
Higher-Order Dynamic Pattern Unification for
Dependent Types and Records

Andreas Abel1 and Brigitte Pientka2

1 Institut für Informatik, Ludwig-Maximilians-Universität, München, Deutschland
andreas.abel@ifi.lmu.de

2 School of Computer Science, McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

Abstract. While higher-order pattern unification for the λΠ-calculus is
decidable and unique unifiers exists, we face several challenges in prac-
tice: 1) the pattern fragment itself is too restrictive for many applica-
tions; this is typically addressed by solving sub-problems which satisfy
the pattern restriction eagerly but delay solving sub-problems which are
non-patterns until we have accumulated more information. This leads to
a dynamic pattern unification algorithm. 2) Many systems implement
λΠΣ calculus and hence the known pattern unification algorithms for λΠ

are too restrictive.
In this paper, we present a constraint-based unification algorithm for
λΠΣ-calculus which solves a richer class of patterns than currently pos-
sible; in particular it takes into account type isomorphisms to translate
unification problems containing Σ-types into problems only involving Π-
types. We prove correctness of our algorithm and discuss its application.

1 Introduction

Higher-order unification is a key operation in logical frameworks, dependently-
typed programming systems, or proof assistants supporting higher-order logic. It
plays a central role in type inference and reconstruction algorithms, in the execu-
tion of programs in higher-order logic programming languages, and in reasoning
about the totality of functions defined by pattern-matching clauses.

While full higher-order unification is undecidable [7], Miller [8] identified
a decidable fragment of higher-order unification problems, called the pattern
fragment. A pattern is a unification problem where all meta-variables (or logic
variables) occurring in a term are applied to some distinct bound variables. For
example, the problem λx y z.X x y = λx y z. x (suc y) falls into the pattern frag-
ment, because the meta-variable X is applied to distinct bound variables x and y;
the pattern condition allows us to solve the problem by a simple abstraction X =
λx y. x (suc y). This is not possible for non-patterns; examples for non-pattern
problems which have no unique most general unifier can be obtain by chang-
ing the left hand side of the previous problem to λx y z.X xx y (non-linearity),
λx y z.X (Y x) y (X applied to another meta-variable) or λx y z.X x (suc y) (X
applied to non-variable term).

2

In practice we face several challenges: First, the pattern fragment is too
restrictive for many applications. Systems such as Twelf [12], Beluga [14], and
Delphin [15] solve eagerly sub-problems which fall into the pattern fragment
and delay sub-problems outside the pattern fragment until more information
has been gathered which in turn simplifies the delayed sub-problems. The meta-
theory justifying the correctness of such a strategy is largely unexplored and
complex (an exception is the work by Reed [16]).

Second, we often want to consider richer calculi beyond the λΠ-calculus. In
Beluga and Twelf for example we use Σ-types to group assumptions together. In
Agda [11] we support Σ-types in form of records with associated η-equality in its
general form. Yet, little work has been done on extending the pattern fragment
to handle also Σ-types. The following terms may be seen as equivalent: (a)
λy1.λy2. X (y1, y2), (b) λy.X (fst y) (snd y) and (c) λy1.λy2. X y1 y2. Only the
last term falls within the pattern fragment as originally described by Miller.
However, the other two terms can be transformed such that they also fall into
the pattern fragment: for term (a), we replace X with λy.X ′ (fst y) (snd y); for
term (b), we unfold y which stands for a pair and replace y with (y1, y2).

In this paper, we describe a higher-order unification algorithm for the λΠΣ

calculus; our algorithm handles lazily η-expansion and we translate terms into
the pure pattern fragment where a meta-variable is applied to distinct bound
variables. The key insight is to take into account type isomorphisms forΣ, the de-
pendently typed pairs: Πz:(Σx:A.B).C is isomorphic to Πx:A.Πy:B.[(x, y)/z]C,
and a function f :Πx:A.Σy:B.C can be translated into two functions f1 : Πx:A.B
and f2 : Πx:A.[f1 x/y]C. These transformations allow us to handle a richer class
of dependently-typed patterns than previously considered.

Following Nanevski et al. [9] and Pientka [13], our description takes advantage
of modelling meta-variables as closures; instead of directly considering a meta-
variable X at function type Πx:A.B which is applied to x, we describe them as
contextual objects, i.e., objects of type B in a context x:A, which are associated
with a delayed substitution for the local context x:A.3 This allows us to give a
high-level description and analysis following Dowek et al. [2], but not resorting to
explicit substitutions; more importantly, it provides a logical grounding for some
of the techniques such as “pre-cooking” and handles a richer calculus including
Σ-types. Our work also avoids some of the other shortcomings; as pointed out
by Reed [16], the algorithm sketched in Dowek et al. [2] fails to terminate on
some inputs. We give a clear specification of the pruning which eliminates bound
variable dependencies for the dependently typed case and show correctness of
the unification algorithms in three steps: 1) we show it terminates, 2) we show
that the transformations in our unification algorithm preserve types, and 3) that
each transition neither destroys nor creates (additional) solutions.

