Well-founded Recursion over Contextual Objects

Brigitte Pientka! and Andreas Abel?

1 School of Computer Science
McGill University, Montreal, Canada
bpientka@cs.mcgill.ca
2 Department of Computer Science and Engineering, Gothenburg University
Rannvigen 6, 41296 Goteborg, Sweden
andreas.abel@gu.se

—— Abstract

We present a core programming language that supports writing well-founded structurally recurs-
ive functions using simultaneous pattern matching on contextual LF objects and contexts. The
main technical tool is a coverage checking algorithm that also generates valid recursive calls.
To establish consistency, we define a call-by-value small-step semantics and prove that every
well-typed program terminates using a reducibility semantics. Based on the presented methodo-
logy we have implemented a totality checker as part of the programming and proof environment
Beluga where it can be used to establish that a total Beluga program corresponds to a proof.

1998 ACM Subject Classification D.3.1[Programming Languages|: Formal Definitions and Lan-
guages. F.3.1[Logics and Meaning of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Type systems, Dependent Types, Logical Frameworks

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Mechanizing formal systems and their proofs play an important role in establishing trust
in formal developments. A key question in this endeavor is how to represent variables and
assumptions to which the logical framework LF [13], a dependently typed lambda-calculus,
provides an elegant and simple answer: both can be represented uniformly using LF’s function
space, modelling binders in the object language using binders in LF. This kind of encoding is
typically referred to as higher-order abstract syntax (HOAS) and provides a general uniform
treatment of syntax, rules and proofs.

While the elegance of higher-order abstract syntax encodings is widely acknowledged, it
has been challenging to reason inductively about LF specifications and formulate well-founded
recursion principles. HOAS specifications are not inductive in the standard sense. As we
recursively traverse higher-order abstract syntax trees, we extend our context of assumptions,
and our LF object does not remain closed. To tackle this problem, Pientka and collaborators
[21, 5] propose to pair LF objects together with the context in which they are meaningful.
This notion is then internalized as a contextual type [¥.A] which is inhabited by terms M of
type A in the context W [18]. Contextual objects are then embedded into a computation
language which supports general recursion and pattern matching on contexts and contextual
objects. Beluga, a programming environment based on these ideas [24], facilitates the use
of HOAS for non-trivial applications such as normalization-by-evaluation [5] and a type-
preserving compiler including closure conversion and hoisting [4]. However, Beluga’s language
does not enforce or guarantee that a given program is total.

© Brigitte Pientka;
37 licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1-25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Well-founded Recursion over Contextual Objects

In this paper, we develop a core functional language for reasoning inductively about
context and contextual objects. One can think of this core language as the target of a Beluga
program: elaboration may use type reconstruction to infer implicit indices [8] and generate
valid well-founded recursive calls that can be made in the body of the function. Type checking
will guarantee that we are manipulating well-typed objects and, in addition, that a given set
of cases is covering and the given recursive calls are well-founded. To establish consistency,
we define a call-by-value small-step semantics for our core language and prove that every
well-typed program terminates, using Tait’s method of logical relations. Thus, we justify the
interpretation of well-founded recursive programs in our core language as inductive proofs.
Based on our theoretical work, we have implemented a totality checker for Beluga.

Our approach is however more general: our core language can be viewed as a language for
first-order logic proofs by structural induction over a given domain. The domain must only
provide answers to three domain-specific questions: (1) how to unify objects in the domain,
(2) how to split on a domain object and (3) how to justify that a domain object is smaller
according to some measure. The answer to the first and second question allows us to justify
that the given program is covering, while the third allows us to guarantee termination. For
the domain of contextual LF presented in this paper, we rely on higher-order unification [2]
for (1), and our splitting algorithm (2) and subterm ordering (3) builds on previous work
[7, 20]. As a consequence, our work highlights that reasoning about HOAS representations
via contextual types can be easily accommodated in a first-order theory. In fact, it is a
rather straightforward extension of how we reason inductively about simple domains such as
natural numbers or lists.

The remainder of the paper is organized as follows. We first present the general idea
of writing and verifying programs to be total in Sec. 2 and then describe in more detail
the foundation of our core programming language—which includes well-founded recursion
principle and simultaneous pattern matching—in Sec. 3. The operational semantics together
with basic properties such as type safety is given in Sec. 4. In Sec. 5, we review contextual
LF [5], define a well-founded measure on contextual objects and contexts, and define splitting
algorithm. Subsequently we describe the generation of valid well-founded recursive calls
generically, and prove normalization (Sec. 7). We conclude a discussion of related work,
current status and future research directions.

2 General Idea

2.1 Example 1: Equality on Natural Numbers

To explain the basic idea of how we write inductive proofs as recursive programs, we consider
first a very simple example: reasoning about structural equality on natural numbers (see
Listing 1).

Listing 1 Encoding of an Inductive Proof as a Recursive Function

nat : type. eq : nat — nat — type.
Z . nat. eq_z : eq z z.
s : nat — nat. eg.s : eqMN — eq (s M) (s N).

ref : IIM:nat. [eq M M] = AM = rec-case M of
| ref z = [eq_z]
| M’:nat ; ref M’:[eq M’ M’]. ref (s M’) = let D = ref M’ in [eq_s M’ M’ D];

B. Pientka et.al.

The free variables M and N in the definition of eq_s are implicitly quantified at the outside.
Subsequently, we will provide these arguments explicitly, but highlight them in green to
indicate that they can be reconstructed [22, 8]. Program ref of proves reflexivity of eq: for
all M:nat we can derive eq M M. When we represent this statement in our reasoning logic,
we separate the logical part of the statement from the domain specific part using a box
modality. Following type-theoretic notation, we write II for universal quantification; we
embed LF objects which denote base predicates via [1. Abstraction over LF object M is
written A M = in our language. Using rec-case, we prove inductively that for all M there is
a derivation for [eq M M]. There are two cases to consider: ref z describes the base case
where M is zero and the goal refines to [eq z z]. In this case, the proof is simply [eq_z].
In the step case, written as ref (s M’), we also list explicitly the other assumptions: the
type of M’ and the induction hypothesis written as ref M’:[eq M’ M’]. To establish that
[eq (s M’) (s M?)], we first obtain a derivation D of eq M’ M’ by induction hypothesis and
then extend it to a derivation [eq_s M’ M’ D] of [eq (s M’) (s M’)]. We highlight in green
redundant information which can be inferred automatically. In the pattern, it is the typing
(here: M’ :nat) of the pattern variables [22, 8] and the listing of the induction hypotheses. The
dot “.” separates these assumptions from the main pattern. For clarity, we choose to write
the pattern as a simultaneous pattern match and make the name of the function explicit; in
practice, we only write the main pattern which is left in black, and all other arguments are
inferred.

2.2 Example 2: Intrinsically Typed Terms

Next, we encode intrinsically typed A-terms. This example does exploit the power of LF.
One can think of intrinsically typed terms as typing derivations. As such a recursive function
on well-typed terms can be viewed as an inductive proof on typing derivations.

tp . type. tm : tp — type.
bool : tp. lam : (tm A — tm B) — tm (arr A B).
arr : tp — tp — tp. app : tm (arr A B) — tm A — tm B.

In this example, we define base types such as bool and function types, written as arr T S,
and represent simply-typed lambda-terms using the constructors lam and app. In particular,
we model the binding in the lambda-calculus (our object language) via HOAS, using the LF
function space. For example, the identity function is represented as lam Ax.x and function
composition as lam \g. lam Af. lam Ax. app (f (app g x)). As we traverse A-abstractions
we record the variables we are encountering in a context ¢ : cxt. Its shape is given by a
schema declaration schema ctx = tm A stating that it contains only variable bindings of type
tm A for some A. To reason about typing derivations, we package the term (or type) together
with its the context, forming a contextual object (or contextual type, resp.). For example,
we write ¢ F tm A for an object of type tm A in the context ¢. Such contextual types are
embedded into logical statements as [¢ F tm Al. When the context ¢ is empty, we may drop
the turnstile and simply write [tm A].

