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Abstract. Inductive data such as finite lists and trees can elegantly be defined by con-
structors which allow programmers to analyze and manipulate finite data via pattern
matching. Dually, coinductive data such as streams can be defined by observations such
as head and tail and programmers can synthesize infinite data via copattern matching.
This leads to a symmetric language where finite and infinite data can be nested. In this
paper, we compile nested pattern and copattern matching into a core language which
only supports simple non-nested (co)pattern matching. This core language may serve as
an intermediate language of a compiler. We show that this translation is conservative,
i.e. the multi-step reduction relation in both languages coincides for terms of the original
language. Furthermore, we show that the translation preserves strong and weak normali-
sation: a term of the original language is strongly/weakly normalising in one language if
and only if it is so in the other. In the proof we develop more general criteria which guar-
antee that extensions of abstract reduction systems are conservative and preserve strong
or weak normalisation.
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1. Introduction

Finite inductive data such as lists and trees can be elegantly defined via constructors, and
programmers are able to case-analyze and manipulate finite data in functional languages
using pattern matching. To compile functional languages supporting pattern matching, we
typically elaborate complex and nested pattern matches into a series of simple patterns
which can be easily compiled into efficient code (see for example [Aug85]). This is typically
the first step in translating the source language to a low-level target language which can
be efficiently executed. It is also an important step towards developing a core calculus
supporting well-founded recursive functions.

Dual to finite data, coinductive data such as streams can be defined by observations
such as head and tail. This view was pioneered by Hagino [Hag87] who modelled finite
objects via initial algebras and infinite objects via final coalgebras in category theory. This
led to the design of symML, a dialect of ML where we can for example define the codata-type
of streams via the destructors head and tail which describe the observations we can make
about streams [Hag89]. Cockett and Fukushima [CF92] continued this line of work and
designed a language Charity where one programs directly with the morphisms of category
theory. Our recent work [APTS13] extends these ideas and introduces copattern matching
for analyzing infinite data. This novel perspective on defining infinite structures via their
observations leads to a new symmetric foundation for functional languages where inductive
and coinductive data types can be mixed.

In this paper, we elaborate our high-level functional language which supports nested
patterns and copatterns into a language of simple patterns and copatterns. Similar to
pattern compilation in Idris [Bra13] or Agda, our translation into simple patterns is guided
by the coverage algorithm. We show that the translation into our core language of simple
patterns is conservative, i.e. the multi-step reduction relations of both languages coincide
for terms of the original language. Furthermore, we show that the translation preserves
strong normalization (SN) and weak normalization (WN): a term of the original language
is SN or WN in one language if and only if it has this property in the other.

The paper is organized as follows: We describe the core language including pattern and
copattern matching in Sect. 2. In Sect. 3, we explain the translation into simple patterns.
In Sect. 4 we develop criteria which guarantee that extensions of abstract reduction systems
are conservative and preserve SN or WN. We use this these criteria in Section 5 to show
that the translation of patterns into simple patterns is a conservative extension preserving
SN and WN.

2. A Core Language for Copattern Matching

In this section, we summarize the basic core language with (co)recursive data types and
support for (co)pattern described in previous work [APTS13].

2.1. Types and Terms. A language L = (F , C,D) consists of a finite set F of constants
(function symbols), a finite set C of constructors, and a finite set D of destructors. We will
in the following assume one fixed language L, with pairwise disjoint F , C, and D. We write
f, c, d for elements of F , C,D, respectively.
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Our type language includes 1 (unit), A × B (products), A → B (functions), disjoint
unions D (labelled sums, “data”), records R (labelled products), least fixed points µX.D,
and greatest fixed points νX.R.

Types A,B,C ::= X | 1 | A×B | A→ B | µX.D | νX.R
Variants D ::= 〈c1 A1 | · · · | cn An〉
Records R ::= {d1 : A1, . . . , dn : An}

In the above, let the ci be different and likewise the di. Variant types 〈c1 A1 | · · · | cn An〉,
finite maps from constructors to types, appear only in recursive data types µX.D. Records
{d1 : A1, . . . , dn : An}, finite maps from destructors to types, list the fields di of a recursive
record type νX.R. To illustrate, we define natural numbers Nat, lists, Nat-streams, and
colists:

Nat := µX.〈zero 1 | suc X〉
List A := µX.〈nil 1 | cons (A×X)〉
StrN := νX.{head : Nat, tail : X}
CoList A := νX.{out : µ .〈nil 1 | cons (A×X)〉}

In our non-polymorphic calculus, type variables X only serve to construct recursive data
types and recursive record types. As usual, µX.D (νX.R, resp.) binds type variable X in
D (R, resp.). Capture-avoiding substitution of type C for variable X in type A is denoted
by A[X := C]. A type is well-formed if it has no free type variables; in the following, we
assume that all types are well-formed.

We write c ∈ D when cA is part of the variant D for some A and define the type of
constructor c as (µX.D)c := A[X := µX.D]. Analogously, we write d ∈ R when d:A is part
of the record R for some A and define the type of the destructor d as (νX.R)d := A[X :=
νX.R].