Our work is to our knowledge the first comprehensive description of constraint-
based higher-order pattern unification for the λΠΣ calculus. It builds on and
extends prior work by Reed [16] to handle Σ-types. Previously, Elliot [4] de-
scribed unification for Σ-types in a Huet-style unification algorithm. While it

3 We write x:A for a vector x1:A1, . . . xn:An.

DRAFT April 5, 2011—16 : 03

2. λΠΣ-CALCULUS 3

is typically straightforward to incorporate η-expansions and lowering for meta-
variables of Σ-type [18, 11] , there is little work on extending the notion of
Miller patterns to be able to handle meta-variables which are applied to projec-
tions of bound variables. Fettig and Löchner [5] describe a higher-order pattern
unification algorithm with finite products in the simply typed lambda-calculus.
Their approach does not directly exploit isomorphisms on types, but some of
the ideas have a similar goal: for example abstractions λx. fstx is translated into
λ(x1, x2). fst (x1 , x2) which in turn normalizes to λ(x1, x2).x1 to eliminate pro-
jections. Duggan [3] also explores extended higher-order patterns for products
in the simply-typed setting; he generalizes Miller’s pattern restriction for the
simply-typed lambda-calculus by allowing repeated occurrences of variables to
appear as arguments to meta-variables, provided such variables are prefixed by
distinct sequences of projections.

Our work has been already tested in practice. Some of the ideas described in
this paper are incorporated into the implementation of the dependently-typed
Beluga language; in Beluga, Σ-types occur in a restricted form, i.e., only variable
declarations in contexts can be of Σ-type and there is no nesting of Σ-types.

Due to space restrictions, most proofs have been omitted; they can be found
in an extended version of this article on the authors’ homepages.

2 λΠΣ-calculus

In this paper, we are considering an extension of the λΠΣ-calculus with meta-
variables. Its grammar is mostly straightforward. We use x, y, z for bound vari-
ables to distinguish them from meta-variables u, v, and w.

Sorts s ::= type | kind
Atomic types P,Q ::= a M
Types A,B,C,D ::= P | Πx:A.B | Σx:A.B
Kinds κ ::= type | Πx:A.κ
(Rigid) heads H ::= a | c | x
Projections π ::= fst | snd
Evaluation contexts E ::= • | EN | π E
Neutral terms R ::= E[H] | E[u[σ]]
Normal terms M,N ::= R | λx.M | (M , N)
Substitutions σ, τ ::= · | σ,M
Variable substitutions ρ, ξ ::= · | ρ, x
Contexts Ψ,Φ, Γ ::= · | Ψ, x:A

Meta substitutions θ, η ::= · | θ, Ψ̂ .M/u
Meta contexts ∆ ::= · | ∆,u:A[Ψ]

Meta-variables are characterized as a closure u[σ] which is the use of the meta-
variable u under the suspended explicit substitution σ. The term λx y z.X x y
with the meta-variable X which has type Πx:A.Πy:B.C is represented in our
calculus as λx y z. u[x, y] where u has type C[x:A, y:B] and [x, y] is a substitu-
tion with domain x:A, y:B and the range x, y, z. Instead of an abstraction, we

DRAFT April 5, 2011—16 : 03

4

can directly replace u with a closed object x, y. x (suc y). This eliminates the
need to craft a λ-prefix for the instantiation of meta-variables, avoids spurious
reductions, and provides simple justifications for techniques such as lowering.
In general, the meta-variable u stands for a contextual object Ψ̂ .M where Ψ̂
describes the ordinary bound variables which may occur in M . This allows us
to rename the free variables occurring in M if necessary. We use the following
convention: If the meta-variable u is associated with the identity substitution,
we simply write u instead of u[id]. A meta-variable u has the contextual type
A[Ψ] thereby characterizing an object of type A in the context Ψ . Our grammar
and our subsequent typing rules enforce that objects are β-normal.

A signature Σ is a collection of declarations, which take one of the forms: a : κ
(type family declaration) or c : A (constructor declaration). Because variable
substitutions ρ play a special role in the formulation of our unification algorithm,
we recognize them as a subclass of general substitutions σ. Identity substitutions
idΦ are defined recursively by id· = (·) and idΦ,x:A = (idΦ, x). The subscript Φ is
dropped when unambiguous. If Φ is a sub-context of Ψ (in particular if Ψ = Φ)
then idΦ is a well-formed substitution in Ψ , i.e., Ψ ` idΦ : Φ holds (see Fig. 1).
We write Φ̂ for the list of variables dom(Φ) in order of declaration.

We write E[M] for plugging term M into the hole • of evaluation context E.
This will be useful when describing the unification algorithm, since we often need
to have access to the head of a neutral term. In the λΠ-calculus, this is often
achieved using the spine notation [1] simply writing HM1 . . .Mn. Evaluation
contexts are the proper generalization of spines to projections (see also [18] for
a similar generalization in the linear setting).