Counting constructors: Induction on (contextual) LF object

As an example, we consider counting constructors in a term. This corresponds to defining
the overall size of a typing derivation. We recursively analyze terms M of type tm A in the
context ¢. In the variable case, written as count ¢ B (¢ + p..), we simply return zero. The
pattern variable p stands for a variable from the context ¢. We explicitly associate it with
the identity substitution, written as ..., to use p which has declared type ¢ tm B in the

Well-founded Recursion over Contextual Objects

Listing 2 Counting constructors

count: Il ¢:ctx. ITA:tp. IIM:(¢ - tm A) . [nat] =
Ap= AA = AM = rec-case M of

| B:tp, p:(¢ -tm B); . count ¢ B (¢ Fp..) = [z 1] % Variable Case
| B:tp,C:tp,M: (¢,x:tm B I tm C) ; % Abstraction Case
count (¢,x:tm B) C (¢,x:tm B M .. x) : [nat]. % IH

count ¢ (arr B C) (¢ Flam B C Ax. M.. x) =
let X = count (¢,x:tm B) C (¢p,x:tm B FM.. x) in [s X]

| B:tp,C:tp,M: (¢ - tm (arr B C)), N:(¢ F tm B) ; % Application Case
count ¢ (arr B C) (¢ FM..):[nat], % IH1
count ¢ B (¢ FN..):[nat]. % IH2

count ¢ C (¢ Fapp BC (M..) (N..)) =
let X = count ¢ (arr B C) (¢ FM..) in
let Y = count ¢ B (¢ FN..) in add (s X) Y

Listing 3 Computing length of a context

length = Il ¢:ctx. [nat] =

A ¢ = rec-case ¢ of

| . count 0 = [z
= let

]
| :ctx, A:tp ; count ¢ : [nat] . count (3, x:tm A) let X = count ¥in [s X]

context ¢. Not writing the identity substitution would enforce that the pattern variable does
not depend on ¢ and forces the type of p to be [tm B]l. While it is certainly legitimate to
use p in the context ¢, since the empty substitution maps variables from the empty context
to ¢, the type of p is empty; since the context is empty, there are no variables of this type
tm B. Hence writing (¢ + p) would describe an empty pattern. In contrast, types described
by meta-variables A or B, for example, are always closed and can be instantiated with any
closed object of type tp and we do not associate them with an identity substitution.
In the case for lambda-abstractions, count ¢ (arr B C) (¢ F lam Ax.M..x), we not only
list the type of each of the variables occurring in the pattern, but also the induction hypothesis,
count (¢,x:tm B) C (¢,x:tm B - M ..x):[nat]. Although the context grows,the term itself
is smaller. In fact, we simply generate an induction hypothesis for each variable of the
appropriate type occurring in the pattern, making sure that the variable is guarded by at
least one constructor. In the body of the case, we use the induction hypothesis to determine
the size X of M...x in the context ¢, x:tm B and then increment it.
The case for application, count ¢ C (¢ F app B C (M..)(N..)), is similar. We again list
all the types of variables occurring in the pattern as well as the two induction hypotheses. In
the body, we determine the size X of (¢ FM...) and the size Y of (¢ FN..) and then add them.

Computing the length of a context: Induction on the context

As we have the power to abstract and manipulate contexts as first-class objects, we also can
reason inductively about them. Contexts are similar to lists and we distinguish between the
empty context, written here as (), and a context consisting of at least one element, written as
¥, x:tm A. In the latter case, we can appeal to the induction hypothesis on % (see Listing 3).

3 Core language with well-founded recursion

In this section, we present the core of Beluga’s computational language which allows the
manipulation of contextual LF objects by means of higher-order functions and primitive
recursion. In our presentation of the computation language we keep however our domain

B. Pientka et.al.

abstract simply referring to U, the type of a domain object, and C', the object of a given
domain. In fact, our computational language is parametric in the actual domain. To
guarantee totality of a program, the domain needs to provide answers for two main questions:
1) how to split on a domain type U and 2) how to determine whether a domain object C' is
smaller according to some domain-specific measure. We also need to know how to unify two
terms and determine when two terms in our domain are equal. In terms of proof-theoretical
strength, the language is comparable to Gédel’s T or Heyting Arithmetic where the objects
of study are natural numbers. However in our case, U will stand for a (contextual) LF type
and C describes a (contextual) LF object.

Types Z,r o= [U] |1 = | IX:UrT

Expressions e u=y|[C]|fryT=elerea | AX:U=e€|eC
| let X =eqin ey | rec—case?Cof b

Branches b w=AT .r=e

Assumptions r = f 8 C

Contexts r u=-|Ty7r|T,r:7

Meta Context A == |A, X:U

We distinguish between computation variables, simply referred to as variables and written
using lower-case letter y; variables that are bound by Il-types and A-abstraction are referred
to as meta-variables and written using upper-case letter X. Meta-variables occur inside a
domain object. For example we saw earlier the object (¢) - app B ¢ (M..)(N..)). Here, 1), B,
C, M, and N are referred to as meta-variables.

There are three forms of computation-level types 7. The base type [U] is introduced
by wrapping a contextual objects C' inside a box; an object of type [U] is eliminated by
a let-expression effectively unboxing a domain object. The non-dependent function space
T — To is introduced by function abstraction fny:7; = e and eliminated by application e es;
finally, the dependent function type ILX:U.7 which corresponds to universal quantification in
predicate logic or Heyting Arithmetic is introduced by abstraction AX:U = e over meta-
variables X and eliminated by application to a meta objects C written as e C. The type
annotations on both abstractions ensure that every expression has a unique type. Note
that we can index computation-level types 7 only by meta objects (but this includes LF
contexts!), not by arbitrary computation-level objects. Thus, the resulting logic is just
first-order, although the proofs we can write correspond to higher-order functional programs
manipulating HOAS objects.

Our language supports pattern matching on a meta-object C using rec—case-expressions.
Note that one cannot match on a computational object e directly; instead one can bind an
expression of type [U] to a meta variable X using let and then match on X. We annotate
the recursor rec—case with the type of the inductive invariant I1Ag.79 which the recursion
satisfies. Since we are working in a dependently-typed setting, it is not sufficient to simply
state the type U of the scrutinee. Instead, we generalize over the index variables occurring
in the scrutinee, since they may be refined during pattern matching. Hence, Ag is Ay, Xo:Uy
where A; exactly describes the free meta-variables occurring in Uy. The intention is that
we induct on objects of type Uy which may depend on A;. Ag must therefore contain at
least one declaration. We also give the return type 7y of the recursor, since it might also
depend on Ay and might be refined during pattern matching. This is analogous to Coq’s
match as in return with end construct.

One might ask whether this form of inductive invariant is too restrictive, since it seems
not to capture, e.g., IIAq.(7 — IIX:Up.7"). While allowing more general invariants does

Well-founded Recursion over Contextual Objects

I'(y)=1 I'(ry=7 r=1
: Computation e has type 7 —~° _

AThy:T AT R 7
AFC:U AiTFer:mm—717 ATkes:mm ATTFe:lIX:Ur AFC:U
A;THI[C): U] A;There: T A;TReC:[C/X]T
ATy ke A XU;Tke:T A;The: Ul AX:U;Thex: 7
ATHEfnym=e:m =7 A;THAXU = e: IIX:U.T A;THlet X =ejines: 7

I =1A¢IIX0:Up.7o AFC:[0]Us AF6:Ag b;:T (for all i) ?covers T
A;T F rec—case” C of T 16,C/X] o

: Branch b satisfies the invariant 7

forall0<j<k.Ablzrj:m A, rgTe,...,7iT1Ee:T
Asrg oo.r1.ro=>e: L

AFrr:7 |and |AF C.T>1) Assumption r/pattern spine T has type 7’ given the invariant 7

ALC: T+ AFC:U AFC:[C/X]r>7 AX) = U
AbrfC>7 AFCC IX:Ur > 1 AFX:IY:Ur > [X)Y]r

Figure 1 Type system for dependently-typed functional computation language

not pose any fundamental issues, we simply note here that the above type is isomorphic to
II(Ag, X:Up). 7 — 7' which is treated by our calculus. Forcing all quantifiers at the outside
simplifies our theoretical development; however, our implementation is more flexible.

A branch b; is expressed as A;; 7, . rio = e;. As shown in the examples, we explicitly list
all pattern variables (i.e. meta-variables) occurring in the pattern in A;. In practice, they
often can be inferred (see for example [22]). We also list all valid well-founded recursive calls
T ie. Tig, ... ,Ti1, for pattern r;o. In practice, they can be also derived dynamically while
we check that a given pattern r;y is covering and we give an algorithm in Section 6.

The identifier f in assumptions r denotes the local function that is essentially introduced
by rec—case; this notation is inspired by primitive recursion in Tutch [1]. Currently, it just
improves the readability of call patterns; however, it is vital for extensions to nested recursion.

