Beluga”: Programming proofs in context ...

Brigitte Pientka

School of Computer Science
McGill University °
Montreal, Canada

beluga

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Motivation

How to program and reason
with formal systems and proofs?

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Motivation

How to program and reason
with formal systems and proofs?

e Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Motivation

How to program and reason
with formal systems and proofs?

e Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

e Proofs (that a given property is satisfied) are an integral part of the
software.

B. Pientka Beluga* :Programming proofs in context ...
g g g P

Introduction

Motivation

How to program and reason
with formal systems and proofs?

e Formal systems (given via axioms and inference rules) play an important
role when designing and implementing software.

e Proofs (that a given property is satisfied) are an integral part of the
software.

What are good meta-languages to
program and reason with formal systems and proofs?

B. Pientka Beluga® :Programming proofs in context ...
g g g P

Introduction
This talk

Design and implementation of Beluga

e Introduction
e Example: Type uniqueness proof

e Writing a proof in Beluga ...

e Wanting more: Programming code transformations
e Sketching closure conversion
e Sketching normalization by evaluation

Conclusion

“The tools we use have a profound (and devious!) influence on
our thinking habits, and, therefore, on our thinking abilities.”
- Edsger Dijkstra

B. Pientka Beluga* :Programming proofs in context ...

Introduction
This talk

Design and implementation of Beluga

e Introduction

Example: Type uniqueness proof

Writing a proof in Beluga ...
Wanting more: Programming code transformations

e Sketching closure conversion
e Sketching normalization by evaluation

Conclusion

“The tools we use have a profound (and devious!) influence on
our thinking habits, and, therefore, on our thinking abilities.”
- Edsger Dijkstra

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
|arrTy T2 | lam x:T.M
|app M N

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
|arrTy T2 | lam x:T.M
|app M N
Typing Judgment: oft M T read as “M has type T"

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
|arrTy T2 | lam x:T.M
|app M N
Typing Judgment: oft M T read as “M has type T"

Typing rules (Gentzen-style, context-free)

oft x T “

oft M S
oft (lamx:T.M) (arr T S) t_lam®

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
|arrTy T2 | lam x:T.M
|app M N
Typing Judgment: oft M T read as “M has type T"

Typing rules (Gentzen-style, context-free)

oftx T -
oft M S oft M(arr TS) oft N T
t_lam™* t-app
oft (lamx:T.M) (arr T S) oft (app M N) S

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
|arrTy T2 | lam x:T.M
|app M N
Typing Judgment: oft M T read as “M has type T"

Typing rules (Gentzen-style, context-free)

oftx T
oft M S oft M(arr TS) oft N T
t_lam* tapp
oft (lamx:T.M) (arr T S) oft (app M N) S
Context ' == -|I,x, oftx T We are introducing the variable x together with

the assumption oft x T

B. Pientka Beluga* :Programming proofs in context ...

Simply typed lambda-calculus

Types and Terms

Types T = nat Terms M = x
| Ti — T» | lam x:T.M

| app M N

Typing Judgment: [= oft M T read as “M has type T in context [

Typing rules

x,u: oftx Tel
M= oftx T

Mx,u: oftx THoft MS | MEoft M(arr TS) I'FoftNTt
X,u _a
I oft (lamx:T.M) (arr T S) t-lam I oft (app M N) S PP

Context I =

| T,x, oft x T We are introducing the variable x together with
the assumption oft x T

B. Pientka

Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e \What kinds of variables are used?

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

o \What operations on variables are needed?

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

o \What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

o \What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

e What properties do contexts have?

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

o \What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

e \What properties do contexts have? Every declaration is unique, weakening,
substitution lemma, etc.

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Talking about derivations

Typing rules
x,u: oftx T el
M= oftx T
Mx,u: oftx THoft M S Itoft M(arr TS) r}—oftNTt
X,u 7a
- oft lamx:T.M) (arr T 5) 2™ - oft (app M N) S PP

e What kinds of variables are used? Bound variables, Schematic variables

o \What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

e \What properties do contexts have? Every declaration is unique, weakening,
substitution lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C1
Mx,uoftx THoft MS Mx,uoftx THoft MS'
lam

D=

t_lam

t C=
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)

E:eq S8 by i.h. using Dy and C;

D=

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
D= tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)
E:eq S8 by i.h. using Dy and C;
E:eqSS andS=5 by inversion using reflexivity

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
D= tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)
E:eq S8 by i.h. using Dy and C;
E:eqSS andS=5 by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S’) by reflexivity.

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
D= tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)
E:eq S8 by i.h. using Dy and C;
E:eqSS andS=5 by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S’) by reflexivity.

