
Reasoning with Higher-Order Abstract Syntax
and Contexts: A Comparison

Amy Felty1 and Brigitte Pientka2

1 SITE, University of Ottawa, Ottawa, Canada
afelty@site.uottawa.ca

2 School of Computer Science, McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

Abstract. A variety of logical frameworks support the use of higher-
order abstract syntax (HOAS) in representing formal systems given via
axioms and inference rules and reasoning about them. In such frame-
works, object-level binding is encoded directly using meta-level binding.
Although these systems seem superficially the same, they differ in a va-
riety of ways; for example, in how they handle a context of assumptions
and in what theorems about a given formal system can be expressed and
proven. In this paper, we present several case studies which highlight a
variety of different aspects of reasoning using HOAS, with the intention
of providing a basis for comparison of different systems. We then carry
out such a comparison among three systems: Twelf, Beluga, and Hybrid.
We also develop a general set of criteria for comparing such systems.
We hope that others will implement these challenge problems, apply
these criteria, and further our understanding of the trade-offs involved
in choosing one system over another for this kind of reasoning.

1 Introduction

In recent years, the POPLmark challenge [ABF+05] has stimulated considerable
interest in mechanizing the meta-theory of programming languages and the is-
sued problems exercise many aspects of programming languages that are known
to be difficult to formalize. While several solutions have been submitted and
they show the diversity of possible approaches, it has been hard to compare
them. Partly the reason is that while the proposed examples are typical for their
domain, they do not highlight the differences between systems. We will bring a
different view: As experts in designing and building logical frameworks, we pro-
pose a few challenge problems which will demonstrate the differences between
different meta-languages, and thereby hopefully provide a better understanding
of what practitioners should be looking for when deciding on a system.

Our focus in this paper is on encoding meta-theory of programming lan-
guages using higher-order abstract syntax (HOAS), where we encode object-level
binders with meta-level binders. As a consequence, users can avoid implementing
common and tricky routines dealing with variables, such as capture-avoiding sub-
stitution, renaming and fresh name generation. Because of this one can think of

HOAS encodings as the most advanced technology for specifying programming
language meta-theory which leads to very concise and elegant encodings and
provides the most support for such an endeavor. However concentrating on how
to encode binders neglects one important aspect: the support for hypothetical
and parametric reasoning. Even in systems supporting HOAS, there is not a
clear answer to this. On the one side of the spectrum, we find the logical frame-
work Twelf [PS99] or the dependently-typed functional language Beluga [Pie08].
Both systems provide direct support for contexts to keep track of hypotheses.
In Twelf, contexts are implicit while in Beluga they are explicit. Supporting
contexts directly has two advantages. First, it eliminates the need for building
up a context and managing it explicitly via a first-order representation such as
a list. More importantly, it eliminates the need to explicitly prove structural
properties such as weakening or strengthening about contexts. Because there is
built-in support for contexts, proofs are highly compact. Second, using hypo-
thetical and parametric reasoning provides us with direct meta-level support for
applying substitution lemmas. Consequently, substitution lemmas need not be
proven separately, but rather come for free.

On the other side of the spectrum of systems supporting HOAS, we have, for
instance, the two-level Hybrid system [MMF08] as implemented in Coq [BC04]
and Isabelle/HOL [NPW02], and Abella [Gac08] where contexts are manually
represented as lists. While the substitution lemma is still obtained for free, be-
cause it is an application of the cut-rule, structural properties about contexts
such as weakening must typically be proven separately as lemmas. These lemmas
can be tedious. On the other hand, since these systems do not rely on specific
built-in procedures for dealing with contexts, there is more flexibility in how
they are handled and the necessary reasoning is more transparent to the user.
Consequently, proofs in these systems are often easier to understand and to trust.

This paper presents three case-studies which we will use to compare systems
according to two dimensions: 1) how hypothetical reasoning is supported and 2)
what kind of theorems can be stated and proven. Along the way, we develop a
general methodology of representing contexts and reasoning with assumptions.
We believe our work will provide guidance for users and developers in under-
standing better the differences and limitations between these systems and the
impact of these design decisions. We will concentrate in our discussion on the log-
ical framework Twelf, the functional dependently-typed language Beluga, and
the interactive theorem proving environment Hybrid. However, we hope that
these problems will subsequently also be implemented using related approaches.

2 Examples

In this section, we prove various properties about the lambda-calculus. We dis-
cuss in detail the first example which is concerned with equality reasoning and
then briefly sketch the other problems. Formal proofs will only be discussed for
the first. All these examples are purposefully simple, so they can be easily un-
derstood and one can quickly appreciate the capabilities and trade-offs different

2

systems offer. Yet we believe they are representative for issues and problems
arising when formalizing formal systems and proofs about them.

2.1 Equality reasoning for lambda-terms

We begin by defining the syntax of the (untyped) lambda-calculus.

Term M ::= y | lamx.M | app M1 M2

We will now define when terms are equal. First, we present a declarative
definition of equality which includes reflexivity and transitivity in addition to
the structural rules and the algorithmic version of equality concentrates only
on the structural rules. The goal is to prove these two versions of equality to
be equivalent. We model the declarative definition of equality by the judgment
Ψ ` equal M N and the algorithmic one by the judgment Φ ` eq M N .

