
Under consideration for publication in Math. Struct. in Comp. Science

Extensions to Miller’s Pattern Unification
for Dependent Types and Records

Andreas ABEL and Brigitte PIENTKA
Department of Computer Science and Engineering, Gothenburg University
School of Computer Science, McGill University, Montreal, Canada

Received 2 May 2018

Several extensions to Miller’s algorithm for higher-order pattern unification are

presented. The main extension is to dependent record types which are decomposed into

strong Sigma-types and an extensional unit type. Our algorithm takes type

isomorphisms into account to translate unification problems containing dependent record

types into those involving only dependent function types. Further extensions such as

postponement of constraints, handling of non-linear patterns, and pruning improve the

performance of the unifier in practical type reconstruction problems.

Our solution takes the form of a inference system that applies small refinements to a

constraint set until an inconsistency has surfaced or a (partial) solution been reached.

The article describes the individual refinement steps of our algorithm using numerous

examples together with the correctness proof of the algorithm.

1. Introduction

Higher-order unification is a key operation in logical frameworks, dependently-typed pro-

gramming systems, or proof assistants supporting higher-order logic. It plays a central

role in type inference and reconstruction algorithms, in the execution of programs in

higher-order logic programming languages, and in reasoning about the totality of func-

tions defined by pattern-matching clauses.

While full higher-order unification is undecidable [Goldfarb, 1981], Miller [1991] iden-

tified a decidable fragment of higher-order unification problems, called the pattern frag-

ment. A pattern is a unification problem where all meta-variables (or logic variables)

occurring in a term are applied to some distinct bound variables. For example, the prob-

lem λx y z.X x y = λx y z. x (suc y) falls into the pattern fragment, because the meta-

variable X is applied to distinct bound variables x and y; the pattern condition allows

us to solve the problem by a simple abstraction X = λx y. x (suc y). This is not pos-

sible for non-patterns; examples for non-pattern problems, which have no unique most

general unifier, can be obtain by changing the left hand side of the previous problem to

λx y z.X xx y (non-linearity), λx y z.X (Y x) y (X applied to another meta-variable) or

λx y z.X x (suc y) (X applied to non-variable term).

In practice, the pure pattern fragment is too restrictive for many applications. Systems

such as Abella [Gacek, 2008], Agda [2018], Beluga [Pientka and Dunfield, 2010, Pientka

A. Abel and B. Pientka 2

and Cave, 2015], λProlog [Nadathur and Mitchell, 1999, Nadathur and Linnell, 2005], and

Twelf [Pfenning and Schürmann, 1999] solve eagerly these sub-problems which fall into

the pattern fragment and delay sub-problems outside the pattern fragment until more

information has been gathered. The additional information might simplify the delayed

constraints such that they also fall into the pattern fragment; we speak of the dynamic

pattern fragment when postponement is involved [Michaylov and Pfenning, 1992]. As a

consequence, the unification algorithm is best described as an inference system [Shankar,

2005]. Initial unification constraints are refined in small steps (“inferences”) until a (par-

tial) solution is found or an inconsistency has surfaced. Alternatively, we could say we

apply non-deterministically rewrite rules to the set of constraints until no further progress

is possible.

In addition, we need higher-order unification beyond the pure λΠ-calculus. In Beluga

and Twelf, Σ-types are used to group assumptions together. Agda supports Σ-types in

form of records with associated η-equality in its general form. To handle also Σ-types,

extra ingredients are needed in the unification algorithm. For instance, following terms

may be seen as equivalent:

1 λy1.λy2. X (y1, y2),

2 λy.X (fst y) (snd y) and

3 λy1.λy2. X y1 y2.

Only the last term falls within the pattern fragment as originally described by Miller.

However, the other two terms can be transformed such that they also fall into the pattern

fragment: for term (1), we replace X with λy.X ′ (fst y) (snd y); for term (2), we unfold

y which stands for a pair and replace y with (y1, y2).

In this article, we describe a higher-order unification algorithm for the λΠΣ calculus; our

algorithm handles lazily η-expansion and we translate terms into the pure pattern frag-

ment where a meta-variable is applied to distinct bound variables. The key insight is to

take into account type isomorphisms for Σ, the dependently typed pairs: Πz:(Σx:A.B).C

is isomorphic to Πx:A.Πy:B.[(x, y)/z]C, and a function f :Πx:A.Σy:B.C can be translated

into two functions f1 : Πx:A.B and f2 : Πx:A.[f1 x/y]C. These transformations allow us

to handle a richer class of dependently-typed patterns than previously considered.

Following Nanevski et al. [2008] and the second author [Pientka, 2003], our description

takes advantage of modelling meta-variables as closures; instead of directly considering

a meta-variable X at function type Π~x: ~A.B which is applied to ~x, we describe them as

contextual objects, i.e., objects of type B in a context ~x: ~A, which are associated with

a delayed substitution for the local context ~x: ~A.† This allows us to give a high-level

description and analysis following Dowek et al. [1996], but not resorting to explicit sub-

stitutions. More importantly, it provides a logical grounding for some of the techniques

such as “pre-cooking” and handles a richer calculus including Σ-types. Our work also

avoids some of the other shortcomings; as pointed out by Reed [2009b], the algorithm

sketched by Dowek et al. [1996] fails to terminate on some inputs. We give a clear specifi-

cation of the pruning which eliminates bound variable dependencies for the dependently

† We write ~x: ~A for a vector x1:A1, . . . xn:An.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 3

typed case and show correctness of the unification algorithms in three steps: first, we show

that it terminates, then, we show that the transformations in our unification algorithm

preserve types, and, finally, that each transition neither destroys nor creates (additional)

solutions.

This is the extended version of a published conference paper [Abel and Pientka, 2011].

2. λΠΣ-calculus with meta-variables

In this paper, we are considering an extension of the λΠΣ-calculus [Pfenning, 1989] with

meta-variables. Its grammar is given in Fig. 1. Besides atomic types P of the form

aM1 . . .Mn which can be introduced by constructors c, it features dependent function

types Πx:A.B with abstraction λx.M and application RN and dependent pair types

Σx:A.B with tupling (M, N) and projection π R, where π can be the first (fst) or second

(snd) projection. As λΠΣ is strongly normalizing, it is sufficient to consider β-normal

forms only.‡ Consequently, only neutral terms R can be in elimination position, where

neutrals are rigid heads H possibly eliminated by applications and/or projections.

Variables x, y, z

Meta-variables u, v, w

Sorts s ::= type | kind
Atomic types P,Q ::= a ~M

Types A,B,C,D ::= P | Πx:A.B | Σx:A.B

Kinds κ ::= type | Πx:A.κ

(Rigid) heads H ::= a | c | x
Projections π ::= fst | snd
Evaluation contexts E ::= • | EN | π E
Neutral terms R ::= E[H] | E[u[σ]]

Normal terms M,N ::= R | λx.M | (M , N)

Substitutions σ, τ ::= · | σ,M
Variable substitutions ρ, ξ ::= · | ρ, x
Contexts Ψ,Φ,Γ ::= · | Ψ, x:A

Meta substitutions θ, η ::= · | θ, Ψ̂.M/u

Meta contexts ∆ ::= · | ∆, u:A[Ψ]

Fig. 1. λΠΣ with meta-variables

Meta-variables appear in terms as closures u[σ] which consist of a meta-variable u

under a suspended explicit substitution σ. The term λx y z.X x y with the meta-variable

X of type Πx:A.Πy:B.C is represented in our calculus as λx y z. u[x, y] where u has type

C[x:A, y:B] and [x, y] is a substitution with domain x:A, y:B and the range x, y, z. This

meta-variable u can be replaced by a contextual object such as x, y. x (suc y). In general,

‡ In our terminology, β subsumes all computation steps; beyond application reduction (λx.M)N =β
[N/x]M also the projection reductions fst (M,N) =β M and snd (M,N) =β N .

A. Abel and B. Pientka 4

a contextual object Ψ̂.M is a term M whose free variables have to be contained in the

variable list Ψ̂ . (In the example, Ψ̂ = x, y and M = x (suc y).) The use of contextual

objects instead of closed terms eliminates the need to craft a λ-prefix for the instantiation

of meta-variables, avoiding the creation of administrative β-redexes. In general, meta-

variable u of contextual type A[Ψ] stands for a contextual object Ψ̂.M where Ψ̂ is the

domain of Ψ, i. e., the list of variables declared in Ψ in the correct order. The use of the

prefix Ψ̂ allows us to rename the free variables occurring in M if necessary.

A signature Σ is a collection of declarations, which take one of the forms: a : κ (type

family declaration) or c : A (constructor declaration). While signatures fill λΠΣ with

“life”, i. e., data types and structures, they do not matter much for our studies of uni-

fication in this article. The whole development is parametrized by a fixed signature Σ

which we usually suppress in typing and other judgements.

Because variable substitutions ρ play a special role in the formulation of our unification

algorithm, we recognize them as a subclass of general substitutions σ. Weakening substi-

tutions wkΦ , which are a special case of variable substitutions, are defined recursively

by wk· = (·) and wkΦ,x:A = (wkΦ, x). The subscript Φ is dropped when unambiguous.

Incidentially, wkΦ = Φ̂, but conceptually, one is a substitution and one a list of binders,

thus, we keep them separate. If and only if Φ is a sub-context of Ψ modulo η-equality,

then wkΦ is a well-formed substitution in Ψ, i.e., Ψ ` wkΦ : Φ holds (see Fig. 2).

We write E[M] for plugging term M into the hole • of evaluation context E. This

will be useful when describing the unification algorithm, since we often need to have

access to the head of a neutral term. In the λΠ-calculus, this is often achieved using the

spine notation [Cervesato and Pfenning, 2003], simply writing HM1 . . .Mn. Evaluation

contexts are the proper generalization of spines to projections. §

Occurrences and free variables. If α, β are syntactic entities such as evaluation con-

texts, terms, or substitutions, α, β ::= E | R | M | σ, we write α{β} if β is a

part of α. If we subsequently write α{β′} then we mean to replace the indicated oc-

currence of β by β′. We say that an occurrence is rigid if it is not part of a de-

layed substitution σ of a meta-variable, otherwise it is termed flexible. For instance,

in c (u[y1]) (x1 x2) (λz. z x3 v[y2, w[y3]]) there are rigid occurrences of x1..3 and flexible

occurrences of y1..3. The meta-variables u, v appear in a rigid and w in a flexible posi-

tion. A rigid occurrence is strong if it is not in the evaluation context of a free variable. In

our example, only x2 does not occur strongly rigidly. Following Reed [2009b] we indicate

rigid occurrences by α{β}rig and strongly rigid occurrences by α{β}srig .

Flexible variable occurrences can vanish by instantiation of meta-variables, rigid ones

not. In our example, y1 will disappear by the substitution y1.c
′/u. Rigid variables might

disappear by instantiation of other free variables and subsequent normalization. For

instance, x2 disappears when we substitute λx2.c
′ for x1. However, strongly rigid ones

will only disappear when they are instantiated themselves, not through other variable

instantiations.

§ See also Schack-Nielsen and Schürmann [2010] for a similar generalization in the linear setting.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 5

We denote the set of free variables of α by FV(α) and the set of free meta-variables

by FMV(α) . A superscript rig indicates to count only the rigid variables.