Case 2

x,u:oftx T el
= u

M- oftx T

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
D= tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)
E:eq S8 by i.h. using Dy and C;
E:eqSS andS=5 by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S’) by reflexivity.

Case 2

x,u-oftx TeTl x,v:oftxSer
= u C:—

M- oftx T N oftx S

v

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Type uniqueness
If D:TFoft MT and C:THoft MS then £: eqT S. \

Induction on first typing derivation D.

Case 1 D1 C
Mx,uoftx THoft MS Mx,uoftx THoft MS'
D= tdlam C= tlam
I oft (lam x:T.M) (arr T S) I Foft (lam x:T.M) (arr T S’)
E:eq S8 by i.h. using Dy and C;
E:eqSS andS=5 by inversion using reflexivity

Therefore there is a proof for eq (arr T S) (arr T S’) by reflexivity.

Case 2

x,u-oftx TeTl x,v:oftxSer
= u C:—

M- oftx T N oftx S

Every variable x is associated with a unique typing assumption (property of the

v

context), hence v=wvand S=T.

B. Pientka Beluga* :Programming proofs in context ...

Introduction

This talk

Design and implementation of Beluga

e Introduction
e Example: Type uniqueness
o Writing a proof in Beluga ...

Wanting more: Programming code transformations

e Sketching closure conversion
e Sketching normalization by evaluation

Conclusion

B. Pientka Beluga* :Programming proofs in context ...

Introduction
Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types
~~ support for a-renaming, substitution, adequate representations

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types
~~ support for a-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof ‘ Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types
~~ support for a-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof ‘ Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

e Contextual types characterize contextual objects [NPP’08]
~ support well-scoped derivations

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types
~~ support for a-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof ‘ Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

e Contextual types characterize contextual objects [NPP’08]
~ support well-scoped derivations
e (Context variables parameterize computations
~ fine grained invariants; distinguish between different contexts

B. Pientka Beluga* :Programming proofs in context ...

Introduction

Beluga”: two level approach

Logical framework LF [HHP'93]

e Compact representation of formal systems and derivations

® Higher-order abstract syntax and dependent types
~~ support for a-renaming, substitution, adequate representations

Programming proofs [Pientka'08, Pientka,Dunfield'10, Cave,Pientka'12]

On paper proof ‘ Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction Hypothesis Recursive call

e Contextual types characterize contextual objects [NPP’08]
~ support well-scoped derivations
e (Context variables parameterize computations
~ fine grained invariants; distinguish between different contexts

® Recursive types express relationships between contexts and contextual objects
~+ adds expressive power! (See POPL'12)

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation
Step 1: Represent types and lambda-terms in LF

Types T == nat Terms M = x
| arr T1 To | lam x:T.M
| app M N

B. Pientka Beluga*:Programming proofs in context ... 10 / 33

Beluga:Design and implementation

Step 1: Represent types and lambda-terms in LF

Types T == nat Terms M = x
| arr T1 To | lam x:T.M
| app M N

LF representation in Beluga

datatype tp:type = datatype exp: type =
| nat: tp | lam: tp — (exp — exp) — exp
| arr: tp — tp — tp; | app: exp — exp — exp;

B. Pientka Beluga*:Programming proofs in context ... 10 / 33

Beluga:Design and implementation
Step 1: Represent types and lambda-terms in LF

Types T == nat Terms M = x
| arr T1 To | lam x:T.M
| app M N

LF representation in Beluga

datatype tp:type = datatype exp: type =
| nat: tp | lam: tp — (exp — exp) — exp
| arr: tp — tp — tp; | app: exp — exp — exp;
Typing rules ofix T Y
oft M(arr TS) oft N T oft M S
tapp t_lam*
oft (app M N) S oft (lamx:T.M) (arr T S)

B. Pientka Beluga*:Programming proofs in context ... 10 / 33

Beluga:Design and implementation

Step 1: Represent types and lambda-terms in LF

Types T == nat Terms M = x
| arr T1 To | lam x:T.M
| app M N

LF representation in Beluga

datatype tp:type = datatype exp: type =
| nat: tp | lam: tp — (exp — exp) — exp
| arr: tp — tp — tp; | app: exp — exp — exp;

Typing rules ofix TV

oft M(arr TS) oft N T oft M S
t-app t_lam™
oft (app M N) S oft (lamx:T.M) (arr T S)

datatype oft: exp — tp — type =
| t_app: oft M (arr T S) — oft N T | t_lam: (Il x:exp.oft x T — oft (M x) S)
— oft (app M N) S — oft (lam T M) (arr T S);

B. Pientka Beluga* :Programming proofs in context ... 10 / 33

Beluga:Design and implementation

Step 2a: Theorem as type

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation
Step 2a: Theorem as type

If D:TFoft MT and C:THoft MS then £: eqT S.