3.1 Computation-level Type System

In the typing judgement (Figure 1), we distinguish between the context A for meta-variables
from our index domain and the context I" which includes declarations of computation-level
variables. Meta-variables will be introduced via A-abstraction. Meta variables are also
introduced in the branch of a rec-expression. Computation-level variables in I" are introduced
by non-dependent function abstraction. We will tacitly rename bound variables, and
maintain that contexts declare no variable more than once. Moreover, we require the usual
conditions on bound variables. For example in the rule for A-abstraction the meta-variable
X must be new and cannot already occur in the context A. This can be always achieved via
a-renaming. Similarly, in the rule for function abstraction, the variable y must be new and
cannot already occur in I'. We only draw attention to a few rules; a A-abstraction has type
IIX:U.7 if the body of the abstraction has type 7 in the extended meta-context A, X:U. A

B. Pientka et.al.

function fny:7 = e has type 7, — 79, if the body e has type 7% in the extended computation
context I', y:7y. We have two rules for applications: a non-dependent application (e; e2) has
type T, if e; has type 7o — 7 and es has type 72. For the dependent application e [C] to be
well-typed, e must have type IIX:U.7 and ¢ must be a well-typed meta-object of type U.
Note that we drop the computation context I' when we transition to type check a meta-object,
since meta-objects cannot refer to computations. The final type for e [C] is [C/X]r. We
have two variable rules to look up a computation-level variable y and an induction hypothesis
r. To verify that the induction hypothesis 7’ has type 7 and its use is valid, we simply check
whether there exists r : 7 in T where r = /. For now it suffices to think of = as syntactically
equivalent.

The most interesting rule is the one for recursion: given the invariant Z = ITA; 11X :Uy.7g
the expression rec—case” C' of bis well-typed under three conditions: First, the meta-object
C we are recursing over has some type U and moreover, U is an instance of the type specified
in the invariant, i.e. Ay = Ay, Xo:Up and U = [0]U, for some meta-substitution 6 with
domain Aj. Secondly, all branches b; are well-typed with respect to the given invariant
IIAg.79. Finally, b must cover the meta-context Ay, i.e., it must be a complete, non-redundant
set of patterns covering Ag, and all recursive calls are well-founded. Since the coverage check
is domain specific, we leave it abstract for now and return to it when we consider (contextual)
LF as one possible domain (see Sec. 5).

Note that we drop the meta-context A and the computation context I' when we proceed
to check that all branches satisfy the specified invariant. Dropping A is fine, since we require
the invariant IIAq.79 to be closed. One might object to dropping I'; indeed this could be
generalized to keeping those assumptions from I' which do not depend on A and generalizing
the allowed type of inductive invariant (see our earlier remark).

For a branch b = A;7.rg = e to be well-typed with respect to a given invariant Z, we
check the call pattern o and each recursive call r; against the invariant and synthesize target
types 7; (j > 0). We then continue checking the body e against 7o, i.e., the target type of
the call pattern rg, populating the computation context with the recursive calls 7" at their
types 7. N

A pattern / recursive call r; = f Cj intuitively corresponds to the given inductive
invariant I = ITA;.11X(:Uy.7g, if the spine 8 matches the specified types in Ay, X:Up and
it has intuitively the type [Cj,/Xn, ..., Cjo/Xo] 7o which we denote with 7.

» Lemma 1 (Substitution Lemma).

1 IfA FCO:U and A'F0: A, then A’ - [0]C : [0]U.

2. If A;The:Tand A'F O : A, then A5 [O]T F [0]e : [6] 7.
3. IfA;The:7 and A;T' F i T, then A;TY F [nle s .

Proof. By induction on the first typing derivation. <

4 Operational Semantics

Figure 2 specifies the call-by-value (cbv) one-step reduction relation e — ¢’; we have
omitted the usual congruence rules for cbv. Reduction is deterministic and does not get
stuck on closed terms, due to completeness of pattern matching in rec—case. To reduce
(rec—case” C' of b) we find the branch (A.ry,..., .70 = €) € b such that the principal
argument Cyg of its clause head rg = f Cy Cyp matches C under meta substitution §. The
reduct is the body e under 6 where we additionally replace each place holder 7; of a recursive
call by the actual recursive invocation (rec—case”™ [8]C;o of b). The object Cjo in fact just

Well-founded Recursion over Contextual Objects

(fnzr =e)v— [v/zle (AXU=¢)C—[C/X]e letX=[C]line— [C/X]e

- —
Junique (A.rg,...,7m1.70 = €) € b where r; = f C;j Cjo such that = C = Cyo/0

rec—caseZ C' of b —» [0][(rec—caseZ Cyo of b)/rs, . .., (rec—casel Cyo of b)/r1 e

Figure 2 Small-step semantics e — €’

denotes the meta-variable on which we are recursing. We also apply 6 to the body e. In the
rule, we have lifted out 6. Values v in our language are boxed meta objects [C], functions
fnx:m = e, and AX:U.e.

» Theorem 2 (Subject reduction). If ;-Fe: 7 ande — €, then ;- F ¢’ : 7.

Proof. By induction on e — €’

— — -
Case: rec—case’Cof b — [#][rec—casel Cyg of b /7y, .., rec—casel Cyy of b /ri]e;
Junique b;=A;.ry,...,r1.r90 = €; where rj=f [Cj,] ... [Cj1] [Cjo]

and FH C = Cyo/0 by inversion on rule Emrec
;- rec—case!!®o70 ' of ? o7 by assumption
b covers Ay, -FC:[0]Upand 7" =[0,C/X]m

for all¢ b; : IIAg.7 by inversion on Trec
bi:Ai;’I’k L. T T = €5 by definition
fOI'aHOS]SkAlkTJ ZHA().T0>TJ/»

Ajyrgety, ..o, E e i T by inversion on Tb

for 0 <j <k, rj=fI[Cjn]...[C51] [Cjo]
where AQ = Xn:U?’u [N ,XQIUO and UJ/O = [[Cjn/Xna ey le/Xl]]Uo

7']/- = chn/Xna .. -ale/XlaCjO/XO]]TO and AZ " CjO . UJIO by typlng
“EO; 0 A by soundness of matching
H@]]UO = HGZHUJIO = [[02]] HOJH/XTU ey le/XlﬂUjO by matching (SiIlCG C = II@,’]]OO())
0 = [6:1(Cjn/Xn,...,Cj1/X1) by previous lines
%

Aj; - b rec—case” Cjo of b : 7] N by typing
A;; -+ rec—case? Cyo of b /ry,...,rec—case’ Cig of b /r1 @ (rg:7i,...,m1:7{) by typing
55+ b [0:][rec—case? Cyo of b /rk,...,rec—case’ Cig of b /rile;: [0:]7) by subst. lemma
H91H76 = [[Qzﬂ[[COn/Xn7 ey C()l/Xl, C()(]/X()]]TO = [[9, C/X()]]’TO = ’7'/ by previous lines

<

» Lemma 3 (Canonical forms). Let v a value.
1. If-Fo:[U] then v =[C].

2. If-Fo:IIX:Ur then v =AX:U.e.

3. If s -Fov:T— 7 thenv="fnzT = e

» Theorem 4 (Progress). If ;- e : T then either e is a value or e — €’.

Proof. By induction on ;- Fe: 7.

Case

D:-;-}—elz[U] XU; - Fey:T

seoFlet X =ejiney: 7

B. Pientka et.al.

- Fep: [U] by inversion
Either e is a value or e —> €] by i.h.
Ife; — €}

let X =epines — let X =€ iney by reduction

If e; is a value

e1 = [C] by canonical forms lemma
let X =[C]inex — [C/X]es by reduction
Case D = -; - I rec—case!"®0-70C of Ty

? covers A(), -FC U, AO = (XnZUn7...,X11U1,X0:U0), - F 91 : (XnZUn,...,XllUl),

U = [61]Uo, T = [61,C/X] 70, and for all i b; : TIAq.79 by inversion

J a unique branch b; = Aj; 7k ... 170 = € by coverage

with r;0 = f [C0]...[Ci%) [CE'] s.t. C = [p]CE and -+ p: A,

A FEC=CP/p - - - by unification

for each ri; = f [C)7]...[CY] [Cy'] where 1 < j <k, let C} = Cf/

let 1/ = [rec—case!!®o-70 of?/rk, ..., rec—casellBo-0 1 of?/rl]

rec—caseM20mC of f — [ol[n]e: by reduction.
<

5 Contextual LF: Background, Measure, Splitting

If we choose as our domain natural numbers or lists, it may be obvious how to define splitting
together with a measure that describes when an object is smaller. Our interest however is to
use the contextual logical framework LF [18] as a general domain language. Contextual LF
extends the logical framework LF [13] by packaging an LF objects M of type A together
with the context ¥ in which it is meaningful. This allows us to represent rich syntactic
structures such as open terms and derivation trees that depend on hypothesis. The core
language introduced in Sec. 3 then allows us to implement well-founded recursive programs
over these rich abstract syntax trees that correspond to proofs by structural induction.