Algorithmic Equality

eq x x ∈ Ψ
Ψ ` eq x x

Ψ, eq x x ` eq M N

Ψ ` eq (lamx.M) (lamx.N)
Ψ ` eq M1 N1 Ψ ` eq M2 N2

Ψ ` eq (app M1 M2) (app N1 N2)

Declarative Equality

equal x x ∈ Φ
Φ ` equal x x

Φ, equal x x ` equal M N

Φ ` equal (lamx.M) (lamx.N) Φ ` equal M M

Φ ` equal M1 N1 Φ ` equal M2 N2

Φ ` equal (app M1 M2) (app N1 N2)
Φ ` equal M L Φ ` equal L N

Φ ` equal M N

We will carefully define the context which tracks the equality of variables.

Context Φ ::= · | Φ, equal x x
Context Ψ ::= · | Ψ, eq x x

It may be slightly unusual to keep the fact that a variable is equal to itself as a
declaration in the context. There are two main reasons. 1) Explicitly introducing
the appropriate assumption about each variable is a general methodology which
scales to more expressive assumptions. For example, when we specify the typing
rules, we must introduce a typing context that keeps track of the fact that a
given variable has a certain type. 2) Choosing this formulation will also make
our proofs more elegant and compact.

Before proving that we do not lose any information when we use the algo-
rithmic equality instead of the declarative one, we prove that reflexivity and
transitivity are indeed admissible from the algorithmic definition of equality.

Theorem 1 (Admissibility of Reflexivity and Transitivity).

1. For all M , Ψ ` eq M M .
2. If Ψ ` eq M L and Ψ ` eq L N then Ψ ` eq M N .

3

The first theorem can be proven by induction on M . The second can be
proven by induction on the first derivation. We now state that when we have a
proof for equal M N then we also have a proof using algorithmic equality.

Attempt 1 (Completeness). If Φ ` equal M N then Ψ ` eq M N .

However, we note that this statement does not contain enough information
about how the two contexts Φ and Ψ are related. In the base case, where we have
that Φ ` equal x x, we must know that for every variable x in Φ there exists
a corresponding assumption such that eq x x in Ψ . There are two solutions to
this problem. 1) We state how two contexts are related and then assume that if
this relation holds the theorem holds. 2) We generalize the context used in the
theorem such that it contains both assumptions as follows

Generalized context Γ ::= · | Γ, eq x x, equal x x

where we deliberately state that the assumption eq x x always occurs together
with the assumption equal x x. Both approaches can be mechanized and we
discuss some of the trade-offs later. For now we will concentrate on the latter
approach and state the revised generalized theorem.

Theorem 2 (Completeness). If Γ ` equal M N then Γ ` eq M N .

Proof. Proof by induction on the first derivation. We show three cases which
highlight the use of weakening and strengthening.

Case 1: Assumption from context
We know Γ ` equal x x where equal x x ∈ Γ by assumption. Because of the
definition of Γ , we know that whenever we have an assumption equal x x, we
also must have an assumption eq x x.

Case 2: Reflexivity rule
If the last step applied in the proof was the reflexivity rule Γ ` equal M M ,
then we must show that Γ ` eq M M . By the reflexivity lemma, we know that
Ψ ` eq M M . By weakening the context Ψ , we obtain the proof for Γ ` eq M M .

Case 3: Equality rule for lambda-abstractions
Γ ` equal (lamx.M) (lamx.N) by assumption
Γ, equal x x ` equal M N by decl. equality rule for lambda-abstraction
Γ, eq x x, equal x x ` equal M N by weakening
Γ, eq x x, equal x x ` eq M N by i.h.
Γ, eq x x ` eq M N by strengthening
Γ ` eq (lamx.M) (lamx.N) by alg. equality rule for lambda-abstraction

This proof demonstrates many issues related to the treatment of bound vari-
ables and the treatment of contexts. First, we need to be able to apply a lemma
which was proven in a context Ψ in a different context Γ . Second, we need to
apply weakening and strengthening in the proof. Third, we need to be able to
know the structure of the context and we need to be able to take advantage of
it. We focus here on these structural properties of contexts, but of course many
proofs also need the substitution lemma.

4

2.2 Reasoning about variable occurrences

In this example, we reason about the shape of terms instead of equality of terms.
The idea is to compare terms up to variables. For example lamx. lam y. app x y
would have the same shape as lamx. lam y. app y x but these two terms are
obviously not equal. We use the judgment Φ ` shape M1 M2 to describe that
the term M1 and the term M2 have the same shape or structure. Thinking of
the lambda-terms being described by a syntax tree, comparing the shape of
two terms corresponds to comparing two syntax trees where we do not care
about specific variable names which are at the leaves of it. The definition for
shape M1 M2 can be found in the appendix.

First, we state that if two terms are equal they must have the same shape.

Theorem 3. If Ψ ` eq M1 M2 then Φ ` shape M1 M2.

The proof of this theorem is a simpler version of the completeness proof we
have given in the previous section. As in that proof, we need to either establish
a context invariant which states the relationship between these two contexts or
create a generalized context which contains both assumptions from Ψ and Φ.

We can now state some theorems which state that if M1 and M2 have
the same shape, then they must have the same number of variables using the
judgmentΦ ` var−occ M N where N describes the total number of variable
occurrences in the term M . So for example, the total number of variable occur-
rences in the term lamx. lam y. app (app y x) x is 3. If we think of the lambda-
term as a syntax tree, then N describes the number of leaves in the syntax tree
described by the term M . We give three different variations, intended to show
differences among systems.

Theorem 4.
1. If Φ ` shape M1 M2

then there exists an N such that Φ ` var−occ M1 N and Φ ` var−occ M2 N .
2. If Φ ` shape M1 M2

then for all N . Φ ` var−occ M1 N implies Φ ` var−occ M2 N .
3. If Φ ` shape M1 M2 and Φ ` var−occ M1 N then Φ ` var−occ M2 N .