Typing and equality. Fig. 2 lists the typing judgements and rules. Separating the typing

rules for neutrals, whose type can be inferred (⇒ judgments), from the typing rules for

normal expressions, which need the type as input (⇐ judgement), we obtain a simple

bidirectional type checking algorithm which is complete for β-normal forms. In contrast

to other bidirectional formulations of LF [Harper and Licata, 2007], our terms need not

be η-long. The judgment A =η C (rules omitted) compares A and C modulo η, i.e.,

modulo R = λx.Rx (when x 6∈ FV(R)) and R = (fstR , sndR).

Hereditary substitution and meta substitution. For α a well-typed entity in context Ψ

and ∆; Φ ` σ : Ψ a well-formed substitution, we define a simultaneous substitution

operation [σ]Ψα that substitutes the terms in σ for the variables as listed by Ψ in α

and produces a β-normal result. Such an operation exists for well-typed terms, since

λΠΣ is normalizing. A naive implementation just substitutes and then normalizes. A

refined implementation, called hereditary substitution [Watkins et al., 2003], proceeds

by resolving newly created redexes on the fly through further substitutions. Both Agda

[2018] and Beluga [Pientka and Dunfield, 2010, Pientka and Cave, 2015] use that strategy,

as well as other theoretical investigations of logical frameworks [Harper and Licata, 2007].

Single hereditary substitution [N/x]Aα is conceived as a special case of simultaneous

substitution. The type annotation A and the typing information in Ψ allow hereditary

substitution to be defined by structural recursion; if no ambiguity arises, we may omit

indices Ψ and A from substitutions and simply write [σ]α and [N/x]α , resp.

The meta-substitution operation, i. e., substitution of meta-variables by contextual

objects, is written as [[Ψ̂.M/u]]N and the simultaneous meta substitution as [[θ]]N .

Both operations restore β-normality. In the particular case when we apply Ψ̂.M/u to

u[σ], we first substitute Ψ̂.M for u in σ to obtain σ′. Subsequently, we continue to

apply σ′ to M hereditarily to obtain M ′. Note that meta substitutions are “closed”

wrt. LF variables, i. e., FV(θ) = ∅. Thus, they go under binders unaltered, and we have

[[θ]](λxN) = λx. [[θ]]N .

3. Constraint-based unification

In this section, we define our unification algorithm for λΠΣ in the style of an inference

system [Shankar, 2005], i. e., using rewrite rules which solve constraints incrementally.

Constraints K and sets of constraints K are defined as follows:

Constraint K ::= > | ⊥ Trivial constraint and inconsistency.

| Ψ `M = N : C Unify term M with N .

| Ψ | R:A ` E = E′ Unify evaluation context E with E′.

| Ψ ` u←M : C Solution for u found.

Constraint sets K ::= K | K ∧K (modulo laws of conjunction).

A. Abel and B. Pientka 6

Neutral terms/types ∆; Ψ ` R⇒ A (∆ and Ψ fixed)

Σ(a) = κ

∆; Ψ ` a⇒ κ

Σ(c) = A

∆; Ψ ` c⇒ A

Ψ(x) = A

∆; Ψ ` x⇒ A

u:A[Φ] ∈ ∆ ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ [σ]ΦA

∆; Ψ ` R⇒ Πx:A.B ∆; Ψ `M ⇐ A

∆; Ψ ` RM ⇒ [M/x]AB

∆; Ψ ` R⇒ Σx:A.B

∆; Ψ ` fstR⇒ A

∆; Ψ ` R⇒ Σx:A.B

∆; Ψ ` sndR⇒ [fstR/x]AB

Normal terms ∆; Ψ `M ⇐ A (∆ fixed)

∆; Ψ ` R⇒ A A =η C

∆; Ψ ` R⇐ C

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ Πx:A.B

∆; Ψ `M ⇐ A ∆; Ψ ` N ⇐ [M/x]AB

∆; Ψ ` (M , N)⇐ Σx:A.B

Substitutions ∆; Ψ ` σ ⇐ Ψ′ (∆ and Ψ fixed)

∆; Ψ ` · ⇐ ·
∆; Ψ ` σ ⇐ Ψ′ ∆; Ψ `M ⇐ [σ]Ψ′A

∆; Ψ ` σ,M ⇐ Ψ′, x:A

LF types and kinds ∆; Ψ ` A⇐ s (∆ fixed)

∆; Ψ ` P ⇒ type

∆; Ψ ` P ⇐ type

∆; Ψ ` A⇐ type ∆; Ψ, x:A ` B ⇐ type

∆; Ψ ` Σx:A.B ⇐ type

∆; Ψ ` type⇐ kind

∆; Ψ ` A⇐ type ∆; Ψ, x:A ` B ⇐ s

∆; Ψ ` Πx:A.B ⇐ s

LF typing contexts ∆ ` Ψ ctx (∆ fixed)

∆ ` · ctx
∆ ` Ψ ctx ∆; Ψ ` A⇐ type

∆ ` Ψ, x:A ctx

Meta substitutions ∆ ` θ ⇐ ∆′ (∆ fixed)

for all u:A[Φ] ∈ ∆′ and Φ̂.M/u ∈ θ : ∆; [[θ]]Φ `M ⇐ [[θ]]A

∆ ` θ ⇐ ∆′

Meta contexts ` ∆ mctx

for all u:A[Ψ] ∈ ∆ : ∆ ` Ψ ctx ∆; Ψ ` A⇐ type

` ∆ mctx

Fig. 2. Typing rules for λΠΣ with meta-variables

Extensions to Miller’s Pattern Unification for Dependent Types and Records 7

Our basic constraints are quadruples Ψ ` M = N : C. The type annotation Ψ ` C
serves two purposes: First, we need types to direct any hereditary substitutions we employ

during constraint solving. Secondly, the type annotations in the context Ψ are necessary

to eliminate Σ-types. For both purposes, simple types, i.e., the dependency-erasure of

Ψ ` C would suffice. However, we keep dependencies in this presentation to scale this

work from λΠΣ to non-erasable dependent types such as featured by Agda.

Constraints of the form Ψ | R:A ` E = E′ specify an equality between evaluation

contexts. These are intermediate constraints used for the decomposition of neutral terms.

The meaning the latter constraint is Ψ ` E[R] = E[R′] : C where C is the type of E[R]

which can be computed via ∆; Ψ ` E[R]⇒ C.

A unification problem is described by a pair ∆ K where meta-variable context ∆

contains at least the typings of the meta-variables occurring in K. A meta-variable u is

solved, if there is a constraint Ψ ` u←M : C in K; otherwise we call u active. A solved

metavariable does not appear in any other constraint nor in any type in ∆ (nor in its

own solution M).

A set of constraints K is well-formed, ∆ K wf , if each constraint K ∈ K is well-

typed. However, requiring strictly well-typed constraints at every point through the al-

gorithm would limit its capabilities considerably. Consider a meta-variable u : [x:bool]A

and constraint

Ψ ` (u[x], M) = (u[true], N) : Σx:A.P x.

We would like to decompose it into the two constraints Ψ ` u[x] = u[true] : A and

Ψ ` M = N : P u[x]. Well-typedness of the second constraint would require P u[x] =η

P u[true] which does not hold. However, it holds for every solution of u that satisfies the

first constraint.

The ability to postpone constraints and revisit them later is crucial for practical type

reconstruction in the presence of dependent types. Thus, we give up well-typedness and

adopt typing modulo constraints in the formulation of Reed [2009b] for LF.

3.1. Typing modulo

For all typing judgments ∆; Ψ ` J defined previously, we define ∆; Ψ `K J by the

same rules as for ∆; Ψ ` J except replacing eta equality =η with equality modulo =K.

We write α =K β if we have [[θ]]α =η [[θ]]β for any ground solution θ of K. To put it

differently, if we can solve K, we can establish that α is equal to β.

The following lemmas proven by Reed [2009b] hold also for the extension to Σ-types;

we keep in mind that the judgment J stands for either a typing judgment or an equality

judgment. We first prove that typing modulo is preserved under equality modulo.

Lemma 3.1 (Conversion modulo). Let ∆0 K and ∆ =K ∆′ and Ψ =K Φ and

A =K B.

1 If ∆; Ψ `K M ⇐ A then ∆′; Φ `K M ⇐ B.

2 If ∆; Ψ `K R⇒ A then ∆′; Φ `K R⇒ B.

3 If ∆; Ψ `K σ ⇐ Ψ′ and Ψ′ =K Φ′ then ∆′; Φ `K σ ⇐ Φ′.

A. Abel and B. Pientka 8

Proof. We generalize the statement to types and kinds and prove them by simultaneous

induction on the typing derivation.

Lemma 3.2 (Substitution principle modulo). Let ∆ K. If ∆; Ψ `K M ⇐ A and

∆; Ψ, x:B,Ψ′ `K J and A =K B then ∆; Ψ, [M/x]AΨ′ `K [M/x]AJ .

Proof. This proof follows essentially the proof by Nanveski et al. [2008] and we gener-

alize the property to types, kinds, and contexts. Since we prove the substitution lemma

modulo A =K B, we use Lemma 3.1 when we consider the variable case.

Lemma 3.3 (Meta-substitution principle modulo). Let ∆0 K. If ∆1 `[[θ]]K θ ⇐
∆0 and ∆0; Φ `K J then ∆1; [[θ]]Φ `[[θ]]K [[θ]]J .

Proof.

The proof proceeds by induction on ∆0; Φ `K J . All cases are by inversion, appeal to

the induction hypothesis (i.h.), reassembling the result and if necessary using Lemma 3.1

(see the case for meta-variables). We detail two cases:

Case Transition between inference and checking.

D =
∆; Φ `K R⇒ C1 C1 =K C2

∆; Φ `K R⇐ C2

∆1; [[θ]]Φ `[[θ]]K [[θ]]R⇒ [[θ]]C1 by i.h.

[[θ]]C1 =[[θ]]K [[θ]]C2 by i.h. C1 =K C2

∆1; [[θ]]Φ `[[θ]]K [[θ]]R⇐ [[θ]]C2.

Case Meta-variable.

D =
∆; Ψ `K σ ⇐ Ψ′ u:B[Ψ′] ∈ ∆

∆; Ψ `K u[σ]⇐ [σ]Ψ′(B)

For Ψ̂′.M/u ∈ θ and u:B[Ψ′] ∈ ∆ we have ∆1; [[θ]]Ψ′ `K M ⇐ [[θ]]B.

∆1; [[θ]]Ψ `[[θ]]K [[θ]]σ ⇐ [[θ]]Ψ′ by i.h.

[[θ]](u[σ]) = [[[θ]]σ]Ψ′(M) by definition

∆1; [[θ]]Ψ `[[θ]]K [[[θ]]σ]M ⇐ [[[θ]]σ]([[θ]]B) by ord. subst. lemma

∆1; [[θ]]Ψ `[[θ]]K [[[θ]]σ]M ⇐ [[θ]]([σ]B) by definition of meta substitution �

A unification problem ∆ K is well-formed if ∆ mctxK and all constraints (Ψ `
M = N : C) ∈ K are well-typed modulo K, i.e., ∆ `K Ψ ctx and ∆; Ψ `K M ⇐ C and

∆; Ψ `K N ⇐ C and ∆; Ψ `K C ⇐ type. We will come back to this later when we prove

correctness of our algorithm, but it is helpful to keep the typing invariant in mind when

explaining the transitions in our algorithm.