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation
Step 2a: Theorem as type

If D:TFoft MT and C:THoft MS then £: eqT S.

is represented as

Computation-level Type in Beluga

(g:ctx) [g.oft (M..) T] — [g.oft (M.) 8] — [.eq T S]

Read as: "For all contexts g of the schema ctx, ...

B. Pientka Beluga*:Programming proofs in context ... 11 /33

Beluga:Design and implementation

Step 2a: Theorem as type

If D:TFoft MT and C:THoft MS then £: eqT S.

is represented as

Computation-level Type in Beluga

(g:ctx) [g.oft (M..) T] — [g.oft (M.) 8] — [.eq T S]

Read as: "For all contexts g of the schema ctx, ...

® [g.oft (M.)T] and [.eq T S] are contextual types [NPP'08].

e ... describes dependency on context.
T is a closed object (M..) is an object which may depend on context g.

B. Pientka Beluga*:Programming proofs in context ... 11 /33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.

e Contexts are classified by context schemas

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.

e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.

e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

12 /33

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.
e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

Well-formedness: bi:block x:exp,u:oft y nat is ill-formed.
X:exp, y:exp, u:oft x nat is ill-formed.

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.
e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

e Well-formedness: bi:block x:exp,u:oft y nat is ill-formed.
X:exp, y:exp, u:oft x nat is ill-formed.
e Declarations are unique: b1 is different from b2

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.
e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

e Well-formedness: bi:block x:exp,u:oft y nat is ill-formed.
X:exp, y:exp, u:oft x nat is ill-formed.
e Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.
e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

e Well-formedness: bi:block x:exp,u:oft y nat is ill-formed.
X:exp, y:exp, u:oft x nat is ill-formed.
e Declarations are unique: b1 is different from b2

b1.1 is different from b2.1

e |ater declarations overshadow earlier ones

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Intrinsic support for contexts

Computation-level Type in Beluga

(g:ctx) [g.oft (M.) Tl — [g.oft (M..) S1 — [.eq T S]

e Parameterize computation over contexts, Distinguish between contexts.
e Contexts are classified by context schemas

schema ctx = some [T:tp] block x:exp, u:oft x T.

e x,u: oft x nat, y, v: oft y (arr nat nat) is represented as
bi:block x:exp, u:oft x nat, b2:block y:exp,v:oft y (arr nat nat) .

e Well-formedness: bi:block x:exp,u:oft y nat is ill-formed.
X:exp, y:exp, u:oft x nat is ill-formed.
e Declarations are unique: b1 is different from b2

b1.1 is different from b2.1
e | ater declarations overshadow earlier ones

o Weakening, Substitution lemma

B. Pientka Beluga*:Programming proofs in context ... 12 / 33

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

B. Pientka Beluga*:Programming proofs in context ... 13 / 33

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

Context ‘ Element
b:block x:exp, u:oft x nat b.2 concrete parameter
retrieves the second component of b

B. Pientka Beluga*:Programming proofs in context ... 13 / 33

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

Context ‘ Element
b:block x:exp, u:oft x nat b.2 concrete parameter
retrieves the second component of b

g, b:block x:exp, u:oft x nat

B. Pientka Beluga*:Programming proofs in context ... 13 / 33

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

Context Element

b:block x:exp, u:oft x nat b.2 concrete parameter
retrieves the second component of b

g, b:block x:exp, u:oft x nat | #p.2.. parameter variable
retrieves the second component of
a declaration in g

13/ 33

B. Pientka

Beluga* :Programming proofs in context ...

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

Context Element

b:block x:exp, u:oft x nat b.2 concrete parameter
retrieves the second component of b

g, b:block x:exp, u:oft x nat | #p.2.. parameter variable
retrieves the second component of
a declaration in g

e Allow projections on variables and parameter variables only

13/ 33

B. Pientka

Beluga* :Programming proofs in context ...

Beluga:Design and implementation

Accessing objects in contexts

e How do we access objects from a context?

Context

Element

b:block x:exp, u:oft x nat

g, b:block x:exp, u:oft x nat

b.2 concrete parameter
retrieves the second component of b

#p.2 .. parameter variable
retrieves the second component of
a declaration in g

e Allow projections on variables and parameter variables only

“Making something variable is easy. Controlling duration of

constancy is the trick.”

Alan Perlis

13/ 33

B. Pientka

Beluga* :Programming proofs in context ...