2.3 Reasoning about subterms in lambda-terms

For the next example, we define when a given lambda-term M is a subterm of
another lambda-term N and hence we consider M to be structurally smaller
than (or equal to) N using the following judgment: Ψ ` le M N . Rules for
this judgment are given in the appendix. We concentrate here on stating a very
simple intuitive theorem that says that if for all terms N , if N is smaller than
K implies that N is also smaller than L, then clearly K is smaller than L.

Theorem 5. If for all N . Ψ ` le N K implies Ψ ` le N L then Ψ ` le K L.

This theorem is interesting because in order to state it, we nest quantification
and implications placing them outside the fragment of propositions expressible
in systems such as Twelf.

5

3 Mechanization in Twelf and Beluga

In this section, we discuss how the previous examples are implemented in Twelf
and Beluga. Both systems share an encoding of expressions and inference rules
for declarative and algorithmic equality in the logical framework LF [HHP93].
There are several excellent tutorials on how to represent inference rules in the
logical framework LF, and hence we keep this very short.

Formalization of lambda-terms Using HOAS, we represent binders in the object-
language (see for example lamx.M) using binders in the meta-language, i.e.,
the logical framework LF. Hence the constructor lam takes in a function of type
exp → exp. For example, the object-language term lamx. lam y. app x y will be
represented in LF as lam (λx. lam (λy. app x y)). Bound variables found in the
object language, are not explicitly represented in the meta-language.

Object-language Representation in LF

Term M ::= y exp : type

| lamx.M lam :(exp → exp) → exp.

| app M1 M2 app : exp → exp → exp.

Formalization of declarative and algorithmic equality We give the implementa-
tion of the declarative and algorithmic equality rules next using the two type
families eq and equal respectively. Each inference rule is then represented as a
type. Hypothetical derivations (as in the rule for lambda-abstraction) are repre-
sented as higher-order functions.
eq: exp → exp → type.
eq_lam : (Πx : exp. eq x x → eq (E x) (F x))

→ eq (lam (λx. E x)) (lam (λx. F x)).
eq_app : eq E1 F1 → eq E2 F2 → eq (app E1 E2) (app F1 F2).

equal: exp → exp → type.
e_l: (Πx:exp. equal x x → equal (T x) (T’ x))

→ equal (lam (λx. T x)) (lam (λx. T’ x)).
e_a: equal T2 S2 → equal T1 S1 → equal (app T1 T2) (app S1 S2).
e_r: equal T T.
e_t: equal T R → equal R S → equal T S.

Proofs as recursive functions Beluga is a functional language where (hypotheti-
cal) derivations are characterized by contextual objects and an inductive proof
about derivations is written as a recursive function using pattern matching on
them, where each case of the proof corresponds to one branch in the function.

First, we define the context schema for the context Ψ which was used in defin-
ing algorithmic equality to track assumptions of the form eq x x (see page 3).
Context schemas classify contexts just as types classify terms. It can be defined
as follows: schema eqCtx = block x:exp . eq x x; This states that our context con-
sists of blocks of assumptions, containing x:exp and eq x x. More formally, the
block-constructs introduces a Σ-type grouping the two declarations together.

The reflexivity theorem which stated that for all M there exists a proof for
eq M M can then be implemented as a recursive function called ref which will
have the following type: rec ref : {ψ:(eqCtx)*} {M::exp[ψ]} (eq (M ...)(M ...))[ψ]

6

This can be read as follows: for all contexts ψ which have schema (eqCtx)*,
for all terms M, we have a proof that (eq (M ...)(M ...))[ψ]. Quantification over the
context variable ψ is written using curly brackets in {ψ:(eqCtx)*}. The schema
is annotated with * to denote that declarations of the specified schema may be
repeated. For universally quantifying over M, we use curly brackets in {M::exp[ψ

]}. Central to Beluga is the idea of a contextual type. M for example has type
exp[ψ] which describes an object M which has type exp in the context ψ. M is
hence an expression which may refer to variables in the context ψ. When we
use M it is associated with a substitution which maps all the variables in ψ to
the correct target context. In the example, we use M within the contextual type
(eq (M ...)(M ...))[ψ]. Hence, M is declared in the context ψ and because it is also
used in the context ψ, it is associated with the identity substitution, which is
written as.... in our concrete syntax. Intuitively, it means M can depend on all the
variables which occur in the context described by ψ. The derivation Ψ ` eq M M
is directly captured by the contextual type (eq (M ...)(M ...))[ψ].

Before we represent the completeness theorem as a recursive function ceq,
we define the schema of the generalized context, following our previous informal
development as follows: schema eCtx = block x:exp,u:eq x x.equal x x ;

Finally, we state the type and implementation of the function ceq:
rec ceq: {γ:(eCtx)*} (equal (T ...) (S ...))[γ] → (eq (T ...) (S ...))[γ] =
Λ γ ⇒ fn e ⇒ case e of

| [γ] #p.3 ... ⇒ [γ] #p.2 ... % Assumption from context

| [γ] e_r (T ...)⇒ ref [γ] <γ. _ > % Reflexivity

| [γ] e_t (D2 ...) (D1 ...) ⇒ % Transitivity
let [γ] F2 ... = ceq [γ] ([γ] D2 ...) in
let [γ] F1 ... = ceq [γ] ([γ] D1 ...) in

trans [γ] ([γ] F1 ...) ([γ] F2 ...)