Occurrences and free variables. If α, β are syntactic entities such as evaluation
contexts, terms, or substitutions, α, β ::= E | R | M | σ, we write α{β} if β
is a part of α. If we subsequently write α{β′} then we mean to replaceme the
indicated occurrence of β by β′. We say an occurrence is rigid if it is not part
of a delayed substitution σ of a meta-variable, otherwise it is termed flexible.
For instance, in c (u[y1]) (x1 x2) (λz. z x3 v[y2, w[y3]]) there are rigid occurrences
of x1..3 and flexible occurrences of y1..3. The meta-variables u, v appear in a
rigid and w in a flexible position. A rigid occurrence is strong if it is not in the
evaluation context of a free variable. In our example, only x2 does not occur
strongly rigidly. Following Reed [16] we indicate rigid occurrences by α{β}rig
and strongly rigid occurrences by α{β}srig.

We denote the set of free variables of α by FV(α) and the set of free meta
variables by FMV(α). A superscript rig indicates to count only the rigid variables.

Typing We rely on a bi-directional type system to guarantee that well-typed
terms are in β-normal form (Fig. 1). The typing rules are devided into rules which
check that an object has a given type (⇐ judgments) and rules which synthesize
a type for a given object (⇒ judgments). We have record types Σx:A.B but no
record kinds Σx:A. κ. Our typing rules ensure that terms are in β-normal form,
but they need not be η-long. The judgment A =η C (rules omitted) compares A
and C modulo η, i.e., modulo R = λx.Rx (x 6∈ FV(R)) and R = (fstR , sndR).

DRAFT April 5, 2011—16 : 03

2. λΠΣ-CALCULUS 5

Neutral Terms/Types ∆;Ψ ` R⇒ A

Σ(a) = κ

∆;Ψ ` a⇒ κ

Σ(c) = A

∆;Ψ ` c⇒ A

Ψ(x) = A

∆;Ψ ` x⇒ A

u:A[Φ] ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` u[σ]⇒ [σ]ΦA

∆;Ψ ` R⇒ Πx:A.B ∆;Ψ `M ⇐ A

∆;Ψ ` RM ⇒ [M/x]AB

∆;Ψ ` R⇒ Σx:A.B

∆;Ψ ` fstR⇒ A

∆;Ψ ` R⇒ Σx:A.B

∆;Ψ ` sndR⇒ [fstR/x]AB

Normal Terms ∆;Ψ `M ⇐ A

∆;Ψ ` R⇒ A A =η C

∆;Ψ ` R⇐ C

∆;Ψ, x:A `M ⇐ B

∆;Ψ ` λx.M ⇐ Πx:A.B

∆;Ψ `M ⇐ A ∆;Ψ ` N ⇐ [M/x]AB

∆;Ψ ` (M , N)⇐ Σx:A.B

Substitutions ∆;Ψ ` σ ⇐ Ψ ′

∆;Ψ ` · ⇐ ·
∆;Ψ ` σ ⇐ Ψ ′ ∆;Ψ `M ⇐ [σ]Ψ ′A

∆;Ψ ` σ,M ⇐ Ψ ′, x:A

LF Types and Kinds ∆;Ψ ` A⇐ s

∆;Ψ ` P ⇒ type

∆;Ψ ` P ⇐ type

∆;Ψ ` A⇐ type ∆;Ψ, x:A ` B ⇐ type

∆;Ψ ` Σx:A.B ⇐ type

∆;Ψ ` type⇐ kind

∆;Ψ ` A⇐ type ∆;Ψ, x:A ` B ⇐ s

∆;Ψ ` Πx:A.B ⇐ s

Meta-Substitutions ∆ ` θ ⇐ ∆′

for all u:A[Φ] ∈ ∆′ and Φ̂.M/u ∈ θ ∆; [[θ]]Φ `M ⇐ [[θ]]A

∆ ` θ ⇐ ∆′

Meta-Context ` ∆ mctx

for all u:A[Ψ] ∈ ∆ ∆ ` Ψ ctx ∆;Ψ ` A⇐ type

` ∆ mctx

Fig. 1. Typing rules for LF with meta-variables

Hereditary substitution. For α a well-typed entity in context Ψ and ∆;Φ ` σ : Ψ
a well-formed substitution, we facilitate a simultaneous substitution operation
[σ]Ψ (α) that substitutes the terms in σ for the variables as listed by Ψ in α and
produces a β-normal result. Such an operation exists for well-typed terms, since
λΠΣ is normalizing. A naive implementation just substitutes and then normal-
izes, a refined implementation, called hereditary substitution [19], proceeds by
resolving created redexes on the fly through new substitutions. Details can be
found in Nanevski et al. [9], but do not concern us much here. Single substitution
[N/x]A(α) is conceived as a special case of simultaneous substitution. The type

DRAFT April 5, 2011—16 : 03

6

annotation A and the typing information in Ψ allow hereditary substitution to
be defined by structural recursion; if no ambiguity arises, we may omit indices
Ψ and A from substitutions.