5.1 Contextual LF

We briefly review contextual LF here. As usual we consider only objects in n-long S-normal
form, since these are the only meaningful objects in LF. Further, we concentrate on charac-
terizing well-typed terms; spelling out kinds and kinding rules for types is straightforward.

LF Base Types PQ ==c-S

LF Types A,B =P |lz:A.B

Heads H n=c|z|plo]

Neutral Terms R n=H -S| ulo]

Spines S w=nil | M S

Normal Terms M,N ==R|Xx.M
Substitutions o =-lidy|o,M|o;H
Variable Substitutions ™ n=-lidy | oy

LF Contexts U,& =9 |V,x:A

10

Well-founded Recursion over Contextual Objects

Normal terms are either lambda-abstractions or neutral terms which are defined using a
spine representation to give us direct access to the head of a neutral term. Normal objects
may contain ordinary bound variables x which are used to represent object-level binders and
are bound by A-abstraction or in a context ¥. Contextual LF extends LF by allowing two
kinds of contextual variables: the meta-variable u has type (¥.P) and stands for a general
LF object that has type P and may use the variables declared in ¥; the parameter variable
p has type #(¥.A) and stands for an LF variable object of type A in the context ¥.

A; U - H = A|Synthesize type A for head H
U(z)=A Y(e)=A4 Ap)=#PA AVEFo=
AUz =A A;¥bkce= A A; U F plo] = [0]A

‘A;\II FS:A> P‘Check spine S against A with target P
A UEM<=A AUES:[M/z]B>P
A;UEnil: P> P A;WEMS :Ilx:A.B> P

‘ AUV EFM <= A ‘ Check normal object M against type A

AU . AFM < B Alu) =d.P A;¥tFo<«d Q=|[o]P
AUFAe. M <=A— B AU Fufo] < Q

AZWFH=A A;VFS:A>P
AZWHFH-S< P

A; U+ o <= & | Check substitution o against domain ¢

ATE -« A(h, U0 Fidy <

ATFo<=d AN VEM<[o]A A;Vbo<«d® AJZVFH=B B=|[d]4
AU F (o, M) < (D,2:A) AU F (0;H) < (P,2:4)

Figure 3 Bi-directional typing for contextual LF

Contextual variables are associated with a postponed substitution ¢ which is applied as
soon as we instantiate it. More precisely, a meta-variable u stands for a contextual object
U.R where ¥ describes the ordinary bound variables which may occur in R. This allows us
to rename the free variables occurring in R when necessary. The parameter variable p stands
for a contextual object U.H where H must be either an ordinary bound variable from ¥ or
another parameter variable.

In the simultaneous substitutions ¢, we do not make its domain explicit. Rather we think
of a substitution together with its domain ¥ and the i-th element in ¢ corresponds to the
i-th declaration in ¥. We have two different ways of building a substitution entry: either by
using a normal term M or a variable z. Note that a variable x is only a normal term M if it
is of base type. However, as we push a substitution ¢ through a A-abstraction Ax.M, we
need to extend o with x. The resulting substitution ¢,z may not be well-formed, since x
may not be of base type and in fact we do not know its type. Hence, we allow substitutions
not only to be extended with normal terms M but also with variables x; in the latter case we
write o; x. Expression idy, denotes the identity substitution with domain 1 while - describes
the empty substitution.

B. Pientka et.al.

As is common, we rely on hereditary substitutions [36], written as [N/z]B (or [0]B) to
guarantee that when we substitute a term N for the variable x in the type B, we obtain
a type B’ which is in normal form. Hereditary substitutions continue to substitute, if a
redex is created; for example, when replacing naively x by Ay.c y in the object = z, we would
obtain (Ay.cy) z which is not in normal form and hence not a valid term in our grammar.
Hereditary substitutions continue to substitute z for y in ¢y to obtain ¢z as a final result.
For a more detailed description of hereditary substitution, we refer the reader to [18].

An LF context W is either a list of bound variable declarations = : A or a context variable
1) followed by such a list. We write ¥ for contexts that do not start with a context variable.
We write U, ®° or sometimes ¥, ® for the extension of context ¥ by the variable declarations
of ®° or @, resp. The operation id(¥) that generates an identity substitution for a given
context ¥ is defined inductively as follows: id(-) = -, id(¢) = idy, and id(¥, z:A) = id(¥); z.

We require the usual conditions on bound variables, tacitly apply a—renaming and
maintain that contexts declare no variable more than once. Note that substitutions o are
defined only on ordinary variables x and not on contextual variables. We use a special symbol
to indicate the type of a parameter variable.

We summarize the bi-directional type system for contextual LF in Figure 3. LF objects
may depend on variables declared in the context ¥ and a fixed meta-context A which contains
contextual variables such as meta-variables u, parameter variables p, and context variables
1. All typing judgments have access to both contexts and a fixed well-typed signature %
where we store constants c¢ together with their types and kinds.

A remark on equality checking: When checking A = B we must take into account
n-contraction, because we have two ways to build substitutions. If x has type Ily:A.B then
we may have written o;x or o, A\y. z y.

5.2 Meta-level Terms and Typing Rules

We lift contextual LF objects to meta-objects to have a uniform definition of all meta-
objects. Meta-objects (both contextual objects ¥.R and contexts ¥) can be used to index
computation-level types 7. We also define context schemas G that classify contexts. For
simplicity, we restrict schemas to classify only contexts containing LF types.

Context Schemas G == 39°.B |G +39".B
Meta Types UV :=0.P|G|#V.A Meta Objects C,D == WU.R | O

A consequence of the uniform treatment of meta-terms is that the design of the computation
language is modular and parametrized over meta-terms and meta-types. This has two main
advantages: First, we can in principle easily extend meta-terms and meta-types without
affecting the computation language; second, it will be key to a modular, clean design.

The above definition gives rise to a compact treatment of meta-context A. A meta-
variable X can denote a meta-variable u, a parameter variable p, or a context variable).
Meta substitution C'/X can represent W.R/u, or /1, or W.z/p, or W.p/[x]/p (where 7 is
a variable substitution so that p[r] always produces a variable). A meta declaration X:U
can stand for u : W.P, or p: #WV.A, or ¥ : G. Intuitively, as soon as we replace u with U.R
in u[o], we apply the substitution o to R hereditarily. The simultaneous meta-substitution,

! In practice, we support a limited notion of X-types.

11

12

Well-founded Recursion over Contextual Objects

written as [0], is a straightforward extension of the single substitution. For a full definition
of meta-substitutions, see [18, 5]. We summarize the typing rules for meta-objects below.

A F C : U | Check meta-object C against meta-type U

Context ® checks against schema G

A)=G AFU:G 3°BeG AVFo«d" [0]B=5
AkF-:G AFvy:G AU 2B :G

Contextual Object W.R checks against Contextual Type ¥.P

AU -R<P
AFU.R:U.P

At 6 : A’| Check meta-substitution 6 against domain A’

AFO:A AFC:[0]U
AE-:. AFO,C/X AN XU

We have omitted the rules for parameter types #W.A because they are not important for
the further development. Intuitively an object R has type #WV.A if R is either a concrete
variable x of type A in the context W or a parameter variable p of type A in the context
W. This can be generalized to account for re-ordering of variables allowing the parameter
variable p to have some type A’ in the context ¥’ s.t. there exists a permutation substitution
7 on the variables such that U F 7 : ¥/ and A = [n]A".

» Theorem 5 (Meta-substitution property).
IfA'F60:A and A; U+ J then A 0]V F [0]J.

5.3 Well-founded Structural Subterm Order

There are two key ingredients to guarantee that a given function is total: we need to ensure
that all the recursive calls are on smaller arguments according to a well-founded order and
the function covers all possible cases. We define here a well-founded structural subterm order
on contexts and contextual objects similar to the subterm relations for LF objects [28, 20].