| [γ] e_l (λx.(λu. (D ... x u))) ⇒ % Abstraction
let {F:: (eq (R ... x) (Q ... x))[γ, x:exp, u: eq x x]}

[γ,b:block x:exp,u:eq x x . equal x x] F ... b.1 b.2 =
ceq [γ, b:block x:exp, u:eq x x . equal x x] ([γ, b] D ... b.1 b.3)

in
[γ] eq_lam (λx.λv. F ... x v)

| [γ] e_a (D2 ...) (D1 ...) ⇒ % Application
let [γ] F1 ... = ceq [γ] ([γ] D1 ...) in
let [γ] F2 ... = ceq [γ] ([γ] D2 ...) in

[γ] eq_app (F1 ...) (F2 ...) ;

We explain the three cases shown also in the proof on page 4. First, let us
consider the case where we used an assumption from the context. It is modelled
using parameter variables #p in Beluga. Operationally, #p can be instantiated
with any bound variable from the context γ. Since the context γ consists of
blocks with the following structure: block x:exp,u:eq x x . equal x x, we in fact
want to match on the third element of such a block. This is written as #p.3
The type of #p.3 is equal (#p.1 ...)(#p.1 ...). Since our context always contains a
block and the parameter variable #p ... describes such a block, we know that there
exists a proof for eq (#p.1 ...)(#p.1 ...) which can be described by #p.2

Second, we consider the case where we applied the reflexivity rule e_r as a
last step. In this case, we need to refer to the reflexivity lemma we proved about
algorithmic equality. To use the function ref which implements the reflexivity

7

lemma for algorithmic equality we however need a context of schema eqCtx but
the context used in the proof for ceq is of schema eCtx. Since the schema eCtx

in fact contains at least as much information as the schema eqCtx, we should
be allowed to pass a context of schema eCtx when a context of schema eqCtx is
required. This is achieved by incorporating context subsumption in Beluga.

Third, we consider the case for e_lam. In this case, we must extend the context
with the new declarations about variables and pass it to the recursive call to ceq.
Weakening is built-in. Although the derivation described by D only depends on
the context ψ, x:exp, u:equal x x, we can use it in the context which also has
the assumption eq x x. Applying the induction hypothesis corresponds to the
recursive call. We pass to the recursive call ceq the extended context described
by γ, b:block x:exp, u:eq x x . equal x x and the derivation ([γ,b] D ...b.1 b.3).
The result of the recursive call is a derivation F, where F only depends on x:exp

and u:eq x x. In the on-paper proof we employed strengthening. Since we impose
this restriction (and Beluga’s reconstruction engine is currently not smart enough
to infer the strengthened type for F), we need to specify it. Finally, we use F to
assemble the final result eq_lam (λx.λv. F ...x v).

The cases where we applied the application rule e_a and the transitivity rule
e_t as a last step are straightforward. In both cases, we simply appeal to the
induction hypothesis on the subderivations D1 ... and D2 This is implemented
as a recursive call to ceq using the derivation [γ] D1 ... and the recursive call to
ceq using the derivation [γ] D2 Finally we assemble the result. In the case for
applications we use the rule eq_app and in the case for transitivity we use the
lemma trans.

Proofs as relations In Twelf, the proof is implemented as a relation between two
derivations, and we separately check that it constitutes a total function. The
mode declaration says how we must read the relation operationally. The theorem
is represented as a type family, and each case of the proof is represented as one
type (or clause). The proof is similar to the implementation in Beluga, with a
few exceptions. In Twelf, the context in which we prove the theorem is implicit,
and there is no generic variable case, but the variable case is folded into the
case for lambda-abstraction. We begin by stating the reflexivity theorem as a
relation in Twelf together with the corresponding world declaration. Similar to
context schemas, world declarations allow us to describe the context in which
the theorem is proven. However, unlike schemas, worlds also keep information
about base cases. Since variable cases are handled implicitly, not explicitly, the
context must not only list assumptions x:exp and u:equal x x but in addition a
proof that reflexivity holds for x, i.e., ref x u.

ref: ΠT:tp.equal T T → type. %mode ref +T -D.

%block r_block : block {x:term}{u:equal x x}{r_x: ref x u}.
%worlds (r_block) (ref T D).

We now inspect the implementation of the proof of the completeness proof
from page 4. It will be very similar to our proof in Beluga, except for the treat-
ment of base cases and contexts.

8

ceq: eq T S → equal T S → type. %mode ceq +E -D.
c_r: ref _ E

→ ceq eq_r E.

c_t: ceq D1 E1 → ceq D2 E2 → tr E1 E2 E
→ ceq (eq_t D2 D1) E.

c_l: (Πx:tm.Πu:equal x x.Πt_x:tr u u u.Πr_x: ref x u.Πv:eq x x.
ceq v u → ceq (E x v) (D x u))

→ ceq (eq_l E) (eq_l D).

c_a: ceq F1 D1 → ceq F2 D2
→ ceq (eq_a F2 F1) (equ_a D2 D1).

%block cl:block {x:term}{u:equal x x}{t_x:tr u u u}{r_x:ref x u}{v:eq x x}
{c_x: ceq v u}.

%worlds (cl) (ceq E D).

%total E (ceq E D).

We can read for example the case c_a for applications as follows: Given the
relation ceq F1 D1 (i.h. on the derivation F1 and D1) and the relation ceq F2 D2 (i.h.
on the derivation F2 and D2), we know ceq (e_a F2 F1) (equ_a D2 D1). This case is
closely related to the case in our functional program. The differences arise in
the case for lambda-abstractions. Since Twelf supports contexts only implicitly,
we must introduce a variable x not only together with the assumption equal x x

and eq x x, as we do in Beluga, but we also must assume that the reflexivity and
transitivity lemma hold for this variable and that indeed there is a proof that
guarantees that whenever we have equal x x we must have a proof for eq x x.