Meta-substitution. The two classes of variables, ordinary variables declared in
the context Ψ and meta-variables declared in the meta-context ∆, give rise to two
different substitution operations: the hereditary substitution defined previously
and the meta-substitution defined in this section. The single meta-substitution
operation is written as [[Ψ̂ .M/u]]A[Ψ](N) and the simultaneous meta-substitution
is written as [[θ]]∆(N). Subsequently, we define the application of the single meta-
substitution to a given term and type, but the simultaneous meta-substitution
definition can be easily derived from it. When we apply Ψ̂ .M/u to u[σ] we
first substitute Ψ̂ .M for u in the substitution σ to obtain σ′. Subsequently, we
continue to apply σ′ to M hereditarily to obtain M ′. As we annotate meta-
substitutions with their type, we can appropriately annotate σ′ with its domain
Ψ to obtain M ′. Without annotating meta-substitution with the type C[Ψ],
we would not be able annotate the operation [σ′]M appropriately. We omit the
typing annotation in the subsequent development for better readability. Because
M ′ may not be neutral, we may trigger a β-reduction and we return M ′ together
with its (approximate) type C.

The typing rules ensure that the type of the instantiation Ψ̂ .M and the type
of u agree, i.e. we can replace u which has type A[Ψ] with a normal term M if
M has type A in the context Ψ . Because of α-conversion, the variables that are
substituted at different occurrences of u may be different, and we write Ψ̂ .M
where Ψ̂ binds all the free variables in M . We can always appropriately rename
the bound variable in Ψ̂ such that they match the domain of the postponed
substitution σ′. This complication can be eliminated in an implementation of
the calculus based on de Bruijn indexes. Applying the meta-substitution to
an LF object will terminate for the same reasons as the ordinary substitution
operation terminates; either we apply the substitution to a sub-expression or the
objects we substitute are smaller. For an in depth discussion, we refer the reader
to Nanevski et al. [9].

3 Constraint-based unification

We define the unification algorithm using rewrite rules which solve constraints
incrementally. Constraints K and sets of constraints K are defined as follows:

Constraint K ::= > | ⊥ trivial constraint and inconsistency
| Ψ `M = N : C unify term M with N
| Ψ | R:A ` E = E′ unify evaluation context E with E′

| Ψ ` u←M : C solution for u found

C. sets K ::= K | K ∧K modulo laws of conjunction.

DRAFT April 5, 2011—16 : 03

3. CONSTRAINT-BASED UNIFICATION 7

Meta-substitution on normal terms / types

[[Ψ̂ .M/u]]C[Ψ](Πx:A.B) = Πx:A′.B′ where [[Ψ̂ .M/u]]C[Ψ](A) = A′

and [[Ψ̂ .M/u]]C[Ψ](B) = B′

[[Ψ̂ .M/u]]C[Ψ](Σx:A.B) = Σx:A′.B′ where [[Ψ̂ .M/u]]C[Ψ](A) = A′

and [[Ψ̂ .M/u]]C[Ψ (B) = B′

[[Ψ̂ .M/u]]C[Ψ](type) = type

[[Ψ̂ .M/u]]C[Ψ](λx.N) = λx.N ′ where [[Ψ̂ .M/u]]C[Ψ](N) = N ′

[[Ψ̂ .M/u]]C[Ψ](N1, N2) = (N ′1, N
′
2) where [[Ψ̂ .M/u]]C[Ψ](N2) = N ′2

and [[Ψ̂ .M/u]]C[Ψ](N2) = N ′2
[[Ψ̂ .M/u]]C[Ψ](R) = N where [[Ψ̂ .M/u]]C[Ψ]R = N : A

[[Ψ̂ .M/u]]C[Ψ](R) = R′ where [[Ψ̂ .M/u]]C[Ψ]R = R′

[[Ψ̂ .M/x]]C[Ψ](N) fails otherwise

Meta-substitution on neutral terms

[[Ψ̂ .M/u]]A[Ψ](u[σ]) = M ′ : A where [[Ψ̂ .M/u]]C[Ψ](σ) = σ′

and [σ′]Ψ (M) = M ′

[[Ψ̂ .M/u]]A[Ψ](v[σ]) = v[σ′] where [[Ψ̂ .M/u]]C[Ψ](σ) = σ′

[[Ψ̂ .M/u]]C[Ψ](RN) = R ′N ′ where [[Ψ̂ .M/u]]C[Ψ](R) = R′

and [[Ψ̂ .M/u]]C[Ψ](N) = N ′

[[Ψ̂ .M/u]]C[Ψ](RN) = M ′′ : B if [[Ψ̂ .M/u]]C[Ψ](R) = λy.M ′ : Πx:A.B

where Πx:A.B≤A, N ′ = [[Ψ̂ .M/u]]C[Ψ](N)

and M ′′ = [N ′/y]A(M ′)

[[Ψ̂ .M/u]]C[Ψ](πR) = πR′ where [[Ψ̂ .M/u]]C[Ψ](R) = R′

[[Ψ̂ .M/u]]C[Ψ](fstR) = N1 : A if [[Ψ̂ .M/u]]C[Ψ](R) = (N1, N2) : Σx:A.B
where Σx:A.B ≤ C