3.2. A higher-order dynamic pattern unification algorithm

The higher-order dynamic pattern unification algorithm is presented as rewrite rules

on the set of constraints K in meta-variable context ∆. The local simplification rules

(Fig. 3) apply to a single constraint, decomposing it and molding it towards a pattern

by η-contraction and projection elimination. Decomposition of neutral terms is defined

using evaluation contexts to have direct access to the head.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 9

Decomposition of functions

Ψ ` λx.M = λx.N : Πx:A.B 7→d Ψ, x:A `M = N : B

Ψ ` λx.M = R : Πx:A.B 7→d Ψ, x:A `M = Rx : B

Ψ ` R = λx.M : Πx:A.B 7→d Ψ, x:A ` Rx = M : B

Decomposition of pairs

Ψ ` (M1 ,M2) = (N1 , N2) : Σx:A.B 7→d Ψ `M1 = N1 : A ∧Ψ `M2 = N2 : [M1/x]B

Ψ ` (M1 ,M2) = R : Σx:A.B 7→d Ψ `M1 = fstR : A ∧Ψ `M2 = sndR : [M1/x]B

Ψ ` R = (M1 ,M2) : Σx:A.B 7→d Ψ ` fstR = M1 : A ∧Ψ ` sndR = M2 : [M1/x]B

Decomposition of neutrals

Ψ ` E[H] = E′[H] : C 7→d Ψ | H:A ` E = E′ where Ψ ` H ⇒ A

Ψ ` E[H] = E′[H ′] : C 7→d ⊥ if H 6= H ′

Decomposition of evaluation contexts

Ψ | R : A ` • = • 7→d >
Ψ | R : Πx:A.B ` E[•M] = E′[•M ′] 7→d Ψ `M = M ′ : A ∧Ψ | RM : [M/x]B ` E = E′

Ψ | R : Σx:A.B ` E[fst •] = E′[fst •] 7→d Ψ | fstR : A ` E = E′

Ψ | R : Σx:A.B ` E[snd •] = E′[snd •] 7→d Ψ | sndR : [fstR/x]B ` E = E′

Ψ | R : Σx:A.B ` E[π •] = E′[π′ •] 7→d ⊥ if π 6= π′

Orientation

Ψ `M = u[σ] : C with M 6= v[. . .] 7→d Ψ ` u[σ] = M : C

η-Contraction

Ψ ` u[σ{λx.R x}] = N : C 7→e Ψ ` u[σ{R}] = N : C

Ψ ` u[σ{(fstR, sndR)}] = N : C 7→e Ψ ` u[σ{R}] = N : C

Eliminating projections

Ψ1, x : Π~y: ~A.Σz:B.C, Ψ2 Ψ1, x1 : Π~y: ~A.B, x2 : Π~y: ~A. [(x1 ~y)/z]C, Ψ2

` u[σ{π (x ~M)}] = N : D 7→p ` u[[τ]σ] = [τ]N : [τ]D

where π ∈ {fst, snd} where τ = [λ~y. (x1 ~y, x2 ~y)/x]

Fig. 3. Local simplification K 7→m K .

Decomposition of pairs could maybe more concisely defined by

Ψ `M = N : Σx:A.B 7→d Ψ ` fst@M = fst@N : A

∧ Ψ ` snd@M = snd@N : [fst@M/x]B

where π@M computes the β-normal form of πM . However, this would also apply to a

constraint Ψ ` R = R′ : Σx:A.B of neutral terms, just duplicating the work of decom-

posing the neutrals later. Similar reasoning justifies of choice of function decomposition

rules.

The other unification steps (Fig. 4) work on a meta-variable and try to find an instan-

tiation for it. We write ∆ K + Φ ` u←M : A for instantiating the meta-variable u

A. Abel and B. Pientka 10

Local simplification

∆ K ∧K 7→ ∆ K ∧ K′ if K 7→m K′ (m ∈ {d, e, p})

Instantiation (notation)

∆ K+ (Φ ` u←M : A) = [[θ]]∆ [[θ]]K ∧ [[θ]]Φ ` u←M : [[θ]]A

where θ = Φ̂.M/u

Lowering

∆ K 7→ ∆, v:B[Φ, x:A] K
u:(Πx:A.B)[Φ] ∈ ∆ active + Φ ` u← λx.v : Πx:A.B

∆ K 7→ ∆, u1:A[Φ], u2:([u1[wkΦ]/x]AB)[Φ] K
u:(Σx:A.B)[Φ] ∈ ∆ active + Φ ` u← (u1[wkΦ] , u2[wkΦ]) : Σx:A.B

Flattening Σ-types

∆ K (u:A[Φ] ∈ ∆ active) 7→ ∆, v:([σ−1]A)[Φ′] K + Φ ` u← v[σ] : A

Φ = Φ1, x : Π~y: ~A.Σz:B.C, Φ2 Φ′ = Φ1, x1 : Π~y: ~A.B, x2 : Π~y: ~A. [x1 ~y/z]C, Φ2

σ−1 = [λ~y. (x1 ~y , x2 ~y)/x] σ = [λ~y. fst (x ~y)/x1, λ~y. snd (x ~y)/x2]

Pruning

∆ K 7→ ∆′ [[η]]K
(Ψ ` u[ρ] = M : C) ∈ K if ∆ ` pruneρM ⇒ ∆′; η and η 6= id

Same meta-variable

∆ K ∧Ψ ` u[ρ] = u[ξ] : C 7→ ∆, v:A[Φ0] K+ Φ ` u← v[wkΦ0] : A

u:A[Φ] ∈ ∆ if ρ ∩ ξ : Φ⇒ Φ0

Failing occurs check

∆ K ∧Ψ ` u[ρ] = M : C 7→ ⊥ if FVrig(M) 6⊆ ρ
∆ K ∧Ψ ` u[ρ] = M : C 7→ ⊥ if M = M ′{u[ξ]}srig 6= u[ξ]

Solving (with successful occurs check)

∆ K ∧Ψ ` u[ρ] = M : C 7→ ∆ K+ Φ ` u←M ′ : A

(u:A[Φ]) ∈ ∆; u 6∈ FMV(M) if M ′ = [ρ/Φ̂]−1M exists and ∆; Φ `M ′ ⇐ A

Fig. 4. Unification steps ∆ K 7→ ∆′ K′ .

with the term M both in the meta-context ∆ and in the constraints K. This abbreviation

is defined in Fig. 4. Lowering rules transform a meta-variable of higher type to one of

lower type. Flattening Σ-types concentrates on a meta-variable u:A[Φ] and eliminates

Σ-types from the context Φ. The combination of the flattening Σ-types transition and

the eliminating projections transition allow us to transform a unification problem into

one which resembles our traditional pattern unification problem. The pruning transition

is explained in detail in Section 3.4 and unifying a meta-variable with itself is discussed

in Section 3.5.

To motivate our rules, let us consider some problems Ψ ` u[σ] = M : C that fall

outside of the Miller pattern fragment, meaning that σ is not a list of disjoint variables.

We may omit types and/or context if appropriate.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 11

η-contraction: u[λx. y (fstx , sndx)] = M .

Solved by contracting the lhs to u[y].

Eliminating projections: y : Πx:A.Σz:B.C ` u[λx. fst (y x)] = M .

Applying substitution τ = [λx. (y1 x , y2 x)/y] gives us the following problem: y1 :

Πx:A.B, y2 : Πx:A. [y1 x/z]C ` u[λx. y1 x] = [τ]M ; by η-contraction we have u[y1] =

[τ]M which can be solved provided y2 6∈ FV([τ]M).

Lowering: Φ ` fst (u[y]) = fst y where Φ = (y : Σx:A.B) and u : (Σx:A.B)[Φ].

This equation determines only the first component of the tuple u. Thus, decomposition

into u[y] = y, which also determines the second component, loses solutions. Instead

we replace u by a pair (u1, u2) of meta-variables of lower type, u1 : A[Φ] and u2 :

([u1[y]/x]B)[Φ], yielding Φ ` u1[y] = fst y.

Flattening Σ-types: Ψ ` u[λx. (z1 x , z2 x)] = g z1 z2 where Ψ(z1) = Πx:A.B and

Ψ(z2) = Πx:A. [z1 x/y]C and u : P [z : Πx:A.Σy:B.C].

By splitting z into two functions z1, z2 in the context of u and replacing u by v : P [z1 :

Πx:A.B, z2 : Πx:A. [z1 x/y]C] via meta sustitution z.v[λx. fst z x, λx. snd z x]/u, we

arrive at Ψ ` v[λx. z1 x, λx. z2 x] = g z1 z2 and continue with η-contraction.

Solving in spite of non-linearity: u[x, x, z] = suc z.

The non-linear occurrence of x on the lhs can be ignored since x is not free on the

rhs. We can solve this constraint by u[x, y, z] = suc z.

However, in case of non-linearity we need to make sure that the solution is well-typed.

Consider u : (P z)[Φ] where Φ = (x:A, y : P x, z:A) and constraint

x:A, y : P x ` u[x, y, x] = y : P x.

The solution x:A, y : P x ` u ← y : P z is ill-typed. While the non-linear variables

do not appear in the term of the rhs, they appear in the type and make the constraint

well-typed.

In our type theory, the above constraint seems unsolvable, although we do not attempt

a formal proof here. In richer type theories such as Agda one could imagine a solution

for u which applies a type cast to y. Thus, we just leave such a constraint alone,

instead of flagging unsolvability.

Pruning: u[x] = suc(v[x, y]) and v[x, zero] = f(x, zero).

Since u depends only on x, necessarily v cannot depend on y. We can prune away

the second parameter of v by setting v[x, y] = v′[x]. This turns the second constraint

into the pattern v′[x] = f(x, zero), yielding the solution u[x] = suc(f(x, zero)).

Note that pruning is more difficult in case of nested meta-variables. If instead u[x] =

suc(v[x,w[y]]) then there are two cases: either v does not depend on its second ar-

gument or w is constant. Pruning as we describe it in this article cannot be applied

to this case; Reed [2009b] proceeds here by replacing y by a placeholder “ ”. Once w

gets solved the placeholder might occur as argument to v, where it can be pruned. If

the placeholder appears in a rigid position, the constraints have no solution.

Pruning and non-linearity: u[x, x] = suc v[x] and u′[x, x] = suc v′[x, y].

A. Abel and B. Pientka 12

Even though we cannot solve for u due to the non-linear x, pruning x from v could

lose solutions. However, we can prune y from v′ since only x can occur in v′[x, y].

Failing occurs check: u[x] = suc y.

Pruning y fails because it occurs rigidly. The constraint set has no solution.

Same meta-variable: u[x, y, x, z] = u[x, y, y, x].

Since variables x, y, z are placeholders for arbitrary open well-typed terms, of which

infinitely many exists for every type, the above equation can only hold if u does not

depend on its 3rd and 4th argument. Thus, we can solve by u[x, y, z, x′] = v[x, y] where

[x, y] is the intersection of the two variable environments [x, y, x, z] and [x, y, y, x].

Recursive occurrence: u[x, y, x] = sucu[x, y, y].

Here, u has a strongly rigid occurrence in its own definition. This problem has only an

infinite solution, independent of the variable substitutions u is applied to. To see this,

consider the constraint u[z, z, z] = sucu[z, z, z] which is a special case of the original

constraint with [z/x, z/y]. The only solution would be the infinite term suc(suc(. . .)).