Beluga:Design and implementation

Step 2b: Proofs as Programs

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =

B. Pientka Beluga*:Programming proofs in context ... 14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =

fn d = fn ¢ = case d of

B. Pientka Beluga*:Programming proofs in context ... 14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of

| [g.t_app (D1..) (D2.)] = % Application Case
let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in
[.e_ref]

B. Pientka Beluga*:Programming proofs in context ... 14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of

| [g.t_app (D1..) (D2.)] = % Application Case
let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in
[.e_ref]

| [g.t_lam (Ax.Au. D.. x w) = % Abstraction Case
let [g.t_lam (Ax.Au. C.. x u)] = c in
let [.e_ref] = unique [g,b:block x:exp, u:oft x _ . D.. b.1 b.2]
[g,b . C.. b.1 b.2] in
[.e_ref]

B. Pientka Beluga* :Programming proofs in context ...

14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of

| [g.t_app (D1..) (D2.)] = % Application Case
let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in
[.e_ref]

| [g.t_lam (Ax.Au. D.. x w) = % Abstraction Case
let [g.t_lam (Ax.Au. C.. x u)] = c in
let [.e_ref] = unique [g,b:block x:exp, u:oft x _ . D.. b.1 b.2]
[g,b . C.. b.1 b.2] in

[.e_ref]
| [g.#9.2.] = %d: oft (#q.1.) T % Assumption Case
let [g.#r.2.] =c in % c : oft (#r.1.) S
[.e_ref] ;

B. Pientka Beluga* :Programming proofs in context ...

14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of
| [g.t_app (D1..) (D2.)] = % Application Case

let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in

[.e_ref]
| [g.t_lam (Ax.Au. D.. x w) = % Abstraction Case
let [g.t_lam (Ax.Au. C.. x u)] = c in
let [.e_ref] = unique [g,b:block x:exp, u:oft x _ . D.. b.1 b.2]
[g,b . C..b.1 Db.2] in
[.e_ref]
| [g.#9.2.] = %d: oft (#q.1.) T % Assumption Case
let [g.#r.2.] =c in % c : oft (#r.1.) S
[.e_ref] ;
Recalll:

#q:block x:exp, u:oft x T
#r:block x:exp, u:oft x S

B. Pientka Beluga* :Programming proofs in context ...

14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of
| [g.t_app (D1..) (D2.)] = % Application Case

let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in

[.e_ref]
| [g.t_lam (Ax.Au. D.. x w) = % Abstraction Case
let [g.t_lam (Ax.Au. C.. x u)] = c in
let [.e_ref] = unique [g,b:block x:exp, u:oft x _ . D.. b.1 b.2]
[g,b . C..b.1 Db.2] in
[.e_ref]
| [g.#9.2.] = %d: oft (#q.1.) T % Assumption Case
let [g.#r.2.] =c in % c : oft (#r.1.) S
[.e_ref] ;
Recalll:

We also know: #r.1 = #q.1
#q:block x:exp, u:oft x T

#r:block x:exp, u:oft x S

B. Pientka Beluga* :Programming proofs in context ...

14 / 33

Beluga:Design and implementation

Step 2b: Proofs as Programs

rec unique:(g:ctx) [g.oft (M..)T] — [g.oft (M..)S] — [.eq T S] =
fn d = fn ¢ = case d of
| [g.t_app (D1..) (D2.)] = % Application Case

let [g.t_app (C1..) (C2.)] = c in
let [.e_ref] = unique [g.D1.] [g.C1.1] in

[.e_ref]
| [g.t_lam (Ax.Au. D.. x w) = % Abstraction Case
let [g.t_lam (Ax.Au. C.. x u)] = c in
let [.e_ref] = unique [g,b:block x:exp, u:oft x _ . D.. b.1 b.2]
[g,b . C..b.1 Db.2] in
[.e_ref]
| [g.#9.2.] = %d: oft (#q.1.) T % Assumption Case
let [g.#r.2.] =c in % c : oft (#r.1.) S
[.e_ref] ;
Recalll:
o block . : We also know: #r.1 = #q.1
:bloc x:exp, u:oft x
4 P Therefore: T = s

#r:block x:exp, u:oft x S

B. Pientka Beluga* :Programming proofs in context ...

14 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof ‘ Implementation in Beluga
Well-formed derivations Dependent types
Renaming,Substitution a-renaming, (B-reduction in LF

B. Pientka Beluga*:Programming proofs in context ... 15 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof ‘ Implementation in Beluga
Well-formed derivations Dependent types
Renaming,Substitution a-renaming, (B-reduction in LF
Well-scoped derivation Contextual types and objects

B. Pientka Beluga* :Programming proofs in context ...

15 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga
Well-formed derivations Dependent types
Renaming,Substitution a-renaming, (B-reduction in LF
Well-scoped derivation Contextual types and objects
Context Context schemas