[[Ψ̂ .M/u]]C[Ψ](sndR) = N2 : B if [[Ψ̂ .M/u]]C[Ψ](R) = (N1, N2) : Σx:A.B
where Σx:A.B ≤ C

[[Ψ̂ .M/u]]C[Ψ](x) = x

[[Ψ̂ .M/u]]C[Ψ](c) = c

[[Ψ̂ .M/u]]C[Ψ](a) = a

[[Ψ̂ .M/x]]C[Ψ](R) fails otherwise

Meta-substitution on substitutions

[[Ψ̂ .M/u]]C[Ψ](·) = ·
[[Ψ̂ .M/u]]C[Ψ](σ,M) = σ′,M ′ where [[Ψ̂ .M/u]]C[Ψ](σ) = σ′

and [[Ψ̂ .M/u]]C[Ψ](M) = M ′

[[Ψ̂ .M/x]]C[Ψ](σ) fails otherwise

Meta-substitution on contexts

[[Ψ̂ .M/u]]C[Ψ](·) = ·
[[Ψ̂ .M/u]]C[Ψ](Ψ, x:A) = Ψ ′, x:A′ where [[Ψ̂ .M/u]]CΨ = Ψ ′

and [[Ψ̂ .M/u]]C[Ψ](A) = A′

[[Ψ̂ .M/x]]CΨ fails otherwise

Fig. 2. Meta-substitution

DRAFT April 5, 2011—16 : 03

8

Our basic constraints are of the form Ψ `M = N : C. The type annotation
Ψ ` C serves two purposes: First, it is necessary to ensure that all substitutions
created and used in our transformations can be properly annotated and hence we
can use the fact that their application will terminate and produce again normal
forms. Second, the type annotations in the context Ψ are necessary to eliminate
Σ-types. For both purposes, simple types, i.e., the dependency-erasure of Ψ ` C
would suffice. However, we keep dependency in this presentation to scale this
work from λΠΣ to non-erasable dependent types such as in Agda.

A unification problem is described by ∆
 K where ∆ contains the typings
of all the meta variables in K. A meta-variable u is solved, if there is a constraint
Ψ ` u←M : C in K; otherwise we call u active. A solved metavariable does not
appear in any other constraints nor in any type in ∆ (nor in its solution M).

Intuitively, a set of constraints is well-formed if each constraint Ψ `M = N :
C is well typed. Unfortunately, this is complicated by the fact that we may delay
working on some sub-terms; to put it differently, we can work on subterms in
an arbitrary order. Yet, the type of an equation may depend on the solvability
of another postponed equation. Consider for example tuples. If (M1,M2) and
(N1, N2) both have type Σx:A.B, then M1 and N1 have type A. However, types
may get out of sync when we consider M2 and N2. M2 has type [M1/x]B while
N2 has type [N1/x]B, and we only know that their types agree, if we know
that M1 is equal to N1. Similar issues arise for function types and applications.
Following Reed [16] we adopt here a weaker typing invariant, namely typing
modulo constraints.

3.1 Typing modulo

For all typing judgments ∆;Ψ ` J defined previously, we define ∆;Ψ `K J by
the same rules as for ∆;Ψ ` J except replacing syntactic equality = with =K.
We write Ψ̂ .M =K N if for any ground meta-substitution θ that is a ground
solution for K, we have [[θ]]M =η [[θ]]N . To put it differently, if we can solve K,
we can establish that M is equal to N .

The following lemmas proven by Reed [16] hold also for the extension to Σ-
types; we keep in mind that the judgment J stands for either a typing judgment
or an equality judgment. We first prove that typing modulo is preserved under
equality modulo.

Lemma 1. Let ∆0
 K and ∆ =K ∆′, Ψ =K Φ and A =K B.

1. If ∆;Ψ `K M ⇐ A then ∆′;Φ `K M ⇐ B.
2. If ∆;Ψ `K R⇒ A then ∆′;Φ `K R⇒ B.
3. If ∆;Ψ `K σ ⇐ Ψ ′ and Ψ ′ =K Φ′ then ∆′;Φ′ `K σ ⇐ Φ′.

Proof. We generalize the statement to types and kinds and prove them by si-
multaneous induction on the typing derivation.

Lemma 2 (Substitution principle modulo). If ∆0
 K. If ∆;Ψ `K M ⇐
A and ∆;Ψ, x:B,Ψ ′ `K J and A =K B then ∆;Ψ, [M/x]A(Ψ ′) `K [M/x]A(J).

DRAFT April 5, 2011—16 : 03

3. CONSTRAINT-BASED UNIFICATION 9

Proof. This proof follows essentially the proof in [9] and we generalize the prop-
erty to types, kinds, and contexts. Since we prove the substitution lemma modulo
A =K B, we use Lemma 1 when we for example consider the variable case.

Lemma 3 (Meta-substitution principle modulo).
Let ∆0
 K. If ∆1 `K θ ⇐ ∆ and ∆;Φ `K J then K′ = [[θ]]K and

∆1; [[θ]]Φ `K′ [[θ]]J .