A signature for L is a map Σ from F into the set of types. Unless stated differently, we
assume one fixed signature Σ. A typed language is a pair (L,Σ) where L is a language and
Σ is a signature for L. We sometimes write Σ instead of (L,Σ). We write f ∈ Σ if Σ(f) is
defined, i.e. f ∈ F . Next, we define the grammar of terms of a language L = (F , C,D).

e, r, s, t, u ::= x Variable | f Defined constant (function)
| () Unit (empty tuple) | t1 t2 Application
| (t1, t2) Pair | t .d Destructor application
| c t Constructor application

Terms are categorized as

• identifiers: variables x and defined constants f ,
• introduction forms: unit (), pairs (t1, t2), and constructed terms c t, for the positive

types 1, A×B, and µX.D, respectively,
• elimination forms: application t1 t2 and projection t .d for negative types A → B

and νX.R, respectively.

There are no elimination forms for positive types, since we define programs via rewrite rules
and employ pattern matching. Similarly, there are no introduction forms for negative types,
since this will be handled by copattern matching.
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∆(x) = A

∆ ` x : A ∆ ` () : 1

∆ ` t1 : A1 ∆ ` t2 : A2

∆ ` (t1, t2) : A1 ×A2

∆ ` t : (µX.D)c
∆ ` c t : µX.D

∆ ` f : Σ(f)
∆ ` t : A→ B ∆ ` u : A

∆ ` t u : B
∆ ` t : νX.R

∆ ` t .d : (νX.R)d

Figure 1: Rules for typing terms ∆ ` t : A.

x : A p̀at x : A · p̀at () : 1

∆1 p̀at p1 : A1 ∆2 p̀at p2 : A2

∆1,∆2 p̀at (p1, p2) : A1 ×A2

∆ p̀at p : (µX.D)c
∆ p̀at c p : µX.D

· c̀op f : Σ(f)

∆1 c̀op q : A→ B ∆2 p̀at p : A

∆1,∆2 c̀op q p : B

∆ c̀op q : νX.R

∆ c̀op q .d : (νX.R)d

Figure 2: Typing patterns ∆ p̀at p : A and copatterns ∆ c̀op q : C. (Variables in ∆1 and
∆2 are required to be disjoint.)

Note that we write destructor application as if it were a (post) application. In previous
work [APTS13] it was written without space as t.d, traditionally used for projection of
fields. We use the convention that s t .d stands for (s t) .d.

We write term substitutions as s[x1 := t1, . . . , xn := tn] or short s[~x := ~t]. Contexts ∆
are finite maps from variable to types, written as lists of pairs x1 : A1, . . . , xn : An, or short

~x : ~A, with · denoting the empty context. We write ∆ → A or ~A → A for n-ary curried
function types A1 → · · · → An → A (but A may still be a function type), and s ~t for n-ary
curried application s t1 · · · tn.

The typing rules for terms (relative to a typed language Σ) are defined in Figure 1. If
we want to explicitly refer to a given typed language (L,Σ) or Σ we write ∆ `L,Σ A or
∆ `Σ A, similarly for later notions of `.

2.2. Patterns and copatterns. For each f ∈ F , we will determine the rewrite rules for
f as a set of pairs (q −→ r) where q is a copattern, sometimes referred to as left hand
side (lhs), and r a term, sometimes referred to as right hand side (rhs). Patterns p and
copatterns q are special terms given by the grammar below, where c ∈ C and d ∈ D.

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

q ::= f Head (constant)
| q p Application copattern
| q .d Destructor copattern

Pattern and copattern typing is defined in Figure 2. It computes a context ∆ containing
all the variables in the (co)pattern. It ensures that p and q are linear, i.e. each variable of
∆ occurs exactly once in p or q. The distinction between patterns and copatterns is in this
article only relevant in this grammar and in the rules for typing patterns and copatterns,
therefore we will often write simply “pattern” for both.
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∆ c̀op q : A ∆ ` t : A

∆ ` q −→ t : A

Figure 3: Typing rule for ∆ ` q −→ t : A

Figure 3 shows the typing of reduction rules. Note that context ∆ and type A of the
reduction rule can be computed from the copattern q, given the type of the head f of q.
Thus, reduction rules need no user-supplied type information to be type checked.

Lemma 2.1 ((Co)pattern substitution). Let ∆′ p̀at p
′ : A, and variables in ∆ and ∆′ be

disjoint.

(a) If ∆, x:A p̀at p : C then ∆,∆′ p̀at p[x := p′] : C.
(b) If ∆, x:A c̀op q : C then ∆,∆′ c̀op q[x := p′] : C.

Proof. First (a) by induction on p, then (b) by induction on q.

Lemma 2.2. If ∆ c̀op q : C then each variable x in ∆ occurs in q exactly once. Furthermore
x is not applied in q to another term or destructor.

Proof. Obvious.

Example 2.3 (Cycling numbers). Function cyc of type Nat→ StrN, when passed an integer
n, produces a stream n, n− 1, . . . , 1, 0, N,N − 1, . . . , 1, 0, N,N − 1, . . . for some predefined
constant N . To define this function we match on the input n and also observe the resulting
stream, highlighting the mix of pattern and copattern matching. The rules for cyc are the
following:

cyc x .head −→ x
cyc (zero ()) .tail −→ cyc N
cyc (suc x) .tail −→ cyc x

Example 2.4 (Fibonacci Stream). Nested destructor copatterns appear in the following
definition of the stream of Fibonacci numbers. It uses zipWith + which is the pointwise
addition of two streams.

zipWith f s t .head −→ f (s .head) (t .head)
zipWith f s t .tail −→ zipWith f (s .tail) (t .tail)

fib .head −→ 0
fib .tail .head −→ 1
fib .tail .tail −→ zipWith + fib (fib .tail)