B. Pientka Beluga*:Programming proofs in context ... 15 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof Implementation in Beluga
Well-formed derivations Dependent types
Renaming,Substitution a-renaming, (B-reduction in LF
Well-scoped derivation Contextual types and objects
Context Context schemas

Properties of contexts Typing for schemas
(weakening, uniqueness)

B. Pientka Beluga*:Programming proofs in context ... 15 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof

Implementation in Beluga

Well-formed derivations
Renaming,Substitution
Well-scoped derivation

Context

Properties of contexts
(weakening, uniqueness)

Dependent types
a-renaming, (B-reduction in LF

Contextual types and objects
Context schemas

Typing for schemas

e Compact representation of proofs as functions

Case analysis
Inversion
Induction Hypothesis

Case analysis and pattern matching

Pattern matching using let-expression
Recursive call

B. Pientka Beluga* :Programming proofs in context ...

15 / 33

Beluga:Design and implementation

Revisiting the design of Beluga

e Compact adequate representation of derivations and contexts

On paper proof

Implementation in Beluga

Well-formed derivations
Renaming,Substitution
Well-scoped derivation

Context

Properties of contexts
(weakening, uniqueness)

Dependent types
a-renaming, (B-reduction in LF

Contextual types and objects
Context schemas

Typing for schemas

e Compact representation of proofs as functions

Case analysis
Inversion
Induction Hypothesis

Case analysis and pattern matching

Pattern matching using let-expression
Recursive call

B. Pientka Beluga* :Programming proofs in context ...

15 / 33

Beluga:Design and implementation

Comparison

e Twelf [Pf,Sch'99]: Encode proofs as relations
— Requires lemma to prove injectivity of arr constructor.
— No explicit contexts (cannot express types T and s and eq T S are

closed)
— Parameter case folded into abstraction case

e Delphin [Sch,Pos’'08]: Encode proofs as functions

— Requires lemma to prove injectivity of constructor
— Cannot express that types T and s and eq T s are closed.
— Variable carrying continuation as extra argument to handle context

lookup
e Abella [Gacek'08], Tac[Baelde'10]: Proof assistants

— Equality built-into the logic
— Contexts are represented as lists
— Requires lemmas about these lists (for example that all assumptions

occur uniquely)

16 / 33

B. Pientka Beluga* :Programming proofs in context ...

Beluga:Design and implementation

This talk

Design and implementation of Beluga

e Introduction
e Example: Type uniqueness

e Writing a proof in Beluga ...
Wanting more: Programming code transformations

[}

e Sketching closure conversion

e Sketching normalization by evaluation
e Conclusion

B. Pientka Beluga*:Programming proofs in context ... 17 / 33

Beluga:Design and implementation
Three solitudes

Programming

General Proof
assistants

Haskell Coq

ATS Isabelle

Omega

Delphin

Twelf

Frameworks for reasoning with HOAS

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
Example: Closure conversion

e Translate A-terms such that bodies only refer to their arguments
Source language Target language

(lamyx+y)3 = (lamenv.env.2+env.1) (3, x)

B. Pientka Beluga* :Programming proofs in context ...
g g g P

Programming in context
Example: Closure conversion

e Translate A-terms such that bodies only refer to their arguments
Source language Target language

(lamyx+y)3 = (lamenv.env.2+env.1) (3, x)

o Challenge: Translation translates under binders

o Difficult for HOAS systems such as Twelf or Delphin

B. Pientka Beluga* :Programming proofs in context ...
g g g P

Programming in context
Example: Closure conversion

e Translate A-terms such that bodies only refer to their arguments
Source language Target language

(lamyx+y)3 = (lamenv.env.2+env.1) (3, x)

o Challenge: Translation translates under binders

o Difficult for HOAS systems such as Twelf or Delphin

e Programming in context in Beluga
e Distinguish between source language tm and target language ctm
e Translate [1).tm] where v is a source context
to [¢.ctm] where ¢ is a target context

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
Example: Closure conversion

e Translate A-terms such that bodies only refer to their arguments
Source language Target language

(lamyx+y)3 = (lamenv.env.2+env.1) (3, x)

o Challenge: Translation translates under binders

o Difficult for HOAS systems such as Twelf or Delphin

e Programming in context in Beluga

e Distinguish between source language tm and target language ctm
e Translate [1).tm] where v is a source context
to [¢.ctm] where ¢ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel [1/)] [(b] — [, tm] —[¢@.ctn]

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
Example: Closure conversion

e Translate A-terms such that bodies only refer to their arguments
Source language Target language