Because there is no explicit context and no explicit variable case when reason-
ing about formal systems, the base cases are scattered and pollute our context.
Consequently, it now is harder to compose lemmas and reason about the rela-
tionship between different contexts. For example, the world described by blocks
r_block is not a prefix of the world described by blocks c_block. In Twelf, this
will lead to world subsumption failure and the user needs to weaken manually
the proof for reflexivity to include assumptions t_x:trans u u u.3 Apart from the
issues around contexts, the Twelf implementation of the completeness proof is
by far the most compact representation of the completeness proof. Weakening
and strengthening is handled automatically.

4 Mechanization in Two-level Hybrid

The Hybrid approach [MMF08] exploits the advantages of HOAS within general
theorem proving systems. We use a pretty-printed version of Coq concrete syntax
in this paper. Prop is the type of meta-level formulas and the usual symbols (e.g.,
→, ∀) represent the meta-level connectives and quantifiers. [[A1;A2; . . . ;An]]→
A abbreviates A1 → (A2 → · · · (An → A) · · ·), or equivalently (A1 ∧ A2 ∧
· · · ∧ An) → A. The symbol == denotes definitional equality. Free variables
in inductive definitions and statements of theorems are implicitly universally
quantified at the top-level of each clause or statement.

3 Alternatively, we can also weaken the transitivity lemma and change the order of
blocks.

9

Hybrid provides a type expr and a set of operators on this type used to
encode object-language syntax. It is built definitionally on the foundation of the
meta-language of the underlying theorem prover; no axioms are introduced. The
operators that are used in this paper, with their types are:

CON : con → expr | APP : expr → expr → expr | LAM : (expr → expr)→ expr .

The type con will be defined later to represent the constants of an object-
language.

In the two-level approach used by Hybrid, a specification logic (SL) is defined
inductively and used to encode inference rules of object-languages. Hypothetical
and parametric judgments are encoded in the SL layer. In this paper, we use a
simple SL, a sequent formulation of a fragment of second-order minimal logic
with backchaining, adapted from [MM02] (and also used in [MMF08]). Its syntax
can be encoded directly as follows

inductive oo := tt : oo | 〈 〉 : atm → oo | and : oo → oo → oo
| imp : atm → oo → oo | all : (expr → oo)→ oo

where atm is a parameter used to represent atomic predicates of the object-
language and 〈 〉 coerces atoms into propositions of type oo. We use the symbol
� for the sequent arrow of the SL, in this case decorated with natural numbers to
allow reasoning by (complete) induction on the height of a proof. The inference
rules of the SL are represented as the following inductive definition.

inductive � : atm list → nat → oo → Prop :=
s tt : → Γ �n tt
s and : [[Γ �n G1; Γ �n G2]] → Γ �n+1 (G1 and G2)
s all : [[(∀x. proper x→ Γ �n G x)]] → Γ �n+1 (allx.G x)
s imp : [[A,Γ �n G]] → Γ �n+1 (A imp G)
s init : [[A ∈ Γ]] → Γ �n 〈A〉
s bc : [[A←− G; Γ �n G]] → Γ �n+1 〈A〉

For convenience we write Γ �G if there exists an n such that Γ �n G, and
furthermore we simply write � G when ∅ � G. The first four clauses of the
definition directly encode the introduction rules of a sequent calculus for this
logic. Terms of type expr are built on an underlying de Bruijn syntax. The use
of the proper annotation rules out terms that have occurrences of bound variables
that do not have a corresponding binder (dangling indices).4 In the last two rules,
atoms are provable either by assumption or via backchaining over a set of Prolog-
like rules, which encode the properties of the object-language. They are encoded
as an inductive definition of the predicate prog of type atm → oo → Prop
below. The notation A←− G represents an instance of one of the clauses of this
inductive definition. The sequent calculus is parametric in those clauses.

A small set of structural rules of the SL is proved, and used to reason about
object-languages. We prefix theorems formalized in Hybrid with “H-.”
4 Hybrid 0.2 described in [MMF08] includes an improvement that doesn’t require the

proper predicate, but the proofs in this paper are not yet ported to the new version.

10

H-Theorem 6 (Structural Properties).
(a) Height weakening: [[Γ �n G; n < m]]→ Γ �m G
(b) Context weakening: [[Γ �n G; Γ ⊆ Γ ′]]→ Γ ′ �n G
(c) Atomic cut: [[A,Γ �G; Γ � 〈A〉]]→ Γ �G

Formalization of declarative and algorithmic equality To represent the object-
language, we fill in the definition of con, define new operators app and lam using
the operators defined earlier for expr , and fill in the definition of atm, which
includes the is tm relation for well-formedness of terms as well as eq and equal.

