual types, context, ...
- Modular foundation for dependently-typed programming with phase-distinction
\Rightarrow Generalization of DML and ATS
- Non-termination or effects are allowed
- Effectively write programs to manipulate rich abstract syntax trees and express properties about them
- Release in Sept'12: Support for indexed data types; coverage; type reconstruction; environment-based interpreter; support for holes (partial programs)

Result:
Compact and elegant programming (with) inductive proofs in context

Current work

- Prototype in OCaml (ongoing)
- Extension to coinduction (D. Thibodeau, A. Abel)
- Termination checking (C. Badescu)
- Mixing computations in computation-level types (A. Cave)
- Case study: Certified compiler (O. Savary Belanger)
- Compiling contexts and contextual objects (F. Ferreira)

The end

Thank you!

Download prototype and examples at
http://complogic.cs.mcgill.ca/beluga/

Current Belugians: Brigitte Pientka, Mathieu Boespflug, Costin Badescu, Olivier Savary Belanger, Andrew Cave, Francisco Ferreira, Stefan Monnier, David Thibodeau

Interested? - Talk to me! We have funded postdoc and funded PhD positions.