Example 2.5 (Monoid). If records are used to implement algebraic structures or type
classes, it can be convenient to use an application pattern after a projection pattern. Con-
sider a record holding the monoid operations for a given type A:

MonoidA = ν .{mempty : A; mappend : A→ A→ A}
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The additive monoid on natural numbers can then conveniently implemented by the follow-
ing copattern matching:

monPlus : Monoid Nat
monPlus .mempty −→ 0
monPlus .mappend zero y −→ y
monPlus .mappend (suc x) y −→ suc (monPlus .mappend x y)

2.3. Coverage. For our purposes, the rules for a constant f are complete if every closed
well-typed term f ~t of positive type1 is in introduction form or has a reduction. Alternatively,
we could say that all cases for f are uniquely covered by the reduction rules. Coverage
implies that the execution of a well-typed program does not get stuck, and, since it generates
non-overlapping (co)patterns, is deterministic. That execution of programs does not get
stuck has been proven in our previous article [APTS13]; in this article, we extend coverage
checking to an algorithm for (co)pattern compilation.

We introduce the judgement f : A / | Q, called a coverage complete pattern set for
f (cc-pattern-set for f). Here Q is a set (∆i ` qi : Ci)i=1,...,n of typed patterns, and
juxtaposition Q Q′ denotes the disjoint union Q ] Q′, for instance, Q (∆ ` q : C) denotes
Q ] {∆ ` q : C}. Note that Q is a set, and therefore writing Q = Q′ (∆ ` q : C) does not
mean that (∆ ` q : C) is the last element of Q—in fact, Q has no order. If f : A / | Q then
the constant f of type A can be defined by the coverage complete copatterns qi (depending
on variables in ∆i) together with rewrite rules qi −→ ti for some ∆i ` ti : Ci.

Result splitting:

f : A / | (· ` f : A)
CHead

f : A / | Q (∆ ` q : B → C)

f : A / | Q (∆, x : B ` q x : C)
CApp

f : A / | Q (∆ ` q : νX.R)

f : A / | Q (∆ ` q .d : (νX.R)d)d∈R
CDest

Variable splitting:

f : A / | Q (∆, x : 1 ` q : C)

f : A / | Q (∆ ` q[x := ()] : C)
CUnit

f : A / | Q (∆, x : A1 ×A2 ` q : C)

f : A / | Q (∆, x1 : A1, x2 : A2 ` q[x := (x1, x2)] : C)
CPair

f : A / | Q (∆, x : µX.D ` q : C)

f : A / | Q (∆, x′ : (µX.D)c ` q[x := c x′] : C)c∈D
CConst

Figure 4: Coverage rules

1Restricting to f ~t : A of positive type A guarantees that f is fully applied to function arguments and
destructors. Underapplied instances of f might be stuck as the argument or projection we want to match
on is not present.
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f : Σ(f) / | (∆i ` qi : Ci)i=1,...,n ∆i ` ti : Ci (i = 1, . . . , n)

f : Σ(f) / | (∆i ` qi −→ ti : Ci)i=1,...,n

Figure 5: Rules for coverage complete set of rules (cc-rule-set) for f

The rules for deriving cc-pattern-sets are presented in Figure 4. In the variable splitting
rules, the split variable is written as the last element of the context. Because contexts are
finite maps they have no order—any variable can be split.

The judgement f : Σ(f) / | (∆i ` qi −→ ti : Ci)i=1,...,n, called a coverage complete set
of rules for f (cc-rule-set for f), has the derivation rule given in Fig. 5. In this situation
f : Σ(f) / | (∆i ` qi : Ci)i=1,...,n is called the underlying cc-pattern-set of the cc-rule-set.
The corresponding term rewriting rules for f are qi −→ ti.

Lemma 2.6 (Well-typedness of cc-pattern- and -rule-sets).

(a) If f : Σ(f) / | Q (∆ ` q : C) then ∆ c̀op q : C.
(b) If f : Σ(f) / | Q (∆ ` q −→ t : C) then ∆ ` q −→ t : C.

Proof. (a) By induction on coverage, using substitution lemma 2.1 for the variable splitting
cases. Part (b) follows from (a).

A program P over the typed language Σ is a function mapping each constant f to a
cc-rule-set Pf for f . We write t −→P t′ for one-step reduction of term t to t′ using the

compatible closure2 of the term rewriting rules in P, and drop index P if clear from the
context of discourse. We further write −→∗P for its transitive and reflexive closure and

−→≥1
P for its transitive closure.

Example 2.7 (Deriving a cc-pattern-set for cyc). We start with CHead

cyc : Nat→ StrN / | (· ` cyc : Nat→ StrN)

We apply x to the head by CApp.

cyc : Nat→ StrN / | (x : Nat ` cyc x : StrN)

Then we split the result by CDest.

cyc : Nat→ StrN / | (x : Nat ` cyc x .head : Nat)
(x : Nat ` cyc x .tail : StrN)

In the second copattern, we split x using CConst.

cyc : Nat→ StrN / |
(x : Nat ` cyc x .head : Nat)
(x : 1 ` cyc (zero x) .tail : StrN)
(x : Nat ` cyc (suc x) .tail : StrN)

We finish by applying CUnit which replaces x by () in the second clause.

cyc : Nat→ StrN / |
(x : Nat ` cyc x .head : Nat)
(· ` cyc (zero ()) .tail : StrN)
(x : Nat ` cyc (suc x) .tail : StrN)

This concludes the derivation of the cc-pattern-set for the cyc function.