To consider also mutual recursive type families, we define the notion of subordination.
Let head(A) denote the head of a type A, i.e. the overall return type. A type family a is a
subordinate to a type family a’ (a<*a’) whenever a canonical term M:A with hd(A) = a
may be used in constructing a canonical term N:B with hd(B) = o’. If additionally o’ <*a,
we say that a, a’ are mutually recursive. We write a<*a’, denoting strict subordination, if
a is a subordinate to a’, but not mutually recursive. Subordination of type families is the
transitive closure of the immediate subordination relation (a<*a’) which can be directly
read off the signature. If the type family a (head(A)) is a strict subordinate of the type
family o’ (head(A’)), then a canonical subterm of type A can never contain a subterm of
type A’. Therefore, a term M is considered smaller than a A-term (Ax.NN) if there exists an
arbitrary instantiation T for x s.t. M is smaller than [T//z]N and the type of T is a strict
subordinate to N. An example of this strict subordination can be found in the representation
of first-order logic, where the objects of type i (individuals) are a strict subordinate of the
objects of type o (propositions).

If the type family a (head(A)) is not a strict subordinate of the type family o’ (head(A")),
then M is only considered smaller than Az.N if there exists a parameter y such that [y/z]N

B. Pientka et.al.

is smaller than M. For a more detailed development of subordination we refer to R. Virga’s
PhD thesis [35].

Type subordination plays a role in handling the subterm ordering for A-abstractions. In
a comparison, if the type of the variable bound by an abstraction is not subordinate to the
type of the other expression, then we can simply substitute the bound variable with any
variable of the same type declared in the context. The rules below can be extended to allow a
bound variable to be replaced by any term in this case. In particular, ™ is not restricted to be
a permutation substitution; the substitution may allow variables to be replaced by concrete
terms if the type of the variable is not a subordinate of the type overall expression. We first
define an ordering on contexts: , read as “context W is a subcontext of ®”, shall hold
if all declarations of ¥ are also present in the context @, i.e., ¥ C ®. The strict relation
, read as “context W is strictly smaller than context ®” holds if ¥ < ® but ¥ is
strictly shorter than &.

Context U is strictly smaller than ®.

U<
U<d A
Context V¥ is a subcontext of ®.
U< =<0

T=<d =< P=t¢ U nA<0d A

Further, we define three relations on contextual objects . M: a strict subterm relation
<, an equivalence relation =, and an auxiliary relation <.

.M =o.N Equivalence on contextual objects
U CdordCU 7isa variable subst. s.t. M = [7]N
U.M=d.N

U.M < &.N | Strict subterm relation on contextual objects

UM < @.Ni for some 1 <i<n
U.M<®. h-Ny ... N, nil

Subterm relation on contextual objects
Y M<dN $M=dN VM= zN
UM <dN U.M=<dN .M =<drz.N

U.M is a strict subterm of ®.M if N = h - Nip...N, nil and U.M is smaller than Ci).Ni for
some 1 <4 <n. We say UM < @.N, if either W.M is strictly smaller than fiD.N, or if they

are equivalent, or if N = A\z.N', we move x to the context d and compare U.N with (i?, x.N'.

Two terms U.M and ®.N are structurally equivalent, if they describe the same term modulo
a-renaming and possible weakening. To allow mutual recursive definitions and richer subterm
relationships, we can as in Twelf incorporate subordination information [20] and generalize
the variable substitution 7. To check our intuition, consider following example which arose

13

14

Well-founded Recursion over Contextual Objects

previously:
o, 2] = [ib,a]
v, e M ... x v, e.M ... x
v, M...x X Y e M.. x
v,e.M...x < ¢plam Az M ... x

PN

We also note that ¢.p... <1, z.p... is immediately justified by noting that ¢ C 1, z. Using
the defined subterm order, we can easily verify that the recursive calls in the examples are
structurally smaller.

The given subterm relation is well-founded. We define the measure ||¥|| of a ground
context WO or its erasure WO as its length |¥|. The measure ||¥.M]| of a contextual object
.M, is the measure || M]| of M.

Measure for erased contexts

-1 -0

W, || = 1+|]Y]|

Measure for normal and neutral terms
[|h-My...M,nill] = 1+ max(||[Mi]l,...,||Ml])
|[Az. M| = |[M]]

» Theorem 6 (Order on contextual objects is well-founded). Let 8 be a grounding meta-
substitution.

1. IfC < C' then ||[0]C|| < |I[6]C"]I-
2. IfC=C" then ||[0]C] = |I[0]C"]I-
3. IfC =< C' then ||[0]C|| < |I[6]C"]|-

Proof. By mutual structural induction on the relation C < C’, C = C’, and C < C". <

Side remark

Our subterm order for contexts and contextual objects is very similar to first-order subterm
ordering and is in fact simpler than the structural subterm ordering on LF terms employed in
the Twelf system. In their system, to establish that [y/z]|M =< Az:A.M, we need to be able
to compare [y/z]M =< [y/x]M, i.e. we must instantiate x in M with an existing parameter.
This is due to the fact that the order is defined in a shared variable context. In our case,
each contextual object has their own surrounding context and we compare two LF objects
modulo a-renaming. As a consequence, we believe our order is more straightforward and
natural.

5.4 Case Splitting

Our language allows pattern matching and recursion over contextual objects. For well-formed
recursors (rec—case’ C' of b) with invariant Z = IIA ILX:U.7, branches b need to cover all
different cases for the argument C of type U. We only take the shape of U into account
and generate the unique complete set Ua-yy of non-overlapping shallow patterns by splitting
meta-variable X of type U.

If U = W.P is a base type, then intuitively the set Uary contains all neutral terms
R = H - S where H is a constructor ¢, a concrete variable = from ¥ or a parameter variable

B. Pientka et.al.

‘gen MV (T.A) = (X:U, M) ‘ Generation of a lowered meta variable

genMV (. HJJTZLB) = (u: (7T, zA. P), AZ.ulid(T, x.1>4)]) for a fresh meta variable u

‘ AUFER:A<=P/ (A,0,Ry) ‘ Extending R : A to most general normal object Rq : [0]P.

AU Q=P /(A 0)
AUFR:Q<=P/ (Ao, 6, [A]R)

genMV (U.4) = (X:U, M) A, X:U;WFRM:[M/a]B<P /(Ao 0, R)
AU ER:IIx:AB<=P /[(A, 6, R)

Figure 4 Generation of most general normal objects and call patterns

plidy] denoting a variable from the context variable ¢, and S is a most general spine s.t. the
type of R is an instance of P in the context ¥. We note that when considering only closed
terms it suffices to consider only terms with H = c¢. However, when considering terms with
respect to a context W, we must generate additional cases covering the scenario where H is a
variable—either a concrete variable x if x:A is in ¥ or a parameter variable if the context is
described abstractly using a context variable 1.

If U denotes a context schema G, we generate all shallow context patterns of type G.
This includes the empty context and a context extended with a declaration formed by ¥, z: A.

From Uarpy we generate the complete minimal set C = {A;; 7k, ..., 7170 | 1 <@ < n} of
possible, non-overlapping cases where the i-th branch shall have the well-founded recursive
calls r;x, ..., ry1 for the case r;9. For the given branches b to be covering, each element in C
must correspond to one branch b;.

Splitting on a Contextual Type

Following [7, 32], the patterns R of type W.P are computed by brute force: We first synthesize
a set Ha,w of all possible heads together with their type: constants ¢ € X, variables x € ¥,
and parameter variables if ¥ starts with a context variable 1.

Haw ={(A;TFc: A) | (c:A) € B}
U{(A; 0 Fz: A) | (2:4) € U}

U {(A, XU, p#t(.B'); Uk plidy] : B') | @ = ¢, ¥° and ¢:G € A and 3:A.B € G
and genMV (¢.4;) = (X;:U;, M;) for all i, and B’ = [M/x]B }

See Figure 4. Using a head H of type A from the set H a,v, we then generate, if possible,
the most general pattern H - S whose target type is unifiable with P in the context ¥. We
describe unification using the judgment ‘ ATRQ=P/ (A, 0) ‘ If unification succeeds
then [0]Q = [0]P and A" F 6 : A,

‘A; U-R:A< P/ (A,0,Rp) ‘ describes the generation of a normal pattern where all
the elements on the left side of / are inputs and the right side is the output, which satisfies
A'F6:Aand A 0]V F R = [0]A and A [0]¥ + Ry < [] P. To generate a normal term
Ry of the expected base type, we start with head H : A. As we recursively analyze A, we

15

16

Well-founded Recursion over Contextual Objects

generate all the arguments H is applied to until we reach an atomic type Q. If @ unifies with
the expected type P, then generating a most general neutral term with head H succeeds.

Unrop = { (A FO.R:®.Q) | (AU F H: A) e Hay and
ANOEFH:A<P /(A" 0, R) and & =[]V and Q = [0]P }

Splitting on a Context Schema

Spitting a context variable of schema G generates the empty context and the non-empty
contexts (¢, z:B’) for each possible form of context entry 39°.B € G.