Since we require solutions to be finite, the occurs check signals unsolvability. Note

that our occurs check is slightly more powerful than Reed’s [2009b], since he only

refutes such recursive occurrences when the left hand side is linear, e.g., of the form

u[x, y, z] with distinct variables x, y, z.

Reed [2009a, p. 105f] motivates why only strongly rigid recursive occurrences force

unsolvability. For instance, f : nat → nat ` u[f] = suc (f (u[λx. zero])) has solution

u[f] = suc (f (suc zero)) in spite of a rigid occurrence of u in its definition.

If u occurs flexibly in its own definition, like in u[x] = v[u[x]], we cannot proceed

until we know more of v. Using the other constraints, we might manage to prune v’s

argument, arriving at u[x] = v[], or find the solution of v directly; in these cases, we

can revisit the constraint on u.

The examples suggest a strategy for implementation: Lowering can be integrated trig-

gered by decomposition to resolve eliminations of a meta-variable E[u[σ]]. After decom-

position we have a set of u[σ] = M problems. We try to turn the σs into variable

substitutions by applying η-contraction, and where this gets stuck, elimination of pro-

jections and Σ-flattening. Solution of constraints u[ρ] = M can then be attempted by

pruning, where a failing occurs check signals unsolvability.

3.3. Inverting substitutions

A most general solution for a constraint u[σ] = M can only be hoped for if σ is a variable

substitution. For instance u[true] = true admits already two different solutions u[x] = x

and u[x] = true that are pure λ-terms. In a language with computation such as Agda

infinitely more solutions are possible, because u[x] could be defined by cases on x and

the value of u[false] is completely undetermined.

But even constraints u[ρ] = M can be ambiguous if the variable substitution ρ is

not linear, i. e., no bijective variable renaming. For example, u[x, x] = x has solutions

x, y ` u ← x and x, y ` u ← y. Other examples, like u[x, x, z] = z which has unique

solution x, y, z ` u ← z, suggest that we can ignore non-linear variable occurrences as

Extensions to Miller’s Pattern Unification for Dependent Types and Records 13

long as they do not occur on the rhs. Indeed, if we define a variable substitution ρ to be

invertible for term M if there is exactly one M ′ such that [ρ]M ′ = M , then linearity is

a sufficient, but not necessary condition. However, it is necessary that ρ must be linear

if restricted to the free variables of (β-normal!) M . Yet instead of computing the free

variables of M , checking that ρ is invertible, inverting ρ and applying the result to M ,

we can directly try to invert the effect of the substitution ρ on M .

For a variable substitution Ψ ` ρ ⇐ Φ and a term or substitution α ::= M | R | τ in

context Ψ, we define the partial operation [ρ/Φ̂]−1α by

[ρ/Φ̂]−1x = y if x/y ∈ ρ/Φ̂ and there is no z 6= y with x/z ∈ ρ/Φ̂,

undefined otherwise

[ρ/Φ̂]−1c = c

[ρ/Φ̂]−1(u[τ]) = u[τ ′] where τ ′ = [ρ/Φ̂]−1τ

and homeomorphic in all other cases by

[ρ/Φ̂]−1(RM) = R′M ′ where R′ = [ρ/Φ̂]−1R and M ′ = [ρ/Φ̂]−1M

[ρ/Φ̂]−1(π R) = π R′ where R′ = [ρ/Φ̂]−1R

[ρ/Φ̂]−1(λx.M) = λx.M ′ if x 6∈ ρ, Φ̂ and M ′ = [ρ, x / Φ̂, x]−1M

[ρ/Φ̂]−1(M , N) = (M ′ , N ′) where M ′ = [ρ/Φ̂]−1M and N ′ = [ρ/Φ̂]−1N

[ρ/Φ̂]−1(·) = ·
[ρ/Φ̂]−1(τ,M) = τ ′,M ′ if τ ′ = [ρ/Φ̂]−1τ and M ′ = [ρ/Φ̂]−1M .

We can show by induction on α, that inverse substitution [ρ/Φ̂]−1α is correct and

commutes with meta substitutions.

Lemma 3.4 (Inverse and meta-substitution commute).

If [ρ/Φ̂]−1α and [ρ/Φ̂]−1([[θ]]α) exist then [ρ/Φ̂]−1([[θ]]α) = [[θ]]([ρ/Φ̂]−1α).

Proof. By simultaneous induction on the structure of α.

Lemma 3.5 (Soundness of inverse substitution).

If [ρ/Φ̂]−1α exists then [ρ]Φ([ρ/Φ̂]−1α) = α.

Proof. By simultaneous induction on the structure of α.

Lemma 3.6 (Completeness of inverse substitution).

If [ρ]Φα = α′ and for all x, z ∈ FV(α) we have y/x ∈ ρ but no other y/z ∈ ρ then

α = [ρ/Φ̂]−1α′ exists.

Proof. By simultaneous induction on the structure of α.

3.4. Pruning

If the constraint u[σ] = M has a solution θ, then [[[θ]]σ]θ(u) = [[θ]]M , and since θ is

closed (FV(θ) = ∅), we have FV(σ) ⊇ FV([[θ]]σ) ⊇ FV([[[θ]]σ]θ(u)) ⊇ FV([[θ]]M) (note

that a hereditary substitution can remove free variables). Thus, if FV(M) 6⊆ FV(σ) we

A. Abel and B. Pientka 14

can try to find a most general meta-substitution η which prunes the free variables of

M that are not in the range of σ, such that FV([[η]]M) ⊆ FV(σ). For instance, in case

u[x] = suc v[x, y], the meta-substitution x, y. v′[x]/v does the job. However, pruning may

fail for one of the following reasons:

1 Offending variables occur rigidly, like the y in u[x] = c y v[x, y]. This constraint is

unsolvable.

2 The flexible occurrence of an offending variable is under another meta-variable, like

y in u[x] = v[x,w[x, y]]. Here, two minimal pruning substitutions η1 = x, y. v′[x]/v

and η2 = x, y. w′[x]/w exist which are not instances of each other—applying pruning

might lose solutions.

3 The offending flexible occurrence could be eliminated by the correct solution. For

instance, consider the case u : C[x:A] and v : C[z : (A → A → A) → A] and

constraint

x:A, y:A ` u[x] = v[λk. k x y] : C.

The offending variable y occurs flexibly in this constraint and rigidly in v’s substi-

tution. If we pruned away v’s dependency on z, we would lose the partial solution

θ(v) = z. z (λxλy.x) which would simplify the constaint to u[x] = x. The point here

is that y, although it occurs rigidly in λk. k x y, is in an eliminateable position since

the meta-substitution for v could place that term in a context that reduces y away.

There are rigid occurences that cannot be eliminated in such a way, we call these

occurrences bad, see judgement bad occy N in Fig. 5.

We restrict pruning to situations u[ρ] = M where ρ is a variable substitution. This

is because we view pruning as a preparatory step to inverting ρ on M—which only

makes sense for variable substitutions. Also, we do not consider partial pruning, as in

pruning y from v in the situation u[x] = v[x, y, w[x, y]], obtaining u[x] = v′[x,w[x, y]].

Such extensions to pruning are conceivable, but we have no data indicating that they

strengthen unification significantly in practice. We employ the following judgments to

define pruning (see Fig. 5):

∆ ` pruneρM ⇒ ∆′; η prune M such that FV([[η]]M) ⊆ ρ
prune ctxρ(τ / Ψ1)⇒ Ψ2 prune τ such that FVrig([τ]wkΨ2) ⊆ ρ.

where ρ is a variable substitution with domain Ψ and τ is a substitution from Ψ1 to a

context Ψ.

The second judgement is applied to subterms v[τ] of M to prune substitution τ with,

say, domain Ψ1. We look at each term N in τ which substitutes for an x:A of Ψ1. If

N has a bad occurrence of a variable y 6∈ ρ, we discard the entry x:A from the domain

Ψ1, thus, effectively removing N from τ . If N has no occurrence of such a y we keep

x:A. However, since we might have removed prior entries from Ψ1 we need to ensure A

is still well-formed, by validating that its free variables are bound in the pruned context.

Pruning fails if N has an occurrence of a variable y 6∈ ρ which is not bad, for instance, a

Extensions to Miller’s Pattern Unification for Dependent Types and Records 15

bad occxM Term M has a non-eliminable occurrence of variable x

bad occxE[x]

bad occxM

bad occx λy.M
x 6= y

bad occxM1 bad occxM2

bad occx (M1,M2)

prune ctxρ(τ / Ψ1)⇒ Ψ2 Prune substitution τ : Ψ1, returning a sub-context Ψ2 of Ψ1.

(I.e., Ψ1 ` wkΨ2 : Ψ2.)

prune ctxρ(· / ·)⇒ ·
prune ctxρ(τ / Ψ1)⇒ Ψ2 bad occxM for some x ∈ ρ

prune ctxρ(τ,M / Ψ1, y:A)⇒ Ψ2

prune ctxρ(τ / Ψ1)⇒ Ψ2 FV(M) ⊆ ρ A′ = [wkΨ2/Ψ̂2]−1A exists

prune ctxρ(τ,M / Ψ1, x:A)⇒ Ψ2, x:A′

∆ ` pruneρM ⇒ ∆′; η Prune term M , returning ∆′ ` η ⇐ ∆.

v:B[Ψ1] ∈ ∆ prune ctxρ(τ / Ψ1)⇒ Ψ2 Ψ2 6= Ψ1 B′ = [wkΨ2/Ψ̂2]−1B η = Ψ̂1.v
′[wkΨ2]/v

∆ ` pruneρ(v[τ])⇒ [[η]](∆, v′:B′[Ψ2]); η

v:B[Ψ1] ∈ ∆ prune ctxρ(τ / Ψ1)⇒ Ψ1

∆ ` pruneρ(v[τ])⇒ ∆; id∆

x ∈ ρ
∆ ` pruneρ x⇒ ∆; id∆

∆ ` pruneρ c⇒ ∆; id∆

∆ ` pruneρR⇒ ∆1; η1 ∆1 ` pruneρ([[η1]]M)⇒ ∆2; η2

∆ ` pruneρ(RM)⇒ ∆2; [[η2]]η1

∆ ` pruneρM ⇒ ∆′; η

∆ ` pruneρ(πM)⇒ ∆′; η

∆ ` pruneρ,xM ⇒ ∆′; η

∆ ` pruneρ(λx.M)⇒ ∆′; η

∆ ` pruneρM ⇒ ∆1; η1 ∆1 ` pruneρ([[η1]]N)⇒ ∆2; η2

∆ ` pruneρ (M , N)⇒ ∆2; [[η2]]η1

Fig. 5. Pruning.

flexible or rigid but eliminable occurrence. Examples:

− prune ctxx(cx, y / x′:A, y′:B) ⇒ x′:A bad occurrence y

− prune ctxy(cx, u[y] / x′:A, y′:B) ⇒ y′:B bad occurrence cx

− prune ctxy(λz. z x, y / x′:A, y′:B) fails occ. of x eliminable

− prune ctxy(u[x], y / x′:A, y′:B) fails flexible occurrence u[x]

Pruning a term M with respect to ρ ensures that all rigid variables of M are in the

range of ρ (see variable rule). Also, for each rigid occurrence of a meta-variable v[τ] in

M we try to prune the substitution τ . If τ is already pruned, we leave v alone; otherwise,

if the domain Ψ1 of τ shrinks to Ψ2 then we replace v : B[Ψ1] by a new meta-variable

v′ : B[Ψ2] with domain Ψ2. However, we need to ensure that the type B still makes sense

in Ψ2; otherwise, pruning fails. The last check is strengthening B from Ψ1 to Ψ2 and can

be implemented as [wkΨ2/Ψ̂2]−1B which exists whenever FV(B) ⊆ Ψ̂2.