2Closure under all term constructors, see e.g. Def. 2.2.4 of [Ter03].
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3. Reduction of Nested to Simple Pattern Matching

In the following, we describe a translation of deep (aka nested) (co)pattern matching
(i.e. pattern matching as defined before) into shallow (aka non-nested) pattern match-
ing, which we will call simple pattern matching. We are certainly not the first to describe
such a translation, except maybe for copatterns, but we have special requirements for our
translation. The obvious thing to ask for is simulation, i.e. each reduction step in the orig-
inal program should correspond to one or more reduction steps in the translated program.
However, we want the translation also to preserve and reflect normalization: A term in the
original program terminates, if and only if it terminates in the translated program. Preser-
vation of normalization is important for instance in dependently typed languages such as
Agda, where the translated programs are run during type checking and need to behave
exactly like the original, user-written programs.

The strong normalization property is lost by some of the popular translations. For in-
stance, translating rewrite rules to fixed-point- and case-combinators breaks normalization,
simply because fixed-point combinators reduce by themselves, allowing infinite reduction
sequences immediately. The same problem arises with special fixed-point combinators that
only unfold if their principal argument is a constructor term, or dually, co-fixed-point com-
binators that only unfold if their result is observed.3 Consider the following translation of
a function f with deep matching into such a fixed-point combinator:

f (zero ()) −→ zero ()
f (suc (zero ())) −→ zero ()
f (suc (suc x)) −→ f (suc x)

 fix f (x).case x of

 zero () −→ zero ()
suc (zero ()) −→ zero ()
suc (suc x) −→ f(suc x)

While the term f (sucx) terminates for the original program simply because no pattern
matches (i.e. no rewrite rule applies), it diverges for the translated program since the fixed-
point applied to a constructor unfolds to a term containing the original term as a subterm.
A closer look reveals that this special fixed-point combinator preserves normalization for
simple pattern matching only.

A particular characteristic of term rewrite systems is that recursion only unfolds when
the associated pattern matches—thus, recursion is tied to pattern matching. In the follow-
ing, we develop a translation of deep patterns that maintains normalization.

3.1. Simple patterns. A simple copattern qs is of one of the forms f ~x (no matching),
f ~x .d (shallow result matching) or f ~x ps (shallow argument matching) where simple
patterns ps are given by the grammar

ps ::= () | (x1, x2) | c x.

Definition 3.1 (Simple coverage-complete pattern sets).

3Such fixed-point combinators are used in the Calculus of Inductive Constructions, the core language of
Coq [INR12], but have also been studied for sized types [BFG+04, Abe06].
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(a) Simple cc-pattern-sets f : A / |s Q are defined as follows (∆ = ~x : ~A):

f : ∆→ A /|s (∆ ` f ~x : A)

f : ∆→ νX.R /|s (∆ ` f ~x .d : (νX.R)d)d∈R

f : ∆→ 1→ A /|s (∆ ` f ~x () : A)

f : ∆→ (B1 ×B2)→ A /|s (∆, y1 : B1, y2 : B2 ` f ~x (y1, y2) : A)

f : ∆→ (µX.D)→ A /|s (∆, x′ : (µX.D)c ` f ~x (c x′) : A)c∈D

(b) A cc-rule-set is simple if the underlying cc-pattern-set is simple. A constant in a
program is simple, if its cc-rule-set is simple. A program is simple if all its constants
are simple.

Remark 3.2. If f : A / |s Q then f : A / | Q.

3.2. The translation algorithm by example. Neither the cyc function nor the Fibonacci
stream are simple. The translation into simple patterns introduces auxiliary function sym-
bols which are obtained as follows: We start from the bottom of the derivation tree of a non
simple cc-pattern-set, remove the last derivation step, and create a new function symbol.
This function takes as arguments the variables from the original function we have not split
on and the (co)pattern matches from the last derivation set of the original derivation. Let
us walk through the algorithm of transforming patterns into simple patterns for the cyc
function. The original program is

cyc : Nat→ StrN / |
(x : Nat ` cyc x .head −→ x : Nat)
( ` cyc (zero ()) .tail −→ cyc N : StrN)
(x : Nat ` cyc (suc x) .tail −→ cyc x : StrN)

In the derivation of the underlying cc-pattern-set, the last step was CUnit replacing pattern
variable x : 1 by pattern (). We introduce a new constant g2 with a simple cc-rule-set and
replace the right hand side of the split clause with a call to g2 in the cc-rule-set of cyc. We
obtain the following program:

(x : Nat ` cyc x .head −→ x : Nat)
cyc : Nat→ StrN /| (x : 1 ` cyc (zero x) .tail −→ g2 x : StrN)

(x : Nat ` cyc (suc x) .tail −→ cyc x : StrN)

g2 : 1→ StrN /|s (· ` g2 () −→ cyc N : StrN)

Let a term in the new language be good, if all occurrences of the new function sym-
bol g2 are fully applied (in this case, applied to one argument). We can define a back-
translation interp of good terms into the original language by recursively replacing g2 s by
cyc (zero s) .tail for any term s.