Proof. Let · ` η ⇐ ∆0 be a ground solution of ∆0
 K. By assumption,
[[η]]∆1 ` [[η]]θ ⇐ [[η]]∆ and [[η]]∆; [[η]]Φ ` [[η]]J .

Induction on ∆;Φ `K J . All cases are by inversion, appeal to i.h., reassem-
bling the result and if necessary using Lemma 1 (see the case for meta-variables).
We show the case where we transition between checking and synthesizing a type.

Case D = ·;⊕ `K R ⇒ C∞ C∞ =K C∈·;⊕ `K R ⇐ C∈
∆1; [[θ]]Φ `[[θ]]K [[θ]]R⇒ [[θ]]C1 by i.h.
[[θ]]C1 =[[θ]]K [[θ]]C2 by i.h. C1 =K C2

∆1; [[θ]]Φ `[[θ]]K [[θ]]R⇐ [[θ]]C2.

Case D = ·;	 `K σ ⇐ 	′ u:B[′] ∈ ··;	 `K u[σ]⇐ [σ]	′(B)

For Ψ̂ ′.M/u ∈ θ and u:B[Ψ ′] ∈ ∆, ∆1; [[θ]]Ψ ′ `K M ⇐ [[θ]]B.
∆1; [[θ]]Ψ `[[θ]]K [[θ]]σ ⇐ [[θ]]Ψ ′ by i.h.
[[θ]](u[σ]) = [[[θ]]σ]Ψ ′(M) by definition
∆1; [[θ]]Ψ `[[θ]]K [[[θ]]σ]M ⇐ [[[θ]]σ]([[θ]]B) by ord. subst. lemma
∆1; [[θ]]Ψ `[[θ]]K [[[θ]]σ]M ⇐ [[θ]]([σ]B) by definition of msubst. ut

Intuitively, a unification problem ∆
 K is well-formed if all constraints
(Ψ ` M = N : C) ∈ K are well-typed modulo K, i.e., ∆;Ψ `K M ⇐ C and
∆;Ψ `K N ⇐ C. We will come back to this later when we prove correctness
of our algorithm, but it is helpful to keep the typing invariant in mind when
explaining the transitions in our algorithm.

3.2 A higher-order dynamic pattern unification algorithm for
dependent types and records

The higher-order dynamic pattern unification algorithm is presented as rewrite
rules on the set of constraints K in meta variable context ∆. The local simplifi-
cation rules (Figure 3) apply to a single constraint, decomposing it and molding
it towards a pattern by η-contraction and projection elimination. Decomposition
of a neutral term is defined using evaluation contexts to have direct access to
the head.

The other unification steps (Figure 4) work on a meta-variable and try to
find an instantiation for it. We write ∆
 K + Φ ` uotM : A for instantiating
the eta-variable u with the term M in the meta-context ∆ and in the constraints
K. This abbreviation is defined under the heading Instantiation in Figure 4.

DRAFT April 5, 2011—16 : 03

10

Decomposition of functions

Ψ ` λx.M = λx.N : Πx:A.B 7→d Ψ, x:A `M = N : B

Ψ ` λx.M = R : Πx:A.B 7→d Ψ, x:A `M = Rx : B

Ψ ` R = λx.M : Πx:A.B 7→d Ψ, x:A ` Rx = M : B

Decomposition of pairs

Ψ ` (M1 ,M2) = (N1 , N2) : Σx:A.B 7→d Ψ `M1 = N1 : A ∧ Ψ `M2 = N2 : [M1/x]B

Ψ ` (M1 ,M2) = R : Σx:A.B 7→d Ψ `M1 = fstR : A ∧ Ψ `M2 = sndR : [M1/x]B

Ψ ` R = (M1 ,M2) : Σx:A.B 7→d Ψ ` fstR = M1 : A ∧ Ψ ` sndR = M2 : [fstR/x]B

Decomposition of neutrals

Ψ ` E[H] = E′[H] : C 7→d Ψ | H : A ` E = E′ where Ψ ` H ⇒ A

Ψ ` E[H] = E′[H ′] : C 7→d ⊥ if H 6= H ′

Decomposition of evaluation contexts

Ψ | R : A ` • = • 7→d >
Ψ | R : Πx:A.B ` E[•M] = E′[•M ′] 7→d Ψ `M = M ′ : A ∧ Ψ | RM : [M/x]B ` E = E′

Ψ | R : Σx:A.B ` E[fst •] = E′[fst •] 7→d Ψ | fstR : A ` E = E′

Ψ | R : Σx:A.B ` E[snd •] = E′[snd •] 7→d Ψ | sndR : [fstR/x]B ` E = E′

Ψ | R : Σx:A.B ` E[π •] = E′[π′ •] 7→d ⊥ if π 6= π′

Orientation

Ψ `M = u[σ] : C with M 6= v[τ] 7→d Ψ ` u[σ] = M : C

η-Contraction

Ψ ` u[σ{λx.R x}] = N : C 7→e Ψ ` u[σ{R}] = N : C

Ψ ` u[σ{(fstR, sndR)}] = N : C 7→e Ψ ` u[σ{R}] = N : C

Eliminating projections

Ψ1, x : Πy:A. Σz:B.C, Ψ2 Ψ1, x1 : Πy:A. B, x2 : Πy:A. [(x1 y)/z]C, Ψ2

` u[σ{π (xM)}] = N : D 7→p ` u[[τ]σ] = [τ]N : [τ]D
where π ∈ {fst, snd} where τ = [λy. (x1 y, x2 y)/x]

Fig. 3. Local simplification.