Upnre ={ (AF-:G) }
U { (A,d):G,X:ij F (¢, 2:[M/z]B) : G) | ¢ a fresh context variable and
for any Jz: A.B € G .genMV (. A;) = (X;:U;, M;) for all 7 }

5.5 Properties of Splitting

» Theorem 7 (Splitting on meta-types). The set Uaru of meta-objects generated is non-
redundant and complete.

Proof. Uar¢ is obviously non-redundant. Uary p is non-redundant since all generated
neutral terms have distinct heads. Completeness is proven by cases. We consider here the
three cases of meta-objects.

Case Splitting on contextual type ¥.P. We need to show that all closed canonical objects C'
of type W.P are covered by the generated splits. Since C' is normal, we know C' = W.R
and R = h My...M, st. - F 6 : A and [0]¥ - R <« [0]P. The set Ha,y is
complete and for all heads h we have h:A € Ha.,g. Moreover, by the properties of
unification, A; ¥ - h: A < P / (A", 6, R') generates the most general R’ s.t.
A’ [0']Y - R’ < [0'] P. Therefore there exists a meta-substitution p s.t. -+ p: A’ and
[pI([0'](¥.P)) = [0](¥.P) and [p]R" = R.

Case Splitting on a context schema G. We need to show that all closed canonical objects C
of type G are covered by the generated splits. Since C' is normal, it stands for a concrete
context which is either empty or ¥ = x1:By,...,2,:B, s.t. - = ¥ : G. Our splitting
definition generates the most general declarations which are instances of the schema G, i.e.
for all 32:A.B € G, we generate ¥/ = 9,z : [u]idy]/z]B s.t.9:G,wp. AF U’ : G. Since it
is most general, there exists a meta-substitution p s.t. - = p : ¥:G, m s.t. [p]¥ = 0.

Case Splitting on a parameter type #W.A. We need to show that all closed canonical objects
C of type #[0](¥.A) where - - 0 : A are covered by the generated splits. Since C' is
canonical, it must be of the form C = 1, ..., z,.x; where 1 <i <nand - [0]V - z; = A
s.t. [0]A; = A’. We distinguish two cases. If ¥ = x1:A;,...2,:4,, then z; has type A;
and our splitting algorithm guarantees that there exists a most general meta-substitution
A F 0 Ast. [0']4; = [0]A. Since ¢ is most general, there exists a grounding
meta-substitution p s.t. -+ p: A" and [p]([0']A:) = A’ = [0] A.

o = il)ﬁ;Ai, e Tt A, &al}so need to consider the case where our algorithm generates
for all 32:A.B € G, ¢¥:G,up. A, p:(#1¢.B) + 1.plidy] = B, if B unifies with A. As a
consequence there is a most general meta-substitution A’ F 60 : A, 9:G, 1”/1—121, #p:.B.
To generate closed instances of the form x1,...xz,.xx where 1 < k < i, we instantiate 1)
with x1:A41, ...z A and p with x1,...2;_1.2k.

<

B. Pientka et.al.

6 Generation of Call Patterns and Coverage

Next, we explain the generation of call patterns, i.e. well-founded recursive calls as well as
the actual call pattern being considered. Intuitively, we consider each element A+ C : U in
the set Uary together with the invariant Z = II(Ap, Xo:Up).70. Recall that the invariant is
the type of the recursive function f we are defining. We therefore simply generate objects
Cpn,...,Crst. fC,...C1 Cy:[Ch/Xp,...,C1/X1]70 using unification.

Before we describe the generation of call patterns, we introduce the operation n(X:U) = C
which returns a proper contextual term C' from a meta variable X : U.

n(u:W.P) = Vufid(¥)]
nip: #V.A) = Vplid(¥)]
n:G) = ¢

‘ AbFr:7<C:U /7 :7| Extending call pattern r to most general call pattern r’ : 7/

AFU=Uy/ (A, 0)
A r: IIXy:Up.mp <= C:U / ([[9]]7’) C: HQHT()

AX,: Uy b rCp: [Cnh/ X](ITAg70) <= C:U /v : 7/ where C,, = n(X,,:Uy,)
AbF r(X,:Up, Ag)1o=C U /7' i 7'

» Definition 8 (Generation of call patterns and recursive calls). Given the invariant 7 =
TI(Aop, Xo:Up).70, the set C of call patterns is generated as follows: For each meta-object
A; F Cio : Vi in Uny+u,, We generate, if possible, a call pattern r;p using the judgment

Ai| Ff:T<=Cio:Vi/rio:Tio

This may fail if V; is not an instance of the scrutinee type Uy; then, the case Cjq is impossible.
Further, for all 1 < j <k, A; =Y,:V,,...,Y1:V], we generate a recursive call

Ai|-}—f:I<:Y;':V;'/’I“ileij

if n(X;:V;) < Cjo. This may also fail, if V; is not an instance with Up; in this case V; does

not give rise to recursive call. Then ‘ A; 5 TikiTiky 5 Ti1:Ti1 - Ti0 |18 in C.

» Theorem 9 (Pattern generation). The set C of call patterns generated is non-redundant
and complete and the recursive calls are well-founded.

Proof. Using Theorem 7 and the properties of unification. |

» Theorem 10 (Recursive calls are decreasing). Given a set C of patterns, for each Nig; Tik, - .., 751.Ti0

in C, we have that each recursive calls r;j (1 < j < k) is smaller than r;.

Proof. This is true by construction noting that the pattern in r; is guarded by a constructor.
<

» Definition 11 (Coverage). We say iff for every A; ; 77 .10 € C where C is

the set of call patterns given Z, we have one corresponding A; ; r;:7; .70 = €; € b and vice

versa.

17

18

Well-founded Recursion over Contextual Objects

7 Termination

We now prove that every well-typed closed program e terminates (halts) by a standard
reducibility argument; closely related is [37]. The set R, of reducible closed programs

;- F e : 7 is defined by induction on the size of 7.

Contextual Type Ry = {e| ;- Fe:[U] and e halts}

Function Type Rr—r = {e|s-Fe:7 = 7andehaltsand Ve’ € R,r.ee’ € R}

Dependent Type Rpx.w. = {el|;-Fe:UX:U.r and

e halts and VCs.t.- = C : U.e C € Ryc/x]-}
Context Rr = {n|-Fn:Tand n(x) € R, for all (z:7) €T}

For the size of 7 all meta types U shall be disregarded, thus, the size is invariant under

meta substitution C'/X. We also note that since reduction e — ¢’ is deterministic, e halts

if and only if ¢’ halts.

» Lemma 12 (Expansion closure).

1. Ifs-Fe:Tande— € ande € R,, thene € R,.
2. Ify-Fe:Tande —*¢e and e € R., thene € R..

Proof. The first statement, by induction on the size of type 7. The second statement,

inductively on —*.

Case Contextual Type [U]
e [U]

e e R[U]

e’ halts

e halts

e c R[U]

Case Meta Abstraction Type IIX:U.7
eFe IIX:U.T

e € Rux.wv.r

e’ halts

e halts

VCst.-FC:U .eCe R[[C/X]]‘r

let us assume -+ C : U

e — ¢
eC —¢€C
s-FeC[C/X])T

eC e RHC/X]]T
e € Rux.u.r

Case Function Type 71 — 7
classical proof

» Lemma 13 (Fundamental Lemma).

by assumption

by assumption

by def. of Ry

by lemma about halting
by definition of Ry

by assumption

by assumption

by def. of RHX:U.T
by lemma

by def. of Rux.u.-

by assumption

by evaluation rule

by typing rule

by i.h. on [C/X]T

by definition of Ryx.u.-

If A;T' & e: 7 and grounding substitution 0 s.t. - =6 : A and 1 € Rygyr then [n][0]e € Rygpr-

B. Pientka et.al.

Proof. By induction on A;T' Fe: 7.
AXUTke: T

A THAX = e IX:U.T

FO:Aand -FHO: A

50T F [0](AX = e) : [0](TIX:U.7)

n € Rpgpr and A;- = n: [0]T

o E MIIOTAX =€) : [0](TIX:U.7)

- AX =)6, X/ X]e : IX:[0]U.[6, X/ X] T

AX = [n][6, X/X]e halts

Case D = Tmabs

let - = C : [0]U be arbitrary

FO,C/X A XU

0,C/X € Ra xww

n € Rg,c/x)r

(][0, C/X]e € Ro,c/xp-

mIC/ X110, X/ X]e) € Ric/x110,x/x17)