The second last step in the derivation of the cc-pattern-set was a split of pattern variable
x : Nat into zero x and suc x using CConst. Again, we introduce a simple auxiliary function
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g1, which performs just this split and obtain a simple program with mutually recursive
functions cyc, g1, and g2:

cyc : Nat→ StrN /|s
(x : Nat ` cyc x .head −→ x : Nat)
(x : Nat ` cyc x .tail −→ g1 x : StrN)

g1 : Nat→ StrN /|s
(x : 1 ` g1 (zero x) −→ g2 x : StrN)
(x : Nat ` g1 (suc x) −→ cyc x : StrN)

g2 : 1→ StrN /|s (· ` g2 () −→ cyc N : StrN)

The back-interpretation of g1 for good terms of the new program replaces recursively g1 s
by cyc s .tail. We note the following:

(a) The translation can be performed by induction on the derivation of coverage; or,
one can do the translation while checking coverage.4

(b) The generated functions are simple upon creation and need not be processed re-
cursively. The right hand sides of these functions are either right hand sides of the
original program or calls to earlier generated functions applied to exactly the pattern
variables in context.

(c) When generating a function, it is invoked on the pattern variables in context. We
can define a function interp which interprets this generated function back into terms
of the original program (if applied to good terms).

(d) Since we gave earlier created functions (here: g2) a higher index than later created
functions (here: g1), calls between generated functions increase the index. There can
only be finitely many calls between generated functions before executing an original
right hand side again as coverage derivations have only finitely many steps. This
fact ensures preservation of normalization (see later).

(e) Calls between generated functions are undone by the back translation interp, thus
the corresponding reduction steps vanish under interp.

In the case of the Fibonacci stream, the copattern matching of zipWith is already simple.
The translation of fib is the following:

fib .head −→ 0
fib .tail −→ g

g .head −→ 1
g .tail −→ zipWith + fib (fib .tail)

3.3. The translation algorithm. Let P be the input program for typed language Σ.
Let Pf be a non-simple cc-rule-set of P. Consider the last step in the derivation of the
underlying cc-pattern-set. Since Pf is non-simple, this step cannot be CHead. Assume

Pf = f : Σ(f) / | Q (∆i ` qi −→ ti : Ci)i∈I .

where I refers to the index set representing the splitting from the rule. If the rule is CConst,
then I is the set of constructors {c | c ∈ D} for some variant D. Similarly for rule CDest

4This is actually happening in the language Idris [Bra13]; Agda [Nor07] has separate phases, but uses the
split tree generated by the coverage checker to translate pattern matching into case trees.
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I = {r | r ∈ R}. The other rules CApp, CUnit, and CPair do not split into multiple cases,
and we set I = {0}. Let the last step in the derivation of the underlying cc-pattern-set be

f : Σ(f) / | Q (∆′ ` q : A)

f : Σ(f) / | Q (∆i ` qi : Ci)i∈I
C

We extend Σ to Σ′ by adding one fresh constant g : ∆′ → A. Let ∆′ = ~y : ~A. Depending
on rule C we introduce below a simple q′i and define the program P ′ for the typed language
Σ′ by cases on the function symbol h:

P ′f = f : Σ(f) /| Q (∆′ ` q −→ g ~y : A)

P ′g = g : ∆′ → A /|s (∆i ` q′i −→ ti : Ci)i∈I

P ′h = Ph if h 6∈ {f, g}

Note that the underlying cc-pattern-set for f is as in the premise of C. Furthermore, P ′g
is simple, and all other constants are left unchanged. Therefore the height of the derivation
for the cc-pattern-set for f is reduced by 1. We then recursively apply the algorithm on P ′.
Since each step of the algorithm makes the coverage derivation of one non-simple function
shorter and the new constants are simple, the algorithm terminates, returning only simple
constants.

In case of variable splitting, we always reorder ∆′ such that the variable we split on

appears last. When referring to a context ∆, assume ∆ = ~x : ~A.

Case q x −→ t and C is

f : Σ(f) / | Q (∆ ` q : B → C)

f : Σ(f) / | Q (∆, x : B ` q x : C)
CApp

Define q′0 = g ~x x. Therefore,

P ′f = f : Σ(f) /| Q (∆ ` q −→ g ~x : B → C)

P ′g = g : ∆→ B → C /|s (∆, x : B ` g ~x x −→ t : C)

Case q .d −→ td for all d ∈ R and C is

f : Σ(f) / | Q (∆ ` q : νX.R)

f : Σ(f) / | Q (∆ ` q .d : (νX.R)d)d∈R
CDest

Define q′d = g ~x .d. Therefore,

P ′f = f : Σ(f) /| Q (∆ ` q −→ g ~x : νX.R)

P ′g = g : ∆→ νX.R /|s (∆ ` g ~x .d −→ td : (νX.R)d)d∈R

Case q[x′ := ()] −→ t and C is

f : Σ(f) / | Q (∆, x′ : 1 ` q : C)

f : Σ(f) / | Q (∆ ` q[x′ := ()] : C)
CUnit

Define q′0 := g ~x (). Therefore,

P ′f = f : Σ(f) /| Q (∆, x′ : 1 ` q −→ g ~x x′ : C)

P ′g := g : ∆→ 1→ C /|s (∆ ` g ~x () −→ t : C)
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Case q[x′ := (x1, x2)] −→ t and C is

f : Σ(f) / | Q (∆, x′ : A1 ×A2 ` q : C)

f : Σ(f) / | Q (∆, x1 : A1, x2 : A2 ` q[x′ := (x1, x2)] : C)
CPair

Define q′0 = g ~x (x1, x2). Therefore,

P ′f = f : Σ(f) /| Q (∆, x′ : A1 ×A2 ` q −→ g ~x x′ : C)

P ′g = g : ∆→ (A1 ×A2)→ C /|s (∆, x1 : A1, x2 : A2 ` g ~x (x1, x2) −→ t : C)