inductive con := cAPP : con | cLAM : con
app M1 M2 == (APP (APP (CON cAPP) M1) M2)
lamx.M x == (APP (CON cLAM) (LAM (λx.M x))

inductive atm := is tm : expr → atm | eq, equal : expr → expr → atm

The encoding of the object-language inference rules as the inductive definition
of (←−) is implemented as:

inductive ←− : atm → oo → Prop :=
tm lam : [[abstr T]] → is tm (lamx. Tx)←− allx. (is tm x) imp 〈is tm (Tx)〉
tm app : → is tm (app T1 T2)←− 〈is tm T1〉 and 〈is tm T2〉
eq lam : [[abstrE; abstrF]] → eq (lamx.Ex) (lamx. Fx)←−

allx. (eq x x) imp 〈eq (Ex) (Fx)〉
eq app : → eq (app E1 E2) (app F1 F2)←−

〈eq E1 F1〉 and 〈eq E2 F2〉
e l : [[abstr T ; abstr T ′]] → equal (lamx. Tx) (lamx. T ′x)←−

allx. (is tm x) imp (equal x x) imp 〈equal (Tx) (T ′x)〉
e a : → equal (app T1 T2) (app S1 S2)←−

〈equal T1 S1〉 and 〈equal T2 S2〉
e r : → equal T T ←− 〈is tm T 〉
e t : → equal T S ←− 〈equal T R〉 and 〈equal R S〉

The well-formedness clauses tm lam and tm app are required since Hybrid
terms are untyped (all object-level terms have type expr). Each of the remaining
clauses of the inductive definition is given the same name as the corresponding
rule in the Twelf and Beluga encoding. Note that they are quite similar; the
differences in the encodings include 1) the abstr conditions used to rule out meta-
level functions that do not encode object-level syntax, and (2) the appearance
of is tm in the e l and e r clauses, which are required to prove adequacy of the
encoding. In particular, we prove:

� 〈eq T S〉 → � 〈is tm T 〉 ∧� 〈is tm S〉
� 〈equal T S〉 → � 〈is tm T 〉 ∧� 〈is tm S〉.

(See [FM08] for a fuller discussion of adequacy of Hybrid encodings.)

Formalization of completeness for algorithmic equality In place of classifying
contexts using context schemas or worlds declarations, we adopt the notion of a
context invariant. This notion is informal; since we have an expressive logic at

11

our disposal, we can define any predicate on contexts. We discuss two approaches
here. In the first, we have three context invariants, one each for the proofs of
reflexivity, transitivity, and completeness.

ref inv Φ Ψ == (∀x. is tm x ∈ Φ→ eq x x ∈ Ψ)
tr inv Ψ == (∀x y. eq x y ∈ Ψ → x = y)

ceq inv Φ Ψ == ref inv Φ Ψ ∧ tr inv Ψ ∧ (∀x y. equal x y ∈ Φ→ eq x y ∈ Ψ)

Context invariants are used for two purposes here: 1) to represent how two
contexts in different judgments are related (e.g., ref inv), and 2) to represent
information contained in the Σ-type groupings found in the block declarations
in Beluga and Twelf (e.g., tr inv). The following property is needed in the com-
pleteness proof.

H-Lemma 7 (Context Extension).
ceq inv Φ Ψ → ceq inv (equal x x, is tm x, Φ) (eq x x, Ψ)

We now state the reflexivity and completeness theorems, and discuss the
proof of the completeness theorem.

H-Theorem 8 (Reflexivity). [[ref inv Φ Ψ ; Φ�n 〈is tm T 〉]]→ Ψ�n 〈eq T T 〉

In addition to being necessary for adequacy, well-formedness definitions provide
a convenient form of induction, which is used to prove the above theorem.

H-Theorem 9 (Completeness).
[[ceq inv Φ Ψ ; Φ�n 〈equal T S〉]]→ Ψ �n 〈eq T S〉

The proof is by induction on n with induction hypothesis:

IH == [[i < n; ceq inv Φ Ψ ; Φ�i 〈equal T S〉]]→ Ψ �i 〈eq T S〉.

A derivation of Φ �n 〈equal T S〉 must end in an application of the last two
clauses of the definition of the SL (s init or s bc, page 10). In the s init case
(the assumption from context case), we know that (equal T S) ∈ Φ. By the
definition of ceq inv, we know that (eq T S) ∈ Ψ . Backchaining on s init , we
obtain the desired result.

When the derivation ends in s bc, it must be the case that one of the four
clauses defining declarative equality (page 11) was used. We consider reflex-
ivity (e r) and abstraction (e l). In the former, we know that T = S and
Φ �n−1 〈is tm T 〉. By H-Theorem 8, we can conclude Ψ �n−1 〈eq T T 〉 and by
H-Theorem 6(a), that Ψ �n 〈eq T T 〉.

In the abstraction case (e l), we know that T and S have the form (lamx. T ′x)
and (lamx. S′x), respectively, and we must show:

[[IH; ceq inv Φ Ψ ; Φ�n 〈equal (lamx. T ′x) (lamx. S′x)〉]]
→ Ψ �n 〈eq (lamx. T ′x) (lamx. S′x)〉

12

By repeated inversion of the SL rules on the last premise, and repeated backward
application of these rules to the conclusion (backchaining), we obtain:

[[IH; ceq inv Φ Ψ ; proper x; (equal x x, is tm x, Φ)) �n−4 〈equal (T ′x) (S′x)〉]]
→ (eq x x, Ψ) �n−3 〈eq (T ′x) (S′x)〉

We can conclude ceq inv (equal x x, is tm x, Φ) (eq x x, Ψ) by H-Lemma 7 ap-
plied to the second premise, and then apply the induction hypothesis to obtain:

[[IH; . . . ; (eq x x, Ψ) �n−4 〈eq (T ′x) (S′x)〉]]
→ (eq x x, Ψ) �n−3 〈eq (T ′x) (S′x)〉

which is provable directly by an application of H-Theorem 6(a).
In the second approach, we try to keep as close as possible to the Beluga and

Twelf proofs, using a generalized context to prove completeness of algorithmic
equality. The context invariant now only needs to contain certain information
found in the block declarations in Beluga and Twelf.

ceq inv′ Γ == (∀xy. eq x y ∈ Γ → x = y) ∧ (∀xy. equal x y ∈ Γ → x = y).