A. Abel and B. Pientka 16

Lemma 3.7 (Bad occurrences stay). Let D :: bad occxM .

1 If x 6= y, then D′ :: bad occx [N/y]M , and the derivation height of D′ is the same as

the one of D.

2 x ∈ FVrig(E[M]).

3 If y ∈ FVrig(N) then x ∈ FVrig([M/y]N).

Proof.

1 By induction on bad occxM .

2 By induction onD :: bad occxM . In caseM = E′[x] we have trivially x ∈ FVrig(E[E′[x]]).

If M = λy.M ′ then either E is empty (trivial) or E = E′[•N]. Then E[M] =

E′[[N/y]M ′], and by part 1 we get bad occx [N/y]M ′ with a smaller derivation height

than D. We conclude by induction hypothesis. If M = (M1,M2) then either E is

empty (trivial) or E = E′[fst •] or E = E′[snd •]. In case of fst, E[M] = E′[M1] and

we conclude by induction hypothesis. Case snd analogously.

3 By induction on β-normal form N . If N is a function λz.N ′ or a pair (N ′, N ′′),

proceed with N ′. If N = E[y] then apply part 2. Otherwise N is a neutral which does

not have y as head variable, which implies that hereditarily substituting y will yield a

neutral with the same spine form. If N = π R then y ∈ FVrig(R) and [M/y]N = π R′

with R′ = [M/y]R. By induction hypothesis, x ∈ FVrig(R′) = FVrig([M/y]N). If N is

an application R′N ′ then [M/y]N = R′′N ′′ with R′′ = [M/y]R′ and N ′′ = [M/y]N ′.

Either y ∈ FVrig(R′) or y ∈ FVrig(N ′) and we can conclude with the respective

induction hypothesis, since FVrig(R′′N ′′) = FVrig(R′′) ∪ FVrig(N ′′).

Lemma 3.8 (Soundness and completeness of pruning).

1 If ∆ `K Ψ1 ctx and prune ctxρ(τ / Ψ1)⇒ Ψ2 then ∆ `K Ψ2 ctx and FV([τ]wkΨ2
) ⊆ ρ.

Additionally, if x ∈ Ψ1 \Ψ2 then FVrig([τ]x) 6⊆ ρ.

2 If ∆ ` pruneρM ⇒ ∆′; η then ∆′ `K η ⇐ ∆ and FV([[η]]M) ⊆ ρ. Also, if θ solves

Ψ ` u[ρ] = M0{M}rig : C then there is some θ′ such that θ = [[θ′]]η.

Proof. Each by induction on the pruning derivation.

We detail 2., existence of θ′: Since θ is a solution of the constraint, [[θ]](u[ρ]) =

[[[θ]]ρ](θ(u)) = [ρ](θ(u)) = [[θ]]M0, in particular FV(ρ) = ρ ⊇ FV([[θ]]M0). This entails

FV([[θ]]M) ⊆ ρ.

Consider the interesting case M = v[τ] with prune ctxρ(τ / Ψ1) ⇒ Ψ2 and η =

Ψ̂1.v
′[wkΨ2]/v. Let N = θ(v). We have FV([[[θ]]τ]N) ⊆ ρ. If we can show FV(N) ⊆ Ψ̂2,

then we can finish by setting θ′ = θ, Ψ̂2.N/v
′.

Assume now some x ∈ FV(N) with x 6∈ Ψ̂2. By 1., FVrig([τ]x) 6⊆ ρ, which entails that

FV([[[θ]]τ]x) 6⊆ ρ. This is in contradiction to FV([[[θ]]τ]N) ⊆ ρ.

In an implementation, we may combine pruning with inverse substitution and the

occurs check. Since we already traverse the term M for pruning, we may also check

whether [ρ/Φ̂]−1M exists and whether u occurs in M .

Extensions to Miller’s Pattern Unification for Dependent Types and Records 17

3.5. Unifying two identical existential variables

Any solution Φ̂.N/u for a meta-variable u : A[Φ] with constraint u[ρ] = u[ξ] must fulfill

[ρ]N = [ξ]N , which means that [ρ]x = [ξ]x for all x ∈ FV(N). This means that u can

only depend on those of its variables in Φ that are mapped to the same term by ρ and ξ.

Thus, we can substitute u by Φ̂.v[ρ′] where ρ′ is the intersection of substitutions ρ and ξ.

Similarly to context pruning, we obtain ρ′ as [ρ]wkΦ′ , which identical to [ξ]wkΦ′ , where

Φ′ is a subcontext of Φ mentioning only the variables that have a common image under

ρ and ξ. This process is given as judgement ρ ∩ ξ : Φ⇒ Φ′ with the following rules:

· ∩ · : · ⇒ ·
ρ ∩ ξ : Φ⇒ Φ′

(ρ, y) ∩ (ξ, y) : (Φ, x:A)⇒ (Φ′, x:A)

ρ ∩ ξ : Φ⇒ Φ′ z 6= y

(ρ, z) ∩ (ξ, y) : (Φ, x:A)⇒ Φ′

Lemma 3.9 (Soundness of intersection). If ∆; Ψ `K ρ, ξ ⇐ Φ and ρ ∩ ξ : Φ⇒ Φ′,

then ∆ `K Φ′ ctx and ∆; Φ `K wkΦ′ ⇐ Φ′ and z ∈ dom(Φ′) iff ρ(z) = ξ(z).

Proof. By structural induction on the first derivation.

We consider the interesting case, where we actually retain a declaration x:A because

the two substitutions map x to the same variable y.

ρ ∩ ξ : Φ⇒ Φ′

(ρ, y) ∩ (ξ, y) : (Φ, x:A)⇒ Φ′, x:A

The main challenge is to show that type A is well-formed even in the subcontext Φ′ of

Φ, which is the case if FV(A) ⊆ dom(Φ′).

From the assumption ∆; Ψ `K (ρ, y)⇐ (Φ, x:A) we get ∆; Ψ `K ρ⇐ Φ and Ψ(y) =K
[ρ]A by inversion, and the same for ξ. This allows us to apply the induction hypothesis,

which yields ∆ `K Φ′ ctx and ∆; Φ `K wkΦ′ ⇐ Φ′ and dom(Φ′) = {z | ρ(z) = ξ(z)}.
Since [ρ]A =K Ψ(y) =K [ξ]A, we have for all z ∈ FV(A) that ρ(z) =K ξ(z). Since

this is an equation between variables, the constraints K on meta-variables do not mat-

ter, and we even have ρ(z) = ξ(z). Yet this means that z ∈ dom(Φ′), thus, we obtain

∆; Φ′ `K A ⇐ type by strengthening. This entails ∆ `K (Φ′, x:A) ctx, hence, trivially,

∆; (Φ, x:A) `K wkΦ′,x:A ⇐ (Φ′, x:A). Finally, dom(Φ′, x:A) = {z | ρ(z) = ξ(z)} follows

from this property for Φ′ and the fact ρ(x) = y = ξ(x).

Let us now reconsider the rule “Same meta-variable”.

∆ K ∧Ψ ` u[ρ] = u[ξ] : C 7→ ∆, v:A[Φ′] K + Φ ` u← v[wkΦ′] : A

u:A[Φ] ∈ ∆ if ρ ∩ ξ : Φ⇒ Φ′

We have just shown that the resulting Φ′ of computing the intersection of ρ and ξ, is

indeed well-formed. We can also justify why in the unification rule itself the type A of

two existential variables must be well-typed in the pruned context Φ′. Recall that by

typing invariant, we know that ∆; Ψ `K ρ ⇐ Φ and ∆; Ψ `K ξ ⇐ Φ and [ρ]A =K [ξ]A.

But this means that A can only depend on the variables mapped to the same term by

A. Abel and B. Pientka 18

ρ and ξ. Since Φ0 is exactly the context which captures those shared variables, A must

also be well-typed in Φ0 modulo K.

Note that intersection cannot easily be extended beyond variable substitutions. For

instance, consider the intersection between the following substitutions σ and τ :

(λf. f ◦ f, g, N)︸ ︷︷ ︸
σ

∩ (λf. f, g ◦ g, N)︸ ︷︷ ︸
τ

: (x : A4, y : A2, z : P (x y)) ⇒ ?

where N : P (g ◦ g) and A4 := (A → A) → A → A and A2 := A → A, and f ◦
g := λn. f (g n) abbreviates function composition. We cannot remove x and y from the

context only because the two substitutions differ at these positions. The resulting context

(z : P (x y)) would be ill-typed. The difference to the variable case is that substitution is

no longer injective, i.e., we can have [σ]M = [τ]M but σ(x) 6= τ(x) for some x ∈ FV(M).

4. Correctness

Theorem 4.1 (Termination). The algorithm terminates and results in one of the

following states:

— A solved state where only assignments Ψ ` u←M : A remain.

— A stuck state, i.e., no transition rule applies.

— Failure ⊥.

Proof. Let the size |M | of a term be as usual the number of nodes and leaves in its

tree representation, with the exception that we count λ-nodes twice. This modification

has the effect that |λx.M | + |R| > |M | + |Rx|, hence, an η-expanding decomposition

step also decreases the sum of the sizes of the involved terms [Goguen, 2005]. We define

the size |A[Φ]| of a type A in context Φ by |P [Φ]| = 1 +
∑
A∈Φ |A[]|, |(Πx:A.B)[Φ]| =

1 + |B[Φ, x:A]| and |(Σx:A.B)[Φ]| = 1 + |A[Φ]|+ |B[Φ]|. The size of a type can then be

obtained as |A| = |A[]| and the size of a context as |Φ| =
∑
A∈Φ |A|. The purpose of this

measure is to give Σ-types a large weight that can “pay” for flattening.

Let the weight of a solved constraint be 0, whereas the weight |K| for a constraint

Ψ ` M = M ′ : C be the ordinal (|M | + |M ′|)ω + |Ψ| if a decomposition step can be

applied, and simply |Ψ| else. Similarly, let the weight of constraint Φ | R:A ` E = E′

be (|E| + |E′|)ω + |Ψ|. Finally, let the weight |∆ K| of a unification problem be the

ordinal ∑
u:A[Φ]∈∆ active

|A[Φ]|ω2 +
∑
K∈K

|K|.

By inspection of the transition rules we can show that each unification step reduces the

weight of the unification problem.

4.1. Solutions to unification

A solution to a set of equations K is a meta-substitution θ for all the meta-variables in

∆ s.t. ∆′ ` θ ⇐ ∆ and

1 for every Ψ ` u←M : A in K we have Ψ̂.M/u ∈ θ,

Extensions to Miller’s Pattern Unification for Dependent Types and Records 19

2 for all equations Ψ `M = N : A in K, we have [[θ]]M = [[θ]]N .

A ground solution to a set of equations K can be obtained from a solution to K by

applying a grounding meta-substitution θ′ where · ` θ′ ⇐ ∆′ to the solution θ. We write

θ ∈ Sol(∆ K) for a ground solution to the constraints K.