(lamyx+y)3 = (lamenv.env.2+env.1) (3, x)

o Challenge: Translation translates under binders

o Difficult for HOAS systems such as Twelf or Delphin

e Programming in context in Beluga

e Distinguish between source language tm and target language ctm
e Translate [1).tm] where v is a source context
to [¢.ctm] where ¢ is a target context

Computation-level Type in Beluga

rec conv :Ctx_rel [1/)] [(b] — [, tm] —[¢@.ctn]

B. Pientka Beluga* :Programming proofs in context ...

Indexed recursive datatype (POPL'12)

e Example: Relating source and target context

Computation-level data types in Beluga

datatype Ctx_rel : {g:ctx}{h:cctx} ctype =
| Rnil : Ctx_rel [1 []
| Rsnoc : Ctx_rel [g] [h]

— Ctx_rel [g, x:tm] [h,x:ctm] ;

B. Pientka Beluga* :Programming proofs in context ...

20 / 33

Indexed recursive datatype (POPL'12)

e Example: Type preserving context relation

Computation-level data types in Beluga

datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =

| Rnil : Ctx_trel [1 []

| Rsnoc : Ctx_trel [g] [h] — Tp_rel [. T] [. S]
— Ctx_trel [g, x:tm T] [h,x:ctm S] ;

B. Pientka Beluga* :Programming proofs in context ...

21 /33

Indexed recursive datatype (POPL'12)

e Example: Type preserving context relation

Computation-level data types in Beluga

datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =
| Rnil : Ctx_trel [1 [

| Rsnoc : Ctx_trel [g] [h] — Tp_rel [. T] [. S]

— Ctx_trel [g, x:tm T] [h,x:ctm S] ;

e Example: Wrapper for contextual objects.

datatype TmVar : {g:tctx} [.tp] — ctype
| TmVar : {#p:[g.tm T1} TmVar [g] [.TI]
datatype CtxObj : {h:cctx} ctype =
| Ctx : {h:cctx} CtxObj [h] ;

B. Pientka Beluga* :Programming proofs in context ...

21 /33

Indexed recursive datatype (POPL'12)

e Example: Type preserving context relation

Computation-level data types in Beluga

datatype Ctx_trel : {g:tctx}{h:tcctx} ctype =
| Rnil : Ctx_trel [1 [

| Rsnoc : Ctx_trel [g] [h] — Tp_rel [. T] [. S]

— Ctx_trel [g, x:tm T] [h,x:ctm S] ;

e Example: Wrapper for contextual objects.

datatype TmVar : {g:tctx} [.tp] — ctype =
| TmVar : {#p:[g.tm T1} TmVar [g] [.TI]
datatype CtxObj : {h:cctx} ctype =
| Ctx : {h:cctx} CtxObj [h] ;

e Choice how much to push to the computation level

B. Pientka Beluga* :Programming proofs in context ...

21 /33

Programming in context

Replacing variables with their projections

e Traverse term in target language by pattern matching on the context

B. Pientka Beluga* :Programming proofs in context ...
g g g P

Programming in context

Replacing variables with their projections

e Traverse term in target language by pattern matching on the context

e Use built-in substitutions to replace x with its corresponding
projection proj e N where e:envr.

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Replacing variables with their projections

e Traverse term in target language by pattern matching on the context

e Use built-in substitutions to replace x with its corresponding
projection proj e N where e:envr.

e Guarantee that all variables have been replaced.

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Replacing variables with their projections

e Traverse term in target language by pattern matching on the context

e Use built-in substitutions to replace x with its corresponding
projection proj e N where e:envr.

e Guarantee that all variables have been replaced.

Computation in Beluga

rec addProjs : (g:cctx) [.nat] — [g, e:envr . ctm] — [e:envr . ctm] =
fn n = fn m = case m of
| [etenvr . M e] = [e:envr . M €]
| [g, x:ctm , etenvr . M .. x e] =
let [.N] = n in addProjs [.s N] [g, etenvr . M .. (proj e N) el

>

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Replacing variables with their projections

e Traverse term in target language by pattern matching on the context

e Use built-in substitutions to replace x with its corresponding
projection proj e N where e:envr.

e Guarantee that all variables have been replaced.