In this approach, we must also explicitly define weakening and strengthening
functions on contexts. Formally, given context Γ , let w(Γ) be the context that
contains Γ and whenever (is tm x) or (equal x x) is in Γ , then (eq x x) is also
in w(Γ). Also, given context Γ , let s(Γ) be the subcontext of Γ that removes
everything except elements of the form (eq x x). Note that the definitions of
w and s depend on the object-language, but that the weakening theorem H-
Theorem 6(b), which is independent of the object-language, is used for proving
the properties we need of these operators. The main weakening, strengthening,
and context extension properties that we need for the proof of completeness are:

H-Lemma 10 (Weakening and Strengthening).
(a) ceq inv′ Γ → ceq inv′ w(Γ)
(b) (equal T T) ∈ w(Γ)→ (eq T T) ∈ w(Γ)
(c) Γ �n 〈eq M N〉 → s(Γ) �n 〈eq M N〉
(d) ceq inv′ Γ → ceq inv′ (equal x x, is tm x, Γ)

The new version of the completeness theorem is stated as:

H-Theorem 11 (Completeness).
[[ceq inv′ Γ ; w(Γ) �n 〈equal T S〉]]→ w(Γ) �n 〈eq T S〉

The reasoning is similar to that of H-Theorem 9, though slightly complicated by
the required applications of H-Lemma 10.

5 Criteria for Comparison

In this section we compare the approach taken in the three systems considered
in this paper. More generally, we describe a list of criteria which can be used to
quantitatively compare systems and highlight their differences.

13

Representing and reasoning about contexts The three systems considered here
each handle contexts and the structural properties about them differently. Beluga
supports explicit contexts when implementing proofs about LF objects. Context
variables allow us to abstract over concrete contexts. The structure of contexts is
defined by context schemas and we are able to pattern match directly on contex-
tual objects, including objects which may refer to assumptions in a context using
parameter variables. The use of Σ-types to tie different declarations together and
the use of unification to retrieve instances from the context provides flexibility
and expressiveness. Context subsumption provides a simple means to support
built-in weakening. This leads to compact and elegant proof representations.

While Beluga shares the general ideas regarding representing and reasoning
about contexts with the Twelf system, it makes the meta-theoretic reasoning
about contexts which is hidden in Twelf explicit. In Twelf, the actual context of
hypotheses remains implicit. As a consequence, instead of a generic base case,
base cases in proofs are handled whenever an assumption is introduced. This
may lead to scattering of base cases and redundancy. World declarations check
that assumptions introduced are of the expected form and that appropriate
base cases are indeed introduced. Because worlds in the Twelf system also carry
information about base cases, manual weakening is required more often in larger
proofs (such as the equality example given earlier).

In Hybrid, contexts are explicit in the SL, but do not appear in the speci-
fication of the inference rules of the object-language in the inductive definition
of (←−). H-Theorem 6 represents explicit reasoning about contexts, but it is
carried out once and for all at the SL level, and reused for every object-language.
As we have seen in the examples, weakening and strengthening lemmas such as
H-Lemma 10 are specific to the object-language. Even so, much of this reasoning
is stereotyped and could be automated (although we have not yet done so). Fur-
thermore, we have seen that reasoning about weakening and strengthening can
be avoided by expressing relationships between contexts in different judgments.
The kinds of context invariants used here are typical, and defining them and
proving context extension lemmas cannot be avoided. The meta-logic, however,
provides considerable flexibility in expressing them.

Substitution lemma application In all known systems supporting HOAS encod-
ings substitution lemmas come for “free”. While the examples in this paper do
not make use of the substitution lemma, there are several well-known examples
such as type preservation for MiniML. In the Twelf system and in Beluga, ap-
plying the substitution lemma is reduced to the substitution operation in the
underlying logical framework. In Hybrid, the substitution lemma corresponds to
application of the SL cut-rule, expressed as H-Theorem 6(c).

Coverage A key question in proofs is how systems ensure that all cases are
covered. Twelf is a mature system and provides a coverage checker which in turn
relies on the world declarations to ensure the base cases are covered. In Beluga,
intuitively, pattern matching on a contextual object of type A[Ψ] is exhaustive
if we cover all constructors of type A plus the cases described by parameter

14

variables, which cover the possibility that we have used an assumption from the
context Ψ . The foundation for coverage in Beluga is described in [DP09] and an
implementation is planned for the future.

In general, writing cases using pattern matching may result in a more com-
pact proof since it provides a flexible way to write fall-through patterns or to
simultaneously match on several objects instead of one after the other.

In Hybrid, coverage corresponds directly to an application of induction on
the definition of the SL with a sub-induction on the object-language. Meta-level
support for inductive reasoning provides the necessary coverage.

Appeal to the induction hypothesis Induction in the Twelf system relies on a
termination checker that verifies that a given relation is terminating according
to a structural ordering specified by the user. Beluga adopts the same philosophy,
although the actual implementation does not yet provide a termination checker.
We believe the ideas from termination checking and reasoning about structural
properties of LF objects [Pie05] can be easily adapted. In Hybrid, the induction
hypothesis is a premise that is applied explicitly when needed.