Before we prove that transitions preserve solutions, we first prove that there always

exists a meta-substitution relating the original meta-variable context ∆0 to the meta-

variable context ∆1 we transition to. It is useful to state this property in isolation,

although it is also folded into Theorem 4.3.

Lemma 4.2. If ∆0 K0 7→ ∆1 K1 then there exists a meta-substitution θ s.t.

∆1 `K1
θ ⇐ ∆0.

Proof. By case analysis on the unification steps.

We also observe that if we start in a state ∆0 K0 and transition to a state ∆1 K1

the meta-variable context strictly grows, i.e., dom(∆0) ⊆ dom(∆1). We subsequently

show that if we have a solution for ∆0 K0, then transitioning to a new state ∆1 K1

will not add any additional solutions nor will it destroy some solution we may already

have. In other words, any additional constraints which may be added in ∆1 K1 are

consistent with the already existing solution.

Theorem 4.3 (Transitions preserve solutions). Let ∆0 K0 7→ ∆1 K1.

1 If θ0 ∈ Sol(∆0 K0) then there exists a meta-substitution θ′ s.t.

∆1 `K1 θ
′ ⇐ ∆0 and a solution θ1 ∈ Sol(∆1 K1) such that [[θ1]]θ′ = θ0.

2 If θ1 ∈ Sol(∆1 K1) then [[θ1]]wk∆0
∈ Sol(∆0 K0).

Proof. Proof by case analysis on the transitions. We only show the cases to prove that

we are forward closed (statement 1). The second statement, that unification steps are

backwards closed, is obvious: by if we transition from ∆0 K0 to ∆1 K1 then there

exists a meta-substitution ∆1 `K1
θ ⇐ ∆0; hence, by composition [[θ1]]θ is ground and

is a solution for ∆0 K0.

In all the following cases, θ0 is a solution for K0.

−Decomposition. Since ∆0 does not change in any of the decomposition rules, the

solution is almost trivially preserved; for the η-contraction rules, we simply observe

that equality is always modulo η. For the eliminating projections transition, we use the

substitution lemma and observe that meta-substitutions and ordinary substitutions

commute.

−Lowering. Let u : (Πx:A.B)[Φ] ∈ ∆ active and

∆ K 7→ (∆, v:B[Φ, x:A] K) + (Φ ` u← λx.v : Πx:A.B)

Let Φ̂.M := θ0(u) and observe ·; [[θ0]]Φ `M ⇐ [[θ0]](Πx:A.B). By inversion on typing,

M = λx.N and ·; [[θ0]](Φ, x:A) ` N ⇐ [[θ0]]B. Hence, (Φ̂, x).N is a solution for v.

Choose θ′ = wk∆0 and θ1 = θ0, (Φ̂, x).N/v. Since v is a new meta-variables, θ1 is still

a solution for the old state ∆ K.

The case for lowering Σ-types is similar.

A. Abel and B. Pientka 20

−Flattening. Using the substitution lemma, solutions are preserved.

−Pruning. θ0 is a solution for K0 and the active meta-variable u:A[Φ] ∈ ∆0. Hence,

Φ̂.M/u ∈ θ0. Moreover, if we have the constraint Ψ ` u[ρ] = N : B, we have

[ρ]M = [[θ0]]N . By previous soundness lemma for pruning, ∆p ` θp ⇐ ∆0 and there

exists a θ′ s.t. [[θ′]]θp = θ0.

−Same meta-variable. θ0 is a solution for K0 and the active meta-variable u:A[Φ] ∈ ∆0.

Hence, Φ̂.M/u ∈ θ and ·; [[θ0]](Φ) ` M ⇐ [[θ0]]A. Moreover, [ρ]M = [ξ]M . Therefore,

FV([ρ]M) = FV([ξ]M) and Φ0 contains exactly those meta-variables which are shared

among ρ and ξ by definition of ρ∩ ξ; moreover, we must have [[θ0]]([ρ]A) = [[θ0]]([η]A).

Since meta-substitutions commute with variable substitutions, we have [ρ]([[θ0]]A) =

[η]([[θ0]]A), hence FV(M) = Φ̂0 and FV([[θ0]]A) = Φ̂0 and ·; [[θ0]](Φ0) ` M ⇐ [[θ0]]A;

choosing id∆0 for θ′ and for θ1 = θ, Φ̂0.M/v solutions are preserved.

−Solving. θ0 is a solution for K0 and the active meta-variable u:A[Φ] ∈ ∆0. Hence,

Φ̂.N/u ∈ θ0. Therefore, we have [ρ]N = [[θ]]M . By completeness of inverse substitu-

tion, we know N = [ρ/Φ]−1([[θ]]M). By assumption we also know [ρ/Φ]−1M = M ′

exists. Therefore, by lemma that inverse and meta-substitution commute, we have

N = [[θ]]([ρ/Φ]−1M) = [[θ]]M ′. Therefore, the solution θ0 is preserved.

4.2. Transitions preserve types

Our goal is to prove that if we start with a well-typed unification problem our transitions

preserve the type, i.e., we can never reach an ill-typed state and hence, we cannot generate

a solution which may contain an ill-typed term.

Lemma 4.4 (Equality modulo is preserved by transitions).

If ∆0 K0 7→ ∆1 K1 and A =K0 B, then A =K1 B.

Proof. Let θ be a solution for K0; by assumption, we have that [[θ]]A = [[θ]]B. By

theorem 4.3, transitions preserve solutions, we know θ is also a solution for K1, and

therefore A =K1 B.

In the statement below it is again important to note that the meta-context strictly grows,

i.e., ∆0 ⊆ ∆1 and that there always exists a meta-substitution θ which maps ∆0 to ∆1.

Moreover, since transitions preserve solutions, if we have a solution for K0 there exists a

solution for K1.

Lemma 4.5 (Transitions preserve typing). Let ∆0 K0 7→ ∆1 K1 and ∆1 `K1

θ ⇐ ∆0.

1 If ∆0; Ψ `K0
M ⇐ A then ∆1; [[θ]]Ψ `K1

[[θ]]M ⇐ [[θ]]A.

2 If ∆0; Ψ `K0
R⇒ A then ∆1; [[θ]]Ψ `K1

[[θ]]R⇒ A′ and [[θ]]A =K1
A′.

Proof. By induction on the derivation of ∆0; Ψ `K0
J . Most cases are by inversion,

appeal to induction hypothesis, and re-assembling the result. The most interesting case

is transitioning between normal and neutral terms. Here we use the previous lemma on

“Equality modulo preserved by transitions”.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 21

Next, we define when a set of equations which constitute a unification problem are

well-formed using the judgment ∆0 K0
K wf, which states that each equation Ψ `

M = N : A must be well-typed modulo the equations in K0, i.e., ∆0; Ψ `K0
M ⇐ A and

∆0; Ψ `K0
N ⇐ A . We simply write ∆0 K wf to mean ∆0 K K wf.

Lemma 4.6 (Equations remain well-formed under meta-substitutions). If

∆0 K wf and ∆1 `[[θ]]K θ ⇐ ∆0 then ∆1 [[θ]]K wf.

Proof. By assumption ∆0 K wf. By definition, for every constraint Ψ ` M = N :

A ∈ K, we have ∆0; Ψ `K M ⇐ A and ∆0; Ψ `K N ⇐ A. By meta-substitution principle

modulo (lemma 3.3), we know ∆1; [[θ]]Ψ `[[θ]]K [[θ]]M ⇐ [[θ]]A and ∆1; [[θ]]Ψ `[[θ]]K [[θ]]N ⇐
[[θ]]A, and hence ∆1 `[[θ]]K [[θ]]K wf.

Lemma 4.7 (Well-formedness of equations is preserved by transitions). If

∆0 K0 7→ ∆1 K1 and ∆0 K0
K wf then ∆1 `K1

K wf.

Proof. By assumption ∆ K0
K wf, we know that for each Ψ ` M = N : A ∈ K,

∆; Ψ `K0 M ⇐ A and ∆; Ψ `K0 N ⇐ A. By lemma 4.5, typing is preserved by

transitions, we know that ∆; Ψ `K1
M ⇐ A and ∆; Ψ `K1

N ⇐ A. Therefore ∆ K1

K wf.

Theorem 4.8 (Unification preserves well-formedness).

If ∆0 K0 wf and ∆0 K0 7→ ∆1 K1 then ∆1 K1 wf.

Proof. By case analysis on the transition rules and lemma 4.2.

−Decomposition rules. We consider the decomposition rule for pairs. Let K0 be the set

of equations which contains Ψ ` (M1,M2) = (N1, N2) : Σx:A.B. By assumption we

have ∆0; Ψ `K0 (M1,M2) ⇐ Σx:A.B. By inversion, we have ∆0; Ψ `K0 M1 ⇐ A

and ∆0; Ψ `K0
M2 ⇐ [M1/x]A(B). By assumption we have ∆0; Ψ `K0

(N1, N2) ⇐
Σx:A.B. By inversion, we have ∆0; Ψ `K0 N1 ⇐ A and ∆0; Ψ `K0 N2 ⇐ [N1/x]A(B).

Let K1 = K0 ∧ Ψ ` M1 = N1 : A. Then ∆0 K1 wf. Moreover, ∆0; Ψ `K1
N2 ⇐

[M2/x]A(B). Hence, Ψ ` M2 = N2 : [M1/x]A(B) is well-formed and ∆0 K2 wf

where we replace the constraint Ψ ` (M1,M2) : Σx:A.B with Ψ `M1 = N1 : A∧Ψ `
M2 = N2 : [M1/x]A(B) in K.

−Next, we consider the decomposition rules for evaluation contexts. Let K0 be the set

of equations containing Ψ | R : Πx:A.B ` E[•M] = E′[•M ′]. By assumption this

constraint is well-typed, and hence ∆0; Ψ `K0 R⇒ Πx:A.B and ∆0; Ψ `K0 R M ⇒
B2 and ∆0; Ψ `K0

R M ′ ⇒ B1 where B1 =K0
B2. In addition ∆0; Ψ `K0

M ⇐ A

and ∆0; Ψ `K0 M
′ ⇐ A.

Let K1 = K0∧Ψ `M = M ′ : A. Clearly, ∆0 K1 wf. Moreover, since the evaluation

E[R M] and E′[R M ′] are well-typed modulo K0 and the fact that Ψ `M = M ′ : A,

we have also that E′[R M] is well-typed modulo K1 and Ψ | R M : [M/x]B ` E = E′

is well-typed in ∆0 modulo K1. Therefore, we have ∆0 K2 wf where K2 = K1 ∧Ψ |
R M : [M/x]B ` E = E′.

−Pruning rule. Let K0 be the set of equations containing Ψ ` u[ρ] = M : A. By

assumption, we know that ∆0; Ψ `K0 u[ρ]⇐ A and ∆0; Ψ `K0 M ⇐ A.

A. Abel and B. Pientka 22

By soundness of pruning (lemma 3.8), we know that ∆1 `[[η]]K0
η ⇐ ∆0. By lemma

4.6, we know that ∆1 [[η]](K0) wf.

−Intersections. Let K0 be the set of equations containing Ψ ` u[ρ] = u[ξ] : C. By

assumption, we know that ∆0; Ψ `K0
u[ρ] ⇐ C and ∆0; Ψ `K0

u[ξ] ⇐ C. Let

u : A[Φ] ∈ ∆. By inversion, we have [ξ]A =K0 C =K0 [ρ]A. This means FV([ξ]A) =

FV([ρ]A) and by definition of ρ ∩ ξ : Φ ⇒ Φ0, the context Φ0 will contain exactly

those variables shared in ξ and ρ. By soundness lemma 3.9, we have ∆0 `K0 Φ0 ctx.