Case q[x′ := c x′] −→ tc for all c ∈ D and C is

f : Σ(f) / | Q (∆, x′ : µX.D ` q : C)

f : Σ(f) / | Q (∆, x′ : (µX.D)c ` q[x′ := c x′] : C)c∈D
CConst

Define q′c := g ~x (c x′). Therefore,

P ′f = f : Σ(f) /| Q (∆, x′ : µX.D ` q −→ g ~x x′ : C)

P ′g = g : ∆→ µX.D → C /|s (∆, x′ : (µX.D)c ` g ~x (c x′) −→ tc : C)c∈D

4. Extensions of Abstract Reduction Systems

It is easy to see that a reduction in the original program P (over Σ) corresponds to possibly
multiple reductions in the translated language P ′ (over Σ′). What is more difficult to prove
is that we do not get additional reductions, i.e. if t 6−→∗P t′ then it is impossible to reduce
t to t′ using reductions and intermediate terms in P ′. We call this notion a conservative
extension. Even this will not be sufficient as pointed out in Sect. 3, we need in addition
preservation of normalization. We will define and explore the corresponding notions more
generally for abstract reduction systems (ARS ).

An ARS is a pair (A,−→), often just written A, such that A is a set and −→ is a
binary relation on A written infix. Let −→∗ be the transitive-reflexive and −→≥1 be the
transitive closure of −→. An element a ∈ A is in normal form (NF) if a 6−→, i.e. there is
no a′ ∈ A such that a −→ a′. It is weakly normalizing (WN) if there exists an a′ ∈ A in
NF such that a −→∗ a′. Element a is strongly normalizing (SN) if there exist no infinite
reduction sequence a = a0 −→ a1 −→ a2 −→ · · · . Let SN, WN, NF be the set of elements
in A which are SN, WN, NF respectively. For a reduction system (A′,−→′), let SN′, WN′,
NF′ be the elements of A′ which are −→′-SN, -WN, -NF.

Let (A,−→), (A′,−→′) be ARS such that A ⊆ A′. Then,

A′ is a conservative extension of A iff ∀a, a′ ∈ A. a −→∗ a′ ⇔ a −→′∗ a′
A′ is an SN-preserving extension of A iff ∀a ∈ A. a ∈ SN ⇔ a ∈ SN′

A′ is a WN-preserving extension of A iff ∀a ∈ A. a ∈WN ⇔ a ∈WN′

Lemma 4.1 (Transitivity of conservative/SN/WN-preserving extensions). Let A,A′,A′′ be
ARSs, A′ be an extension of A and A′′ an extension of A′, both of which are conservative,
SN-preserving, or WN-preserving extensions. Then A′′ is a conservative, SN-preserving, or
WN-preserving extension, respectively, of A.

Proof. Obvious.
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In order to show conservativity and normalization preservation, we use the notion of a
back-translation from the extended ARS into the original one that we informally described
in Section 3.2:

Let (A,−→), (A′,−→′) be ARSs such that A ⊆ A′. Then a back-interpretation of A′
into A is given by

• a set Good such that A ⊆ Good ⊆ A′; we say a is good if a ∈ Good;
• a function interp : Good→ A such that ∀a ∈ A. interp(a) = a.

We define 3 conditions for a back-interpretation (Good, interp) where condition (SN 2) refers
to a measure m : Good→ N:

(SN 1) ∀a, a′ ∈ A. a −→ a′ ⇒ a −→′≥1 a′.
(SN 2) If a ∈ Good, a′ ∈ A′ and a −→′ a′ then a′ ∈ Good and we have

interp(a) −→≥1 interp(a′) or interp(a) = interp(a′) ∧m(a) > m(a′).
(WN) If a ∈ Good ∩ NF′ then interp(a) ∈ NF.

The following theorem substantially extends Lem. 1.1.27 of [vR96] and Lem. 2.2.5 of [Sev96]:

Theorem 4.2 (Back-interpretations for ARSs and conservativity, SN, WN). Let (A,−→),
(A′,−→′) be ARSs such that A ⊆ A′. Let (Good, interp) be a back-interpretation from A′
into A, m : Good→ N. Then the following holds:

(a) (SN 1), (SN 2) imply that A′ is a conservative extension of A preserving SN.
(b) (SN 1), (SN 2), (WN) imply that A′ is an extension of A preserving WN.

Proof. (a) Proof of Conservativity: a −→∗ a′ implies by (SN 1) a −→′∗ a′. If a, a′ ∈ A,
a −→′∗ a′ then by (SN 2) a = interp(a) −→∗ interp(a′) = a′.
Proof of preservation of SN: We show the contrapositive ¬(a is −→-SN)⇔ ¬(a is −→′-SN).
For “⇒” assume a = a0 −→ a1 −→ a2 −→ · · · is an infinite −→-reduction sequence starting

with a. Then by (SN 1) a = a0 −→′≥1 a1 −→′≥1 a2 −→′≥1 · · · is an infinite −→′-reduction
sequence.
For “⇐” assume a = a′0 −→′ a′1 −→′ a′2 −→′ · · · . Then by (SN 2) a = interp(a0) =
interp(a′0) −→∗ interp(a′1) −→∗ interp(a′2) −→∗ · · · . If interp(a′i) = interp(a′i+1) then m(a′i) >
m(a′i+1), so by (SN 2) after finitely many steps, where interp(a′i) = interp(a′i+1), we must

have one step interp(a′j) −→≥1 interp(a′j+1). Thus, we obtain an infinite reduction sequence
starting with a in A.