(AX = [n][0, X/X]e) C — [C/X]([n][0, X/ X]e)

(AX = [n][0, X/ X]e) C € Ricyxyo.x/x17)

AX =][0, X/ X]e € Rux.o1v.10,x/x]+

MI[O1(AX =€) € Rpgymix.v.r)

A;TFe: IIX:Ur AFC:U
ATReC:[C/X]T

-F6:Aand n € Rpgr

[][0]e € Rgpix:v.+)

[Ml[0]e € Rux:[ojv.10,x/x1+
- [9]C - [o]U

([n][0e) [61C € Ryqerc)x1c10.x/x17)
][] (e C) € Ryey(ic/x17)

Case D =

Tmapp

AFC:U

CaseD=_—__~ '~
A;THC): U]

Tmeta

3 VAN

- E[[0]C] - [[0]U]
[[0]C] halts

[[61C1] € Rygoyu
MII][C] € Rigyu

I =T
Case D = L Tvar

‘FO:A
5 [01T F [6]y - [6]7

by assumption and definition of Ra
by substitution lemma

by ass. and def. of Rgr

by substitution lemma

by subs. prop.

by def. of halts

by typing rule

by definition of Ra x.v
since I' is independent of X
by i.h.

by subst. prop.

by evaluation rule

by back. closed

by def. of Rux.[oju.[0,x/x7+
by substitution property

by assumption

by i.h.

by substitution property

by substitution lemma

by def. of Rux.[ojv.10,x/x]~
by substitution property

by assumption

by substitution

since [[0]C] is a value
by definition

by substitution property

by assumption

by substitution lemma

19

20

Well-founded Recursion over Contextual Objects

S[0IT =y - [0]7
n € Rpgpr and [Ny € Rygp-
1]y € Ryiep-
AT Fep: [U] AX:U;Tkey: T

Case D = Tlet
A;THlet X =ejiney: 7

“F60:Aand n € Rpgr
[M[6]ex € Rygyu)

5+ E [n][0]er : [0][U]
[n][€]e1 halts

[mll0]er —" v

5o [6][U]

ko ([0U]

v = [C'] for an arbitrary C’

s-EC[0)U

H0,0'/X A XU

n € Rg,cr/xr

(][0, C"/X]e2 € Ro,cr/xpr

- 0] (let X = ey ineg) : [O]T

let X = [n][0] e in [1][0, X/ X]ea — (][0, C"/X]es
let X = [n][0]er in [n][0, X/ X]e2 € Rio,cr/x]+
(][0 (let X = ey ine2) € Rgpr

%
Case D = A; T + rec—case"®00C of b : 7/

by substitution property

by assumption and def. of Rgjr

by substitution property

by assumption
by i.h.

by def. of Rygpun
by def. of Rygju

by the definition of halting
by type preservation

by substitution property
by canonical forms lemma
by typing inversion

by typing rule

I" is independent of X

by i.h.

by substitution lemma

by evaluation rule

by backward closed

by substitution property

let 7 =11Ag. 70 and Ag = Xy:Uy, ..., X1:Uq, X0:Uy, ? covers Ay,
At Cs:Us, Ug = [[00]Uo, 7" = [60,Cs/X]70, and for all i b; : IIAg.7 by inversion on Trec

- [0]C, - [0]Us
(61U = [6][60]Uo

Jda unique_)branch b; = Ay ... Ti1Ti0 = €5
with 7,0 = f Co Cp s.t. [0]Cs = [p]Co and - F p : A,.
let 820016...001

6i0 = COk/Xk:7 AP COl/Xl s.t. Ai FHC: [[510]}(]0
[Pl [6:0]U0 = [6]Us = [6][60]Uo

and therefore [p][d:0] = [0]]60]

for each 7y, :fC.>'jCj where 1 < j <k, C; < Cp

Ai H Cj : UJ, where 36” = Cjk/Xka N .le/Xl and UJ/ = H(Slj]]UO

_>
for each 1 < j <k, Aj;- F rec—case”Cof b : [0;5]m0
Cj < C

by subst. lemma
by previous lines

by coverage

by typing
since [0]Cs = [p]Co

by size decreasing thm
by typing

by typing

by size decreasing thm.

B. Pientka et.al.

for any grounding meta-substitution 6 |[[0"]C;|| < ||[0']Co| by well-foundedness of <

[[IC1| < [I[P)Coll by choosing ' = p

|IP1C5 1 < [1161C| since [p]Co = [0]C2 by previous lines
%

rec—case’ [p]C; of b € Ryp1s.,170 by inner i.h. with -+ p: A;, and - € R.

since [|[p]C;l| < [I[p]Coll
1 /
let Cj = [p]C; and T = r;:[6;;] 70

n' = [rec—case”C} of b /ry, ..., rec—case”C} of?/rl]

n" € Rypr by definition
AT Fei:[[di0]70 by typing
[']1plle: € Rippis.,170 by ih. with p € Ra,, 0" € R
rec—case” [0] C;s of - llele: by reduction
rec—case” [0]C of 7 € Rol6:;10 by backwards closed
rec—case” [0]Cs of b € Rig)pourr, since [p][8:0] = [6][60]

<
» Theorem 14 (Termination). If -;- F e : 7 then e halts.

Proof. Taking the empty meta-context A and empty computation-level context I', we obtain
e € R, by the fundamental lemma, which implies that e halts by definition of 7. <

8 Related Work

Our work is most closely related to [30, 6] where the authors propose a modal lambda-calculus
with iteration to reason about closed HOAS objects. In their work the modal type O describes
closed LF objects. Hofmann [14] has investigated a categorical explanation for the proposed
reasoning principles. Our work extends this line to allow open LF objects and define functions
by pattern matching and well-founded recursion.

Similar to our approach, Schiirmann and Pfenning [31, 29] present a meta-logic M? for
reasoning about LF specifications and describe the generation of splits and well-formed
recursive calls. However, M? does not support higher-order computations. Moreover, the
foundation lacks first-class contexts, but all assumptions live in an ambient context. This
makes it less direct to justify reasoning with assumptions, but maybe more importantly
complicates establishing meta-theoretic results such as proving normalization.

Establishing well-founded induction principles to support reasoning about higher-order
abstract syntax specifications has been challenging and a number of alternative approaches
have been proposed. These approaches have led to new reasoning logics—either based on
nominal set theory [25] or on nominal proof theory [11]. In contrast, our work shows that
reasoning about HOAS representations can be supported using first-order logic by modelling
HOAS objects as contextual objects. As a consequence, we can directly take advantage
of established proof and mechanization techniques. This also opens up the possibility of
supporting contextual reasoning as a domain in other systems.

Let us recapitulate in more detail other approaches: Gabbay and Pitts [9] proposed
nominal logic which provides first-class names and a-renaming together with structural
recursion principles. Their approach is appealing because it gives us direct access to names

21

22

Well-founded Recursion over Contextual Objects

of bound variables, however capture-avoiding substitution is implemented separately. The
generation of a new name and binding names are separate operations and fresh name
generation is an observable effect. As a consequence, languages such as FreshML [34] allowed
the generation of data which contains accidentally unbound names. While early work [9]
justified the structural recursion principles on Fraenkel-Mostowski set theory, more recently
Pitts [26] describes a calculus of total, higher-order functions with a structural recursion
modulo a-renaming based on nominal sets [25].

The key difference between our work and work on nominal calculi lies in the status
of names. While in nominal calculi names have a global status, in our language based
on contextual types we pair every type with its surrounding contexts giving the system a
more fine-grained nature. This allows us to abstract over contexts and distinguish between
different contexts. As in nominal systems, our bound names are first-class citizens that can
be tested for equality, passed to functions as arguments and returned as results—albeit for
us they always must be associated with their surrounding context. Further, this line of work
mostly concentrates on simple types and as such is not suitable to represent proofs about
formal systems by recursive functions. In contrast to the simply typed foundational nominal
calculi, we developed a core calculus with indexed types, simultaneous pattern matching and
recursion.

Approaches which support higher-order abstract syntax (HOAS) encodings of formal
systems together with proofs about them fall into two categories: proof-theoretic and type-
theoretic. Since we discussed the relationship to other type-theoretic foundations in the
introduction, we concentrate here on the former. one grounded in proof theory [16, 17, 11, 10]
and the other grounded in type theory [31, 19, 29, 30, 33, 27, 15, 21, 23, 24, 5].