Computation in Beluga

rec addProjs : (g:cctx) [.nat] — [g, e:envr . ctm] — [e:envr . ctm] =
fn n = fn m = case m of
| [etenvr . M e] = [e:envr . M €]
| [g, x:ctm , etenvr . M .. x e] =
let [.N] = n in addProjs [.s N] [g, etenvr . M .. (proj e N) el

>

e Terminates since context decreases

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Converting context to environment

LF representation in Beluga

datatype envr: type =
| nil : envr
| snoc: envr — ctm — envr

and ctm : type =

Computation in Beluga

| A

rec ctxToEnv : CtxObj [h] — [h . envr] =
fn ctx = case ctx of
| Cctx [1 = [. nill
| Ctx [h,x:ctm] =
let [h’ . Env ..] = ctxToEnv (Ctx [h]) in
[h’, x:ctm . snoc (Env ..) x]

e Convert context to list
e Pattern matching on context

B. Pientka Beluga* :Programming proofs in context ... 23 /33

Programming in context

Example: Closure conversion

¢ Naive Closure conversion [Cave, Pientka'12]

o Type-preserving closure conversion [O. Savary Belanger, M.
Boespflug, S. Monnier, B.Pientka]
e Compact elegant representation
e Only abstract over the free variables in an expression
e Enforces also scope preservation
e Almost proof-less

e Lessons learned:
e Programming in context requires a new look at existing algorithms
e Distinguishing between different context natural
e Indexed data types are key to finding elegant solutions

B. Pientka Beluga*:Programming proofs in context ... 24 / 33

Programming in context

This talk

Design and implementation of Beluga

e Introduction
e Example: Type uniqueness

e Writing a proof in Beluga ...
Wanting more: Programming code transformations

[}

e Sketching closure conversion

e Sketching normalization by evaluation
e Conclusion

B. Pientka Beluga*:Programming proofs in context ... 25 /33

Programming in context
Normalization by evaluation

e Reuse evaluation of computation language to normalize terms in the
object language [Berger, Schwichtenberg 91]

e Good benchmark
o Twelf, Delphin are too weak (to do it directly)
e Licata and Harper [ICFP'09] cannot express type preservation
o Coq/Agda lack support for substitutions and binders

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Normalization by evaluation

e Reuse evaluation of computation language to normalize terms in the
object language [Berger, Schwichtenberg 91]

e Good benchmark
o Twelf, Delphin are too weak (to do it directly)
e Licata and Harper [ICFP'09] cannot express type preservation
o Coq/Agda lack support for substitutions and binders

e General idea of NBE in Beluga

Source Target
. Lambda Terms Lambda Terms
LF objects Non—normal beta—eta normal
eval reflect / reify

Computation-level objects [Semantic representation]

B. Pientka Beluga*:Programming proofs in context ... 26 / 33

Programming in context

Normalization by evaluation

e Reuse evaluation of computation language to normalize terms in the
object language [Berger, Schwichtenberg 91]

e Good benchmark
o Twelf, Delphin are too weak (to do it directly)
e Licata and Harper [ICFP'09] cannot express type preservation
o Coq/Agda lack support for substitutions and binders

e General idea of NBE in Beluga

Source Target
. Lambda Terms Lambda Terms
LF objects Non—normal beta—eta normal
eval reflect / reify

Computation-level objects [Semantic representation]

e Evaluation is easy, normalization is hard

B. Pientka Beluga*:Programming proofs in context ... 26 / 33

Programming in context
NBE in context

Source of type T | Target of type T
=T '+, T — Normal terms
"+, T — Neutral terms

Semantic Values of type T
r=T

e Types: T,S:=T=5]i
o Definition of semantic values
FTEi =gor [hai
TES=T =4 VI'>T.(IMES)—(TET)

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
NBE in context

Source of type T | Target of type T
=T '+, T — Normal terms
"+, T — Neutral terms

Semantic Values of type T
r=T

e Types: T,S:=T=5]i
o Definition of semantic values
FTEi =gor [hai
TES=T =4 VI'>T.(IMES)—(TET)

Representation of syntax straightforward
e Source represented in LF using type tm T.

e Target represented in LF using type norm T and neut T.

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
NBE in context

Source of type T | Target of type T
=T '+, T — Normal terms
"+, T — Neutral terms

Semantic Values of type T
r=T

e Types: T,S:=T=5]i
o Definition of semantic values
FTEi =gor [hai
TES=T =4 VI'>T.(IMES)—(TET)

Representation of syntax straightforward
e Source represented in LF using type tm T.

e Target represented in LF using type norm T and neut T.

How to represent semantic values and context relations?