Support for natural numbers In the example that counts variable occurrences,
reasoning about natural numbers may be necessary and useful. Twelf and Bel-
uga’s reasoning infrastructure does not support them and hence properties like
addition and the totality of addition must be proven separately. This leads to
some overhead in the actual proofs. Hybrid, on the other hand, relies heavily on
the theorem prover’s built in data-type for natural numbers along with a large
collection of lemmas and automated proof procedures (such as omega in Coq).

Expressive power All discussed systems provide a two-level approach. However,
the level which allows reasoning about formal systems is more expressive in
Beluga and in Hybrid. Twelf’s meta-logic which is used to verify that a given
relation constitutes a proof is not rich enough to handle nested quantification
and implications. While this has been known, we hope our simple theorem from
Section 2.3 about subterms illustrates this point vividly.

6 Conclusion

We presented several benchmark problems together with general set of criteria
for comparing reasoning systems which support the mechanization of formal
systems. In addition, we discussed in detail the proofs of one of these problems in
three systems (Beluga, Twelf, and Hybrid), and applied these criteria to compare
them. This work is a starting point that will help users and developers evaluate
systems mechanizing the reasoning about formal systems. It will also facilitate a
better understanding of the differences between and limitations of these systems,
as well as the impact of these design decisions in practice. This will provide
guidance for users and stimulate discussion among developers.

Mechanization of many of the benchmarks in the Twelf system, Beluga and
Hybrid can be found at http://complogic.cs.mcgill.ca/beluga/benchmarks.

15

We hope that these problems will subsequently also be implemented in sys-
tems using related approaches such as Delphin [PS08] or Abella, as well as ap-
proaches not relying on HOAS encodings such as nominal encodings.

References

[ABF+05] B. Aydemir et. al. Mechanized metatheory for the masses: The POPLmark
challenge. In J. Hurd and T. F. Melham, editors, 18th International Confer-
ence on Theorem Proving in Higher Order Logics (TPHOLs), Oxford, UK,
vol. 3603 of Lecture Notes in Computer Science, pages 50–65. Springer, 2005.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[DP09] J. Dunfield and B. Pientka. Case analysis of higher-order data. In Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP’08), vol. 228 of Electronic Notes in Theoretical Computer
Science (ENTCS), pages 69–84. Elsevier, 2009.

[FM08] A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to
reasoning with higher-order abstract syntax. CoRR, abs/0811.4367, 2008.

[Gac08] A. Gacek. The Abella interactive theorem prover (system description). In
4th International Joint Conference on Automated Reasoning, vol. 5195 of
Lecture Notes in Artificial Intelligence, pages 154–161. Springer, 2008.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

[MM02] R. C. McDowell and D. A. Miller. Reasoning with higher-order abstract
syntax in a logical framework. ACM Transactions on Computational Logic,
3(1):80–136, 2002.

[MMF08] A. Momigliano, A. J. Martin, and A. P. Felty. Two-level Hybrid: A system for
reasoning using higher-order abstract syntax. Electr. Notes Theor. Comput.
Sci., 196:85–93, 2008.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, vol. 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[Pie05] B. Pientka. Verifying termination and reduction properties about higher-
order logic programs. Journal of Automated Reasoning, 34(2):179–207, 2005.

[Pie08] B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’08), pages 371–382. ACM Press, 2008.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, 16th International
Conference on Automated Deduction (CADE-16), vol. 1632 of Lecture Notes
in Artificial Intelligence, pages 202–206. Springer, 1999.

[PS08] A. B. Poswolsky and C. Schürmann. Practical programming with higher-
order encodings and dependent types. In Proceedings of the 17th European
Symposium on Programming (ESOP ’08), vol. 4960, page 93. Springer, 2008.

16

A Appendix

We include in the appendix the definitions for the problems described. We in-
tend to make these definitions available electronically together with the imple-
mentations in various systems. Some implementations are already available at
http://complogic.cs.mcgill.ca/beluga/benchmarks.

A.1 Definition of shape of lambda-terms

To define whether two lambda-terms have the same shape, we use two different
judgments :

Ψ ` shape M N Terms M and N have the same shape
Ψ ` varT x x is a term variable

The context Ψ will have the following structure:

Context Ψ ::= · | Ψ, varT x

Next, we define when two lambda-terms have the same shape as follows:

varT x ∈ Ψ varT y ∈ Ψ
Ψ ` shape x y

Ψ ` shape M1 N1 Ψ ` shape M2 N2

Ψ ` shape (app M1 M2) (app N1 N2)

Ψ, varT x ` shape M E

Ψ ` shape (lamx.M) (lamx.E)

Finally, we define a judgment which counts how often variables occur in a
lambda-term as follows:

Ψ ` varT−occ M K There are K variables in the term M

varT x ∈ Ψ
Ψ ` varT−occ x 1

Ψ, varT x ` varT−occ T N

Ψ ` varT−occ (lamx. T) N

Ψ ` varT−occ T1 N1 Ψ ` varT−occ T2 N2 N = N1 +N2

Ψ ` varT−occ (app T1 T2) N

A.2 Structurally smaller relation for lambda-terms

To define when a lambda-term is a subterm of another term, we use the following
judgments:

Ψ ` lt M N Term M is strictly smaller than N
Ψ ` le M N Term M is smaller than or equal to N

Next, we define these judgments.

17

Term M is strictly smaller than N

Ψ, eq x x ` le N M

Ψ ` lt N (lamx.M)
Ψ ` le N M1

Ψ ` lt N (app M1 M2)
Ψ ` le N M2

Ψ ` lt N (app M1 M2)

Term M is smaller than or equal to N

Ψ ` eq M N

Ψ ` le M N
Ψ ` lt M N
Ψ ` le M N

18