In the proof-theoretic approaches, we adopt a two-level system where we implement a
specification logic (similar to LF) inside either a (higher-order) reasoning logic—the approach
taken in Abella [10, 12]—or type theory—the approach taken in Hybrid [17]. Hypothetical
judgments of object logics are modeled using implication in the specification logic (SL) and
parametric judgments are handled via (generic) universal quantification. Substituting for
an assumption is then justified by appealing to the cut-admissibility lemma of the SL. To
distinguish in the reasoning logic between quantification over variables and quantification over
terms, [11] introduce a new quantifier, V, to describe nominal abstraction logically. Induction
in these systems is typically supported by reasoning about the height of a proof tree; this
reduces reasoning to induction over natural numbers. [3] propose a uniform approach with
least and greatest fixed points to support inductive reasoning. The cited work however lacks
generic quantification and as such is not powerful enough yet to support reasoning about
HOAS specifications. However, our work suggests that it is feasible to simply use [3] and
choose as a domain contextual LF.

In general, the proof-theoretic approach of encoding the SL inside a reasoning logic is less
direct. Although much of this complexity and indirectness can be hidden in implementations
as demonstrated in Abella, the programs we would obtain would bear little resemblance
to the functional programs we would expect. Moreover, although V allows the distinction
between generic and universal quantification, the proof-theory lacks intrinsic support for
contexts; contexts are typically represented inductively as lists. As a consequence, properties
such as the uniqueness of declarations in a context must be established separately. Our
work pushes the boundaries of the provided infrastructure by treating contexts as first-class
citizens and eliminating the burden on users to manage and maintain contexts together with
their properties explicitly. More importantly, our reasoning logic, a first-order modal logic,
supports reasoning about HOAS specifications without introducing new logical connectives.

REFERENCES

The complexity of working with HOAS specifications is pushed and encapsulated on the
level of contextual objects, i.e., the objects we reason about. Finally, our logical foundation
gives directly rise to a functional programming language supporting pattern matching and
structural recursion.

9 Conclusion

We have developed a core language with structural recursion for implementing total functions
about LF specification. We describe a sound coverage algorithm which, in addition to
verifying that there exists a branch for all possible contexts and contextual objects, also
generates and verifies valid primitive recursive calls. To establish consistency of our core
language we prove termination using reducibility semantics.

Our framework can be extended to handle mutual recursive functions: By annotating a
given rec—case-expression with a list of invariants using the subordination relation, we can
generate well-founded recursive calls matching each of the invariants. Based on these ideas,
we have implemented a totality checker in Beluga. We also added reasoning principles for
inductive types [5] that follow well-trodden paths; we must ensure that our inductive type
satisfies the positivity restriction and define generation of patterns for them.

Our language not only serves as a core programming language but can be interpreted by
the Curry-Howard isomorphism as a proof language for interactively developing proofs about
LF specifications. In the future, we plan to implement and design such a proof engine and to
generalize our work to allow lexicographic orderings and general well-founded recursion.

Acknowledgements We thank Sherry Shanshan Ruan for her work during her Summer
Undergraduate Research Internship in 2013 at the beginning of this project.

References

1 Andreas Abel. Tutch User’s Guide. Carnegie-Mellon University, Pittsburg, PA, 2002.
Section 7.1: Proof terms for structural recursion.

2 Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for de-
pendent types and records. In Luke Ong, editor, 10th International Conference on Typed
Lambda Calculi and Applications (TLCA’11), Lecture Notes in Computer Science (LNCS
6690), pages 10-26. Springer, 2011.

3 David Baelde and Gopalan Nadathur. Combining deduction modulo and logics of
fixed-point definitions. In LICS’12, pages 105-114. IEEE CS Press, 2012.

4 Olivier Savary Belanger, Stefan Monnier, and Brigitte Pientka. Programming type-safe
transformations using higher-order abstract syntax. In CPP’13, volume 8307 of LNCS,
pages 243-258. Springer, 2013.

5 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types.
In POPL’12, pages 413-424. ACM, 2012.

6 Joélle Despeyroux and Pierre Leleu. Recursion over objects of functional type. MSCS,
11(4):555-572, 2001.

7 Joshua Dunfield and Brigitte Pientka. Case analysis of higher-order data. ENTCS,
228:69-84, 2009.

8 Francisco Ferreira and Brigitte Pientka. Bidirectional elaboration of dependently typed
languages. In 16th International Symposium on Principles and Practice of Declarative
Programming (PPDP’14). ACM, 2014.

23

24

REFERENCES

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. FAC, 13:341-363, 2002.

Andrew Gacek. The abella interactive theorem prover (system description). In IJCAR’08,
volume 5195 of LNCS, pages 154-161. Springer, 2008.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic judgments with
recursive definitions. In LICS 08, pages 33-44. IEEE CS Press, 2008.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to
reasoning about computations. JAR, 49(2):241-273, 2012.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
JACM, 40(1):143-184, 1993.

Martin Hofmann. Semantical analysis of higher-order abstract syntax. In LICS’99, pages
204-213. IEEE CS Press, 1999.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. Focusing on binding and
computation. In 23rd Symposium on Logic in Computer Science, pages 241-252. IEEE
Computer Society Press, 2008.

Raymond C. McDowell and Dale A. Miller. Reasoning with higher-order abstract syntax
in a logical framework. ACM Transactions on Computational Logic, 3(1):80-136, 2002.
Alberto Momigliano, Alan J. Martin, and Amy P. Felty. Two-Level Hybrid: A system
for reasoning using higher-order abstract syntax. In LEMTP’07, volume 196 of ENTCS,
pages 85-93. Elsevier, 2008.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. ACM TOCL, 9(3):1-49, 2008.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-logical
framework for deductive systems. In 16th International Conference on Automated
Deduction (CADE-16), Lecture Notes in Artificial Intelligence (LNAI 1632), pages 202—
206. Springer, 1999.

Brigitte Pientka. Verifying termination and reduction properties about higher-order logic
programs. JAR, 34(2):179-207, 2005.

Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. In POPL’08, pages 371-382. ACM, 2008.

Brigitte Pientka. An insider’s look at LF type reconstruction: Everything you (n)ever
wanted to know. JFP, 1(1-37), 2013.

Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts.
In ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08), pages 163-173. ACM, 2008.

Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and
reasoning with deductive systems (system description). In IJCAR’10, volume 6173 of
LNCS, pages 15-21. Springer, 2010.

Andrew Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput.,
186(2):165-193, 2003.

Andrew Pitts. Structural recursion with locally scoped names. JFP, 21(3):235-286, 2011.
Adam B. Poswolsky and Carsten Schiirmann. Practical programming with higher-order
encodings and dependent types. In 17th European Symposium on Programming (ESOP
’08), volume 4960, pages 93-107. Springer, 2008.

Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for higher-
order logic programs. In ESOP’96, volume 1058 of LNCS, pages 296-310. Springer,
1996.

REFERENCES

29

30

31

32

33

34

35

36

37

Carsten Schirmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 2000. CMU-CS-00-146.
Carsten Schiirmann, Joélle Despeyroux, and Frank Pfenning. Primitive recursion for
higher-order abstract syntax. TCS, 266(1-2):1-57, 2001.

Carsten Schiirmann and Frank Pfenning. Automated theorem proving in a simple
meta-logic for LF. In CADE’98, volume 1421 of LNCS, pages 286-300. Springer, 1998.
Carsten Schiirmann and Frank Pfenning. A coverage checking algorithm for LF. In
TPHOLS’03, volume 2758 of LNCS, pages 120-135, Rome, Italy, 2003. Springer.
Carsten Schiirmann, Adam Poswolsky, and Jeffrey Sarnat. The V-calculus. Functional
programming with higher-order encodings. In Proceedings of the 7th International
Conference on Typed Lambda Calculi and Applications (TLCA’05), volume 3461 of
Lecture Notes in Computer Science, pages 339-353. Springer, 2005.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: programming
with binders made simple. In 8th International Conference on Functional Programming
(ICFP’03), pages 263-274. ACM, 2003.

Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, 1999. CMU-CS-99-167.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgements and properties. Technical report, School of Computer
Science, Carnegie Mellon University, Pittsburgh, 2003.

Hongwei Xi. Dependent types for program termination verification. HOSC, 15(1):91-131,
2002.

25

	Introduction
	General Idea
	Example 1: Equality on Natural Numbers
	Example 2: Intrinsically Typed Terms

	Core language with well-founded recursion
	Computation-level Type System

	Operational Semantics
	Contextual LF: Background, Measure, Splitting
	Contextual LF
	Meta-level Terms and Typing Rules
	Well-founded Structural Subterm Order
	Case Splitting
	Properties of Splitting

	Generation of Call Patterns and Coverage
	Termination
	Related Work
	Conclusion