(b) Assume a ∈ A, a ∈ WN. Then a −→∗ a′ ∈ NF for some a′, therefore a′ ∈ SN, by (a)
a′ ∈ SN′, a′ −→′∗ a′′ for some a′′ ∈ NF′, therefore a −→′∗ a′ −→′∗ a′′ ∈ NF′, a ∈ WN′. For
the other direction, assume a ∈ A, a ∈WN′. Then a −→′∗ a′ ∈ NF′ for some a′, by (SN 2),
(WN) a = interp(a) −→∗ interp(a′) ∈ NF, a ∈WN.

5. Proof of Correctness of the Translation

In our translation we extend our language by new auxiliary constants while keeping the old
ones, including their types. More formally, we define Σ ⊆F Σ′, pronounced Σ′ extends Σ by
constants, if (1) Σ′ and Σ have the same constructor and destructor symbols C,D, (2) the
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constants F of L form a subset of the constants of L′, and (3) Σ and Σ′ assign the same
types to F .

Let P be a program for Σ, TermΣ = {t | ∃∆, A.∆ `Σ t : A}. The ARS for a program
P is (TermΣ,−→P). Let P,P ′ be programs for typed languages Σ, Σ′, respectively. P ′
is an extension of P iff Σ ⊆F Σ′. If P ′ is an extension of P, then P ′ is a conservative,
SN-preserving, or WN-preserving extension of P if the corresponding condition holds for
the ARSs (TermΣ,−→P) and (TermΣ′ ,−→P ′).

We will define a back-interpretation by replacing the new constants g in terms of the
form g t1 . . . tn by a term of the original language. Due to lack of λ-abstraction, we only get
a term of the original language if g is applied to n arguments. So, for our back translation,
we need an arity(g) = n of new constants, and an interpretation Interp(g) of those terms:

Assume Σ ⊆F Σ′. A concrete back-interpretation (arity, Interp) of Σ′ into Σ is given by
the following:

• An arity arity(g) = n assigned to each new constant g of Σ′ such that Σ′(g) = A1 →
· · · → An → A for some types A1, . . . , An, A. Here, A (as well as any Ai) might be
a function type.
• For every new constant g of Σ′ with arity(g) = n and Σ′(g) = ∆ → A where

∆ = x1:A1, . . . , xn:An a term Interp(g) = t of Σ such that ∆ ` t : A. In this case,
we write Interp(g)[~t] for t[~x := ~t].

Assume that (arity, Interp) is a concrete back-interpretation of Σ′ into Σ.

• The set Goodarity,Interp of good terms is given by the set of t ∈ TermΣ such that each
occurrence of a new constant g of arity n in t is applied to at least n arguments.
• If t ∈ Goodarity,Interp, then interparity,Interp(t), in short interp(t), is obtained by induc-

tively replacing all occurrences of g ~t for new constants g by Interp(g)[interp(~t)].

Lemma 5.1 (Concrete back-interpretations are back-interpretations). Assume Σ ⊆F Σ′

and (arity, Interp) is a concrete back interpretation of Σ′ into Σ. Then the pair (Goodarity,Interp,
interparity,Interp) is a back-interpretation of TermΣ′ into TermΣ.

We now have the definitions in place to prove SN+WN-conservativity of our translation.

Lemma 5.2 (Some simple facts). Assume f : A / | Q (~x: ~A ` q : A).

(a) Each variable xi occurs exactly once in q.
(b) If q[~x := ~t] is good, then the ti are good as well.

Proof. By Lem. 2.2 and 2.6.

Theorem 5.3 (Correctness of Translation). Let P be a program for Σ. Then there exists a
typed language Σ′ ⊇F Σ and a simple program P ′ for Σ′, which is a conservative extension
of P preserving SN and WN.

Proof. Define for a program P the height of its derivation height(P) as the sum of the
heights of the derivations of those covering patterns in P, which are not simple covering
patterns. The proof is by induction on height(P).

The case height(P) = 0 is trivial, since P is simple. Assume height(P) > 0. We obtain
a Σ′ ⊇F Σ and corresponding program P ′ for Σ′ by applying one step of Algorithm 3.3
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to P. We show below that P ′ is a conservative extension of P preserving SN and WN.
Since the derivations for the coverage complete pattern sets in P ′ are the same as for P,
except for the one for P ′f , which is reduced in height by one as the algorithm takes out the

last derivation of the coverage derivation of Pf , and that for P ′g, which is simple, we have
height(P ′) = height(P) − 1. By induction hypothesis there exists a conservative extension
P ′′ of P ′ preserving SN and WN, which is simple, which is as well a conservative extension
of P preserving SN and WN. This extension is obtained by the recursive call made by the
algorithm.

So we need to show that P ′ is a conservative extension of P preserving SN and WN.

Let f, g,∆′, ~y, q, A, I,∆i, qi, ti, Ci, q
′
i be as stated in Algorithm 3.3, ∆i = ~yi : ~Ai, and n be

the length of ∆′.

We introduce a concrete back-interpretation of P ′ into P by defining arity(g) := n and
Interp(g)[~y] := q. Let m(t) be the number of occurrences of f in t. Let (Good, interp) be the
corresponding back interpretation.

Assume P ′ fulfils with the given q′i the following conditions:

(1) interp(q′i) = qi −→P ′ q′i.
(2) If q[~x := ~s] ~t = qi, then g ~s ~t = q′i, where ti are terms or of the form .d.