Therefore, ∆0; Φ0 `K0
A ⇐ type and (∆0, v:A[Φ0]) mctx. By typing rules, we have

(∆0, v:A[Φ0]); Φ `K0
u⇐ A and (∆0, v:A[Φ0]); Φ `K0

v[wkΦ0
]⇐ A. Hence, Φ ` u←

v[wkΦ0
: A is well-typed in ∆0 modulo K0. Hence, θ = Φ̂.v[wkΦ0

]/u is a well-formed

meta-substitution. By lemma 3.3, we have [[θ]]∆ ([[θ]]K0∧[[θ]]Φ ` u←M : [[θ]]A) wf.

−Solving. Let K0 be the set of equations containing Ψ ` u[ρ] = M : C. By assumption

M ′ = [ρ/Φ̂]−1M exists and u:A[Φ] ∈ ∆. Since ∆0 K0 wf, we also have ∆0; Ψ `K0

M ⇐ C and ∆0; Ψ `K0 u[ρ]⇐ C. By inversion, we have C =K0 [ρ]A. By assumption

we have ∆0; Φ `K0
M ′ ⇐ A. Hence, θ = Φ̂.M ′/u is a well-formed meta-substitution

and by lemma 3.3, we have [[θ]]∆0 [[θ]](K0 ∧ Φ ` u←M ′ : A) wf.

5. Extension to unit type

To reduce dependently typed records to Σ-types, we still miss the empty record. In this

section, we extend our unification algorithm to include the unit type 1. To account for

the type-directed nature of equality with a unit type, we equip the η-equality judgement

with context and type and write ∆; Φ `M =η N : A .

The challenge for our algorithm is that η-equality for the unit type does not preserve

the set of free variables.

∆; Φ `M ⇐ 1

∆; Φ `M =η ? : 1

Any term M of unit type is extensionally equal to the single inhabitant ? : 1. Thus,

free variables may disappear by η-expansion. We need to disregard subterms of unit

type during the occurrence check, otherwise we report unsolvability on actually solvable

constraints.

Further, η-contraction needs to be type-directed to properly handle subterms of unit

type. It is best formulated when we introduce the concept of singleton type which sub-

sumes the unit type. For our purposes, a singleton type A sing is any type A that has

exactly one inhabitant ?A up to η-equality.

1 sing

B sing

Πx:A.B sing

A sing B sing

Σx:A.B sing

?1 = ? ?Πx:A.B = λx. ?B ?Σx:A.B = (?A, ?B)

Lemma 5.1 (Soundness of singleton predicate). Let A sing. Then:

1 ∆; Ψ ` ?A ⇐ A.

2 If ∆; Ψ `M,N ⇐ A then ∆; Ψ `M =η N : A.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 23

Since we can solve or prune constraints Ψ ` u[ρ] = M : A when ρ is a variable

substitution, we need to be able to decide whether an arbitrary substitution σ that

appears in a constraint Ψ ` u[σ] = M : A is equivalent to a variable substitution. In

essence, we need to decide whether a β-normal form N which is part of σ is equal to a

variable x modulo η-equality. In the following, we adapt η-contraction to fulfill this task.

Note that the following additional η-like reductions have to be considered.

Law where B sing condition justification

Ψ ` λx.M N =η M : Πx:B.C x 6∈ FV(M) Ψ, x:B ` N =η x : B

Ψ ` (N, sndM) =η M : Σx:B.C Ψ ` N =η fstM : B

Ψ ` (fstM,N) =η M : Σx:A.B Ψ ` N =η sndM : [fstM/x]B

Note that these laws arise at function and pair types that contain a singleton type but

are not singleton types.

As a prerequisite to solving constraint Ψ ` u[σ] = N : C, we need to turn σ into a

variable substitution ρ. Given u : B[Φ], we will write this step as Ψ ` σ 〉〉 ρ⇐ Φ . To

this end, we need to check whether a term M of σ is η-equal to a variable, i. e., whether

Ψ ` M =η x : A for A the type of M . In case A sing, this is trivially true, but also in

the other case it is clearly decidable: we could just try the judgement for all (x:A) ∈ Ψ.

However, this is inefficient; we should be able to compute the variable x that M contracts

to in case it contracts to a variable at all. In the following, we develop a judgement such

that its application Ψ `M 〉〉 x⇐ A does the job.

Before we dive into the definition, let us consider the example

x : . . . ` λy. λz. x (fst y, z) z =η x : Πy:(Σ :A.1).Πz:1. B.

Our algorithm will first try to establish

x : . . . , y : Σ :A.1 ` λz. x (fst y, z) z =η x y : Πz:1. B.

However, we cannot η-contract directly here since z occurs in x (fst y, z). Yet we can get

rid of z since it is of singleton type, it is sufficient to derive

x : . . . , y : Σ :A.1 ` x (fst y, ?) ? =η x y ? : B.

We get there by applying both sides to ?. The derivation can be closed by observing that

x : . . . , y : Σ :A.1 ` (fst y, ?) =η y : Σ :A.1.

These thoughts lead to the design of judgement Ψ `M 〉〉 E[x] : A which is directed

on non-singleton type A (see Figure 6). It η-contracts term M of type A to a neutral

term E[x] with a variable, x, in the head. Ultimately, we are interested in a plain variable

E[x] = x as result, but the definition requires a generalization to neutrals.

If the input term is a lambda abstraction λy.M , necessarily at function type Πy:A.B,

we distinguish two cases. If A sing then we try to contract the body [?A/y]M where we

have eliminated the singleton variable y. If the result is an application E[x]N with E[x]

of the same function type, we know that N is of singleton type, hence, λy.E[x]N is

η-equal to E[x] which we return. Otherwise, if not A sing, then we first try to η-contract

the unmodified body M . If the result is an application E[x]N , and E[x] is of the original

A. Abel and B. Pientka 24

Ψ `M 〉〉 E[x]⇐ A

Input: Ψ, M , A with not A sing. Output: E[x] such that Ψ `M =η E[x] : A.

Ψ ` E[x]⇐ A

Ψ ` E[x] 〉〉 E[x]⇐ A

A sing Ψ ` [?A/y]M 〉〉 E[x]N ⇐ [?A/y]B Ψ ` E[x]⇒ Πy:A.B

Ψ ` λy.M 〉〉 E[x]⇐ Πy:A.B

not A sing Ψ, y:A `M 〉〉 E[x]N ⇐ B Ψ ` E[x]⇒ Πy:A.B Ψ ` N =η y : A

Ψ ` λy.M 〉〉 E[x]⇐ Πy:A.B

Ψ `M1 〉〉 fstE[x]⇐ A unless A sing Ψ `M2 〉〉 sndE[x]⇐ [M1/y]B unless B sing

Ψ ` (M1,M2) 〉〉 E[x]⇐ Σy:A.B

Fig. 6. Type-directed η-contraction.

function type and does not depend on y, we can η-contract the abstraction λy.M to E[x]

provided argument N is η-equal to variable y.

In case the input term M is a pair (M1,M2), it must have pair type Σy:A.B and at

least one of A or B is not a singleton type. We try to contract M1 to fstE[x] (unless

A sing) and M2 to sndE[x] (unless B sing). If we succeed, we can contract the pair

(M1,M2) to E[x].

The above example can be written as the following derivation tree, where (∗) = x :

. . . , y : Σ :A.1 ` (fst y, ?) =η y : Σ :A.1:

x : . . . , y : Σ :A.1 ` x (fst y, ?) ? 〉〉 x (fst y, ?) ?⇐ [?/z]B

x : . . . , y : Σ :A.1 ` λz. x (fst y, z) z 〉〉 x (fst y, ?)⇐ Πz:1. B (∗)

x : . . . ` λy. λz. x (fst y, z) z 〉〉 x⇐ Πy:(Σ :A.1).Πz:1. B

Lemma 5.2 (η-Contraction to variable). Let A such that not A sing.

1 Soundness: If Ψ `M 〉〉 E[x]⇐ A then Ψ `M =η E[x] : A.

2 Completeness: If Ψ ` M =η E[x] : A then Ψ ` M 〉〉 E′[x] ⇐ A for some E′ with

Ψ ` E[x] =η E
′[x] : A. If even Ψ `M =η x : A then Ψ `M 〉〉 x⇐ A.

3 Termination: Given ∆; Ψ `M ⇐ A, the query Ψ `M 〉〉 ?⇐ A terminates.

4 Decidability: Let ∆; Ψ `M ⇐ A. Then ∃x. (Ψ `M =η x : A) is decided by running

Ψ `M 〉〉 ?⇐ A.

Proof. Soundness is an easy induction on the derivation, termination is by induction

on the type, decidability is a consequence of soundness, completeness, and termination.

Completeness follows from the following inversion properties of η-equality.

Lemma 5.3 (Inversion of η-equality to neutral term). Let not C sing.

1 If Ψ ` x =η R0 : C then R0 = x and Ψ ` C =η Ψ(x).

2 If Ψ ` RM =η R0 : C then R0 = R′M ′ for some R′,M ′ with Ψ ` R =η R
′ : Πy:A.B

for some y,A,B and Ψ `M =η M
′ : A and Ψ ` C =η [M/y]B.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 25

3 If Ψ ` fstR =η R0 : C then R0 = fstR′ with Ψ ` R =η R
′ : Πy:C.D for some y,D.

4 If Ψ ` sndR =η R0 : C then R0 = sndR′ and Ψ ` R =η R
′ : Πy:A.B for some

y,A,B with Ψ ` C =η [fstR/y]B.

5 If Ψ ` λy.M =η R : C then C = Πy:A.B and Ψ, y:A `M =η Ry : B.

6 If Ψ ` λy.M =η R : Πy:A.B with A sing then Ψ ` [?A/y]M =η R ?A : [?A/y]B.

7 If Ψ ` (M1,M2) =η R : C then C = Σy:A.B and Ψ ` M1 =η fstR : A and

Ψ `M2 =η sndR : [fstM1/y]B.

Proof. Statements 1–4 hold since η-equality does not modify neutrals of non-singleton

type, only λs or pairs. Statements 5–7 are easy applications of congruence rules and

β-normalization. For instance, statement 5 arises from weakening and application to

variable y (with subsequent renormalization).

Based on judgement Ψ `M 〉〉 x⇐ A we define η-contraction of a substitution σ to a

variable substitution ρ as judgement Ψ ` σ 〉〉 ρ⇐ Φ in the obvious way.

In the following, we amend the unification algorithm to handle unit types. Local sim-

plification (see Fig. 3) is extended by a new transition that deletes boring constraints,

i. e., those at singleton types:

“Decomposition” of singletons (1)

Φ `M = N : A 7→d > if A sing

Constraints can be freed of variables in subterms of singleton type. Those variables could

otherwise trip up the occurs check, pruning, or inverse substitution. Let M sing free

express that all subterms of M of type A sing are ?A.

Eliminating singleton subterms (2)

Φ ` u[σ] = M : C 7→e Φ ` u[σ] = M ′ : C

if Φ `M =η M
′ : C and M ′ sing free but not M sing free

The occurs check needs to be restricted to rhss that have no variables in subterms of

singleton types, as those are eliminateable by η.