Lowering rules transform a meta-variable of higher type to one of lower type.
Flattening Σ-types concentrates on a meta-variable u:A[Φ] and eliminates Σ-
types from the context Φ. The combination of the flattening Σ-types transition
and the eliminating projections transition allow us to transform a unification
problem into one which resembles our traditional pattern unification problem.
The pruning transition is explained in detail in Section 3.4 and unifying a meta-
variable with itself is discussed in Section 3.5.

Our algorithm can deal with a larger class of patterns where we typically
require that meta-variables are associated with a linear substitution. To motivate
our rules, let us consider some problems Ψ ` u[σ] = M : C that fall outside of

DRAFT April 5, 2011—16 : 03

3. CONSTRAINT-BASED UNIFICATION 11

Local simplification

∆
 K ∧K 7→ ∆
 K ∧ K′ if K 7→m K′ (m ∈ {d, e, p})

Instantiation (notation)

∆
 K+ (Φ ` u←M : A) = [[θ]]∆
 [[θ]]K ∧ [[θ]]Φ ` u←M : [[θ]]A

where θ = Φ̂.M/u
Lowering

∆
 K 7→ ∆, v:B[Φ, x:A]
 K
u:(Πx:A.B)[Φ] ∈ ∆ active + Φ ` u← λx.v : Πx:A.B

∆
 K 7→ ∆,u1:A[Φ], u2:([u1/x]AB)[Φ]
 K
u:(Σx:A.B)[Φ] ∈ ∆ active + Φ ` u← (u1 , u2) : Σx:A.B

Flattening Σ-types

∆
 K (u:A[Φ] ∈ ∆ active) 7→ ∆, v:([σ−1]A)[Φ′]
 K + Φ ` u← v[σ] : A
Φ = Φ1, x : Πy:A. Σz:B.C, Φ2 Φ′ = Φ1, x1 : Πy:A. B, x2 : Πy:A. [x1 y/z]C, Φ2

σ−1 = [λy. (x1 y , x2 y)/x] σ = [λy. fst (xy)/x1, λy. snd (xy)/x2]

Pruning

∆
 K 7→ ∆′
 [[η]]K
(Ψ ` u[ρ] = M : C) ∈ K if ∆ ` pruneρM ⇒ ∆′; η and η 6= id

Same meta-variable

∆
 K ∧ Ψ ` u[ρ] = u[ξ] : C 7→ ∆, v:A[Φ0]
 K+ Φ ` u← v[idΦ0] : A
u:A[Φ] ∈ ∆ if ρ ∩ ξ : Φ⇒ Φ0

Failing occurs check

∆
 K ∧ Ψ ` u[ρ] = M : C 7→ ⊥ if FVrig(M) 6⊆ ρ
∆
 K ∧ Ψ ` u[ρ] = M : C 7→ ⊥ if M = M ′{u[ξ]}srig 6= u[ξ]

Solving (with successful occurs check)

∆
 K ∧ Ψ ` u[ρ] = M : C 7→ ∆
 K+ Φ ` u←M ′ : A

(u:A[Φ]) ∈ ∆; u 6∈ FMV(M) if M ′ = [ρ/Φ̂]−1M exists

Fig. 4. Unification steps.

the Miller pattern fragment, meaning that σ is not a list of disjoint variables.
We may omit types and/or context if appropriate.

η-contraction u[λx. y (fstx , sndx)] = M
Solved by contracting the l.h.s. to u[y].

Eliminating projections y : Πx:A.Σz:B.C ` u[λx. fst (y x)] = M
Applying substitution τ = [λx. (y1 x , y2 x)/y] yields problem y1 : Πx:A.B,
y2 : Πx:A. [y1 x/z]C ` u[λx. y1 x] = [τ]M which is solved by η-contraction,
provided y2 6∈ FV([τ]M).

Lowering u : (Σx:A.B)[Φ]
 fst (u[y]) = fst y
This equation determines only the first component of the tuple u. Thus,
decomposition into u[y] = y, which also determines the second component,

DRAFT April 5, 2011—16 : 03

12

loses solutions. Instead we replace u by a pair (u1, u2) of meta-variables of
lower type, yielding u1 : A[Φ], u2 : ([u1/x]B)[Φ]
 u1[y] = fst y.

Flattening Σ-types u : P [z : Πx:A.Σy:B.C]
 u[λx. (z1 x , z2 x)] = M
By splitting z into two functions z1, z2 we arrive at u : P [z1 : Πx:A.B, z2 :
Πx:A. [z1 x/y]C]
 u[λx. z1 x, λx. z2 x] = M and continue with η-contraction.