Then (Good, interp) fulfils (SN 1), (SN 2), and (WN), and therefore P ′ is a conservative
extension of P preserving SN and WN:

(SN 1) holds since the only changed derivation is based on the original redex qi[~yi := ~s] −→P
ti[~yi := ~s] and by (1) qi[~yi := ~s] −→P ′ q′i[~yi := ~s] −→P ′ ti[~yi := ~s].

(SN 2) holds since the new redexes are the following:

(a) q[~y := ~s] −→P ′ g ~s, where q[~y := ~s] is good. By Lem. 5.2 (b) ~s are good as well,
and therefore as well g ~s. We have interp(q[~y := ~s]) = q[~y := interp(~s)] = interp(g ~s).
Furthermore, m(q[~y := ~s]) = m(g ~s) + 1 > m(g ~s), since pattern q starts with f , and
each variable in ~y occurs by Lem. 5.2 (a) exactly once in q.

(b) q′i[~yi := ~s] −→P ′ ti[~yi := ~s]. Since q′i[~yi := ~s] is good, as in (a) ~s are good and
therefore ti[~yi := ~s] is good. Furthermore, by (1)

interp(q′i[~yi := ~s]) = interp(q′i)[~yi := interp(~s)])
= qi[~yi := interp(~s)]

−→P ti[~yi := interp(~s)]
= interp(ti[~yi := ~s]).

Proof of (WN): We first show that (2) implies

(3) If s ∈ Good, interp(s) = qi then s = qi ∨ s = q′i.

Since qi starts with f , s must start with f or g. The only occurrence of a constant in qi
is at the beginning, therefore s = f ~r or s = g ~r where interp(~r) = ~r. If s = f ~r then
s = interp(s) = qi. If s = g ~r = g ~s ~t, q[~x := ~s] ~t = interp(s) = qi, therefore by (2)
s = g ~s ~t = q′i.

Using (3), assume s ∈ Good, s ∈ NF′, and show interp(s) ∈ NF. Assume interp(s) 6∈ NF,
interp(s) has redex q̃[~x := ~r] for a pattern q̃ of P. If q̃ 6= qi, q̃ starts with some h 6= f, g,

and has no occurrences of f, g. Then s contains q̃[~x := ~r′] where interp(~r′) = ~r, and has
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therefore a redex, contradicting s ∈ NF′. Therefore q̃ = qi for some i. Therefore s contains

a subterm s′[~x := ~r′] such that interp(s′) = qi, interp(~r′) = ~r. But then by (1), (3) s′[~x := ~r′]
has a reduction, again a contradiction.

So in order to complete the proof we need to verify conditions (1), (2):

Case: last rule is (CApp).
(1) interp(q′0) = interp(g ~x x) = Interp(g)[~x] x = q x = q0 −→P ′ g ~x x = q′0.

(2) If q[~x := ~s] ~t = q0 = q x, ~s = ~x, ~t = x, g ~s ~t = g ~x x = q′0.

Case: last rule is (CDest).
(1) interp(q′d) = interp(g ~x .d) = Interp(g)[~x] .d = q .d = qd −→P ′ g ~x .d = q′d.

(2) If q[~x := ~s] ~t = qd = q .d, ~s = ~x, ~t = .d, g ~s ~t = g ~x .d = q′d.

Case: last rule is (CUnit).
(1) interp(q′0) = interp(g ~x ()) = Interp(g)[~x, x′ := ()] = q[x′ := ()] = q0 −→P ′ g ~x () = q′0.

(2) If q[~x := ~s, x′ := r] ~t = q0 = q[x′ := ()], ~s = ~x, r = (), ~t is empty,

g ~s r ~t = g ~x () = q′0.

Case: last rule is (CPair).
(1) interp(q′0) = interp(g ~x (x1, x2)) = Interp(g)[~x, x′ := (x1, x2)] = q[x′ := (x1, x2)]

= q0 −→P ′ g ~x (x1, x2) = q′0.

(2) If q[~x := ~s, x′ := r] ~t = q0 = q[x′ := (x1, x2)], ~s = ~x, r = (x1, x2), ~t is empty,

g ~s r ~t = g ~x (x1, x2) = q′0.

Case: last rule is (CConst).
(1) interp(q′c) = interp(g ~x (c x′)) = Interp(g)[~x, x′ := (c x′)] = q[x′ := c x′]

= qc −→P ′ g ~x (c x′) = q′c.

(2) If q[~x := ~s, x′ := r] ~t = qc = q[x′ := c x′], ~s = ~x, r = c x′, ~t is empty,

g ~s r ~t = g ~x (c x′) = q′c.

6. Conclusion

We have described a reduction of deep copattern matching to shallow copattern matching.
The translation preserves weak and strong normalization. It is conservative, thus establish-
ing a weak bisimulation between the original and the translated program. The translated
programs can be used for more efficient evaluation in a checker for dependent types or can
serve as intermediate code for translation into a more low-level language that has no concept
of pattern at all.

There are two more translations of interest. The first one is a translation into a variable-
free language of combinators, including a proof of conservativity and preservation of nor-
malization. Our techniques were developed more generally in order to prove correctness for
this translation as well. A second translation would be to a call-by-need lambda-calculus
with lazy record constructors. This would allow us to map definitions of infinite structures
by copatterns back to Haskell style definitions by lazy evaluation. While there seems to be
no (weak) bisimulation in this case, one still can hope for preservation of normalization,
maybe established by logical relations.
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