B. Pientka Beluga* :Programming proofs in context ...

Programming in context

Defining context extensions using indexed types

e Context g is a prefix of context n

Computation-level data types in Beluga

datatype Extends : {g:ctx} {h:ctx} ctype =
| Zero : Extends [g] [g]
| Succ : Extends [g]l [h] — Extends [g]l [h,x:neut Al

>

e Use indexed types - keyword: ctype
e Note: — is overloaded.
e tm — tm is the LF function space : binders in the object language are
modelled by LF functions
e Extends [g] [h] — Extends [g] [h,x:neut A] is @ computation-level
function

B. Pientka Beluga*:Programming proofs in context ... 28 / 33

Programming in context
Representing target semantic values using indexed types

e Represenation of semantics using computation-level functions

FEi =g TFpi
ES=T =¢gf VI'>T.(MES)=('ET)

Computation-level data types in Beluga

datatype Sem : {g:ctx} [. tp] — ctype =

| Syn : [g . neut (atomic P)] — Sem [g] [.atomic P]

| Slam : ({h:ctx} Extends [g] [h] — Sem [h] [.S] — Sem [h] [.T])
— Sem [g] [. arr S T]

3

e Not a positive definition - we are making no claims regarding strong
normalization.

B. Pientka

Beluga* :Programming proofs in context ...

29 /33

Programming in context

Sketch of normalization by evaluation

e Define mutual recursive functions reflect and reify

rec reflect : [g. neut TI — Sem [g]l [.T] % Recursion on T
and reify : Sem [g] [.T] — [g.norm T] 7% Recursion on T

B. Pientka Beluga*:Programming proofs in context ... 30 /33

Programming in context

Sketch of normalization by evaluation

e Define mutual recursive functions reflect and reify

rec reflect : [g. neut TI — Sem [g]l [.T] % Recursion on T
and reify : Sem [g] [.T] — [g.norm T] 7% Recursion on T

e Map between vars in the source language and their semantic values

datatype TmVar : {g:tctx} [.tp] — ctype =
| TmVar : {#p:[g.tm T1} TmVar [g] [.T];

typedef Map : {g:tctx}{h:ctx} ctype = {T:[.tpl} TmVar [g] [.T] — Sem [h] [.T];

e Generalized evaluation and normalization followed by reification

rec eval : Map [g] [h] — [g. tm S] — Sem [h] [.8] =
rec evaluate : [. tm S] — Sem [] [.8] = fn t = (eval 1n1t1a1Map t)
rec nbe : [.tm T] — [. norm T] = fn e = reify (evalualte e)

B. Pientka Beluga* :Programming proofs in context ... 30 /33

Programming in context

Sketch of normalization by evaluation

e Define mutual recursive functions reflect and reify

rec reflect : [g. neut TI — Sem [g]l [.T] % Recursion on T
and reify : Sem [g] [.T] — [g.norm T] 7% Recursion on T

e Map between vars in the source language and their semantic values

datatype TmVar : {g:tctx} [.tp] — ctype =
| TmVar : {#p:[g.tm T1} TmVar [g] [.T];

typedef Map : {g:tctx}{h:ctx} ctype = {T:[.tpl} TmVar [g] [.T] — Sem [h] [.T];

e Generalized evaluation and normalization followed by reification

rec eval : Map [g] [h] — [g. tm S] — Sem [h] [.8] =
rec evaluate : [. tm S] — Sem [] [.8] = fn t = (eval 1n1t1a1Map t)
rec nbe : [.tm T] — [. norm T] = fn e = reify (evalualte e)

e Almost a consistency proof! Currently no termination or positivity checking.
B. Pientka Beluga* :Programming proofs in context ... 30 /33

Programming in context
What have we achieved?

e Revised foundation for programming with contexts and contextual LF
(joint work with A. Cave [POPL'12])

o Uniform treatment of contextual types, context, ...

o Modular foundation for dependently-typed programming with
phase-distinction
= Generalization of DML and ATS

e Non-termination or effects are allowed

o Effectively write programs to manipulate rich abstract syntax trees
and express properties about them

o Release in Sept'12: Support for indexed data types; coverage; type
reconstruction; environment-based interpreter; support for holes
(partial programs)

Result:

Compact and elegant programming (with) inductive proofs in context

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
Current work

¢ Prototype in OCaml (ongoing)
e Extension to coinduction (D. Thibodeau, A. Abel)

Termination checking (C. Badescu)

Mixing computations in computation-level types (A. Cave)

Case study: Certified compiler (O. Savary Belanger)

Compiling contexts and contextual objects (F. Ferreira)

B. Pientka Beluga* :Programming proofs in context ...

Programming in context
The end

Thank youl!

Download prototype and examples at
http://complogic.cs.mcgill.ca/beluga/

Current Belugians: Brigitte Pientka, Mathieu Boespflug, Costin Badescu,
Olivier Savary Belanger, Andrew Cave, Francisco Ferreira, Stefan Monnier,
David Thibodeau

Interested? - Talk to me! We have funded postdoc and
funded PhD positions.

B. Pientka Beluga* :Programming proofs in context ...

	Introduction
	Beluga:Design and implementation
	Programming in context