Failing occurs check only when M sing free (3)

∆ K ∧Ψ ` u[ρ] = M : C 7→ ⊥ if FVrig(M) 6⊆ ρ
∆ K ∧Ψ ` u[ρ] = M : C 7→ ⊥ if M = M ′{u[ξ]}srig 6= u[ξ]

In an implementation, the elimination of singleton subterms could be incorporated, to-

gether with the occurs check, into pruning, to avoid multiple traversals of the rhs.

For the following transitions, assume (u : A[Φ]) ∈ ∆ active. The η-contraction transi-

tions 7→e are replaced by a transition that turns a substitution into a variable substitution.

η-Contraction (4)

Ψ ` u[σ] = N : A 7→e Ψ ` u[ρ] = N : A if Ψ ` σ 〉〉 ρ⇐ Φ.

Meta variables of singleton types can be solved on the spot:

Solving singleton metas (5)

∆ K 7→ ∆ K + Φ ` u← ?A : A if A sing.

This completes the extension to singleton types. We have taken care of singleton types

in all relevant positions:

1 In the type of a constraint: (1) and (3).

A. Abel and B. Pientka 26

2 In the terms of a constraint: (2) and (4).

3 In the type of a meta variable (5).

We could also eliminate singleton variables from contexts, via the two following transi-

tions:

Eliminating singleton variables (6)

Φ1, x:A,Φ2 `M = N : C 7→p Φ1, [τ]Φ2 ` [τ]M = [τ]N : [τ]C if A sing

where τ = [?A/x].

Pruning singleton variables (7)

∆ K 7→
(
∆, v : [Φ1, [?

B/x]Φ2]([?B/x]A) K
)

+ (Φ ` u← v[wkΦ1,Φ2] : A)

if Φ = Φ1, x:B,Φ2 and B sing.

However, singleton variables in contexts are harmless as long as we apply (2) to eliminate

their occurrences in constraints.

6. Related work

Our work is to our knowledge the first comprehensive description of constraint-based

higher-order pattern unification for the λΠΣ calculus. It builds on and extends prior

work by Reed [2009b] to handle Σ-types. Previously, Elliot [1990] described unification

for Σ-types in a Huet-style unification algorithm. While it is typically straightforward

to incorporate η-expansions and lowering for meta-variables of Σ-type [Schack-Nielsen

and Schürmann, 2010, Norell, 2007], there is little work on extending the notion of

Miller patterns to be able to handle meta-variables which are applied to projections of

bound variables. Fettig and Löchner [1996] describe a higher-order pattern unification

algorithm with finite products in the simply typed lambda-calculus. Their approach

does not directly exploit isomorphisms on types, but some of the ideas have a similar

goal: for example abstractions λx. fstx is translated into λ(x1, x2). fst (x1, x2) which in

turn normalizes to λ(x1, x2).x1 to eliminate projections. Duggan [1998] also explores

extended higher-order patterns for products in the simply-typed setting; he generalizes

Miller’s pattern restriction for the simply-typed lambda-calculus by allowing repeated

occurrences of variables to appear as arguments to meta-variables, provided such variables

are prefixed by distinct sequences of projections.

7. Conclusion

We have presented a constraint-based unification algorithm which solves higher-order

patterns dynamically and showed its correctness. There are several key aspects of our

algorithm: First, we define pruning formally and show soundness in the dependently

typed case. Our pruning operation differs from previous formulations in how it treats

non-patterns which may occur in the term to be pruned: if it encounters a non-pattern

term M where FV(M) ⊆ ρ, then pruning may succeed; otherwise it fails. This strategy

avoids non-termination problems present in previous formulations [Dowek et al., 1996],

but is also less ambitious than the algorithm proposed by Reed [2009b]. We have extended

higher-order pattern unification to handle Σ-types; this has been an open problem so far,

yet it is of practical relevance:

Extensions to Miller’s Pattern Unification for Dependent Types and Records 27

1 In LF-based systems such as Beluga, Twelf or Delphin, a limited form of Σ-types arises

due to context blocks: Σ-types are used to introduce several assumptions simultane-

ously. For Beluga, the second author has implemented the flattening of context blocks

and it works well in type reconstruction [Pientka, 2013].

2 In dependently typed languages such as Agda, Σ-types, or, more generally, record

types, are commonly used. However, implementations of unification in these sys-

tems have traditionally not supported records. McBride [2010, p. 6] gives a practical

example where the unification problem T (fst γ) (snd γ) = T ′ γ appears. Using the

techniques presented in this paper, the first author has extended Agda’s unification

algorithm to solve those kinds of problems.

Correctness of our unification constraint solver is proven using typing modulo Reed

[2009b]. This is possible since we have no constraints on the type level and we are dealing

with terms whose normalization via hereditary substitutions can be defined by recursion

on their type. Even in the presence of unsolvable constraints, which lead to ill-typed

terms, normalization is terminating. This does not scale to Agda which has large elimi-

nations and unification on the type level; there, ill-typed terms may lead to divergence of

type reconstruction. A solution has been described by Norell [2007]: unsolved constraints

block normalization, thus guaranteeing termination of the unification algorithm. The idea

has been implemented in Agda 2 and been extended to Σ-types and the unification rules

described in this article.

Acknowledgments. We thank Jason Reed for his insightful work and his explanations

given via email. Thanks to Conor McBride for in-depth comments on this text and his

suggestions for improvement. We also acknowledge the anonymous referees who have

given constructive critique on a previous version of this article.

References

A. Abel and B. Pientka. Higher-order dynamic pattern unification for dependent types

and records. In C.-H. L. Ong, editor, Typed Lambda Calculi and Applications - 10th

International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011, Proceedings,

volume 6690 of Lecture Notes in Computer Science, pages 10–26. Springer, 2011. ISBN

978-3-642-21690-9. .

AgdaTeam. The Agda Wiki, 2018.

I. Cervesato and F. Pfenning. A linear spine calculus. Journal of Logic and Computation,

13(5):639–688, 2003.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substi-

tutions: The case of higher-order patterns. In Joint International Conference Logic

Programming, pages 259–273. MIT Press, 1996.

D. Duggan. Unification with extended patterns. Theoretical Computer Science, 206(1-2):

1–50, 1998.

C. Elliott. Extensions and Applications of Higher-Order Unification. PhD thesis, School

of Computer Science, Carnegie Mellon University, 1990.

A. Abel and B. Pientka 28

R. Fettig and B. Löchner. Unification of higher-order patterns in a simply typed lambda-

calculus with finite products and terminal type. In 7th International Conference

on Rewriting Techniques and Applications (RTA’96), LNCS 1103, pages 347–361.

Springer, 1996. ISBN 3-540-61464-8.
A. Gacek. The Abella interactive theorem prover (system description). In 4th Inter-

national Joint Conference on Automated Reasoning, volume 5195 of Lecture Notes in

Artificial Intelligence, pages 154–161. Springer, 2008.
H. Goguen. Justifying algorithms for βη conversion. In 8th Int. Conf. on Foundations

of Software Science and Computational Structures (FoSSaCS’05), LNCS 3441, pages

410–424. Springer, 2005. ISBN 3-540-25388-2.
W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical

Computer Science, 13:225–230, 1981.
R. Harper and D. Licata. Mechanizing metatheory in a logical framework. Journal of

Functional Programming, 17(4–5):613–673, July 2007.
C. McBride. Outrageous but meaningful coincidences: Dependent type-safe syntax and

evaluation. In ACM SIGPLAN Workshop on Genetic Programming (WGP’10), pages

1–12. ACM, 2010.
S. Michaylov and F. Pfenning. An empirical study of the runtime behavior of higher-order

logic programs. In D. Miller, editor, Proceedings of the Workshop on the lambda Prolog

Programming Language, pages 257–271. University of Pennsylvania, 1992. Available

as Technical Report MS-CIS-92-86.
D. Miller. Unification of simply typed lambda-terms as logic programming. In Eighth

International Logic Programming Conference, pages 255–269. MIT Press, 1991.
G. Nadathur and N. Linnell. Practical higher-order pattern unification with on-the-fly

raising. In 21st International Conference on Logic Programming (ICLP’05), Lecture

Notes in Computer Science (LNCS 3668), pages 371–386. Springer-Verlag, 2005. ISBN

3-540-29208-X, 978-3-540-29208-1. .
G. Nadathur and D. J. Mitchell. System description: Teyjus – a compiler and abstract

machine based implementation of Lambda Prolog. In H. Ganzinger, editor, Proceedings

of the 16th International Conference on Automated Deduction (CADE-16), pages 287–

291, Trento, Italy, July 1999. Springer-Verlag LNCS.
A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Trans-

actions on Computational Logic, 9(3):1–49, 2008.
U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory.

PhD thesis, Department of Computer Science and Engineering, Chalmers University

of Technology, Göteborg, Sweden, Sept. 2007.
F. Pfenning. Elf: A language for logic definition and verified metaprogramming. In

Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS

’89), Pacific Grove, California, USA, 5-8 June, 1989, pages 313–322. IEEE Computer

Society Press, 1989. ISBN 0-8186-1954-6. .
F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical framework

for deductive systems. In 16th International Conference on Automated Deduction

(CADE-16), LNAI 1632, pages 202–206. Springer, 1999.
B. Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer

Science, Carnegie Mellon University, 2003. CMU-CS-03-185.

Extensions to Miller’s Pattern Unification for Dependent Types and Records 29

B. Pientka. An insider’s look at LF type reconstruction: Everything you (n)ever wanted

to know. Journal of Functional Programming, 1(1–37), 2013.

B. Pientka and A. Cave. Inductive Beluga:Programming Proofs (System Description). In

A. P. Felty and A. Middeldorp, editors, 25th International Conference on Automated

Deduction (CADE-25), Lecture Notes in Computer Science (LNCS 9195), pages 272–

281. Springer, 2015.

B. Pientka and J. Dunfield. Beluga: a framework for programming and reasoning with

deductive systems (System Description). In 5th International Joint Conference on

Automated Reasoning (IJCAR’10), LNAI 6173, pages 15–21, 2010.

J. Reed. A Hybrid Logical Framework. PhD thesis, School of Computer Science, Carnegie

Mellon University, 2009a.

J. Reed. Higher-order constraint simplification in dependent type theory. In Interna-

tional Workshop on Logical Frameworks and Meta-Languages: Theory and Practice

(LFMTP’09), 2009b.

A. Schack-Nielsen and C. Schürmann. Curry-style explicit substitutions for the linear

and affine lambda calculus. In J. Giesl and R. Hähnle, editors, Automated Reasoning,

5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.

Proceedings, volume 6173 of Lecture Notes in Computer Science, pages 1–14. Springer,

2010. ISBN 978-3-642-14202-4. .

N. Shankar. Inference systems for logical algorithms. volume 3821 of Lecture Notes in

Computer Science, pages 60–78. Springer, 2005. ISBN 3-540-30495-9. .

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework

I: Judgements and properties. Technical report, School of Computer Science, Carnegie

Mellon University, Pittsburgh, 2003.

	Introduction
	"7005-calculus with meta-variables
	Constraint-based unification
	Typing modulo
	A higher-order dynamic pattern unification algorithm
	Inverting substitutions
	Pruning
	Unifying two identical existential variables

	Correctness
	Solutions to unification
	Transitions preserve types

	Extension to unit type
	Related work
	Conclusion