Solving in spite of non-linearity u[x, x, z] = suc z
The non-linear occurrence of x on the l.h.s. can be ignored since x is not free
on the r.h.s. We can solve this constraint by by u[x, y, z] = suc z.

Pruning u[x] = suc(v[x, y]) and v[x, zero] = f(x, zero)
Since u depends only on x, necessarily v cannot depend on y. We can prune
away the second parameter of v by setting v[x, y] = v′[x]. This turns the
second constraint into the pattern v′[x] = f(x, zero), yielding the solution
u[x] = suc(f(x, zero)).
Note that pruning is more difficult in case of nested meta-variable. If instead
u[x] = suc(v[x,w[y]]) then there are two cases: either v does not depend
on its second argument or w is constant. Pruning as we describe it in this
article cannot be applied to this case; Reed [16] proceeds here by replacing
y by a placeholder “ ”. Once w gets solved the placeholder might occur as
argument to v, where it can be pruned. If the placeholder appears in a rigid
position, the constraints have no solution.

Pruning and non-linearity u[x, x] = v[x] and u′[x, x] = v′[x, y]
Even though we cannot solve for u due to the non-linear x, pruning x from v
could lose solutions. However, we can prune y from v′ since only x can occur
in v′[x, y].

Failing occurs check u[x] = suc y
Pruning y fails because it occurs rigidly. The constraint set has no solution.

Same meta-variable u[x, y, x, z] = u[x, y, y, x]
Since variables x, y, z are placeholders for arbitrary open well-typed terms,
of which infinitely many exists for every type, the above equation can only
hold if u does not depend on its 3rd and 4th argument. Thus, we can solve
by u[x, y, z, x′] = v[x, y] where [x, y] is the intersection of the two variable
environments [x, y, x, z] and [x, y, y, x].

Recursive occurrence u[x, y, x] = sucu[x, y, y]
Here, u has a strong rigid occurrence in its own definition. Even though not in
the pattern fragment, this only has an infinite solution: consider the instance
u[z, z, z] = sucu[z, z, z]. Consequently, the occurs check signals unsolvability.
[17, p. 105f] motivates why only strong rigid recursive occurrences force
unsolvability. For instance, f : nat → nat ` u[f] = suc (f (u[λx. zero])) has
solution u[f] = suc (f (suc zero)) in spite of a rigid occurrence of u in its
definition.
If u occurs flexibly in its own definition, like in u[x] = v[u[x]], we cannot
proceed until we know more of v. Using the other constraints, we might

DRAFT April 5, 2011—16 : 03

3. CONSTRAINT-BASED UNIFICATION 13

manage to prune v’s argument, arriving at u[x] = v[], or find the solution of
v directly; in these cases, we can revisit the constraint on u.

The examples suggest a strategy for implementation: Lowering can be integrated
triggered by decomposition to resolve eliminations of a meta variable E[u[σ]].
After decomposition we have a set of u[σ] = M problems. We try to turn the σs
into variable substitutions by applying η-contraction, and where this gets stuck,
elimination of projections and Σ-flattening. Solution of constraints u[ρ] = M can
then be attempted by pruning, where a failing occurs check signals unsolvability.

3.3 Inverting substitutions

A most general solution for a constraint u[σ] = M can only be hoped for if σ is
a variable substitution. For instance u[true] = true admits already two different
solutions u[x] = x and u[x] = true that are pure λ-terms. In a language with com-
putation such as Agda infinitely more solutions are possible, because u[x] could
be defined by cases on x and the value of u[false] is completely undetermined.

But even constraints u[ρ] = M can be ambiguous if the variable substitution
ρ is not linear, i. e., no bijective variable renaming. For example, u[x, x] = x has
solutions u[x, y] = x and u[x, y] = y. Other examples, like u[x, x, z] = z, which
has unique solution u[x, y, z] = z, suggest that we can ignore non-linear variable
occurrences as long as they do not occur on the r.h.s. Indeed, if we define a
variable substitution ρ to be invertible for term M if there is exactly one M ′

such that [ρ]M ′ = M , then linearity is a sufficient, but not necessary condition.
However, it is necessary that ρ must be linear if restricted to the free variables
of (β-normal!) M . Yet instead of computing the free variables of M , checking
that ρ is invertible, inverting ρ and applying the result to M , we can directly
try to invert the effect of the substitution ρ on M .

For a variable substitution Ψ ` ρ ⇐ Φ and a term/substitution α ::= M |
R | τ in context Ψ , we define the partial operation [ρ/Φ̂]−1α by

[ρ/Φ̂]−1x = y if x/y ∈ ρ/Φ̂ and there is no z 6= y with x/z ∈ ρ/Φ̂,
undefined otherwise

[ρ/Φ̂]−1c = c

[ρ/Φ̂]−1(u[τ]) = u[τ ′] where τ ′ = [ρ/Φ̂]−1τ

and homeomorphic in all other cases by

[ρ/Φ̂]−1(RM) = R′M ′ where R′ = [ρ/Φ̂]−1R and M ′ = [ρ/Φ̂]−1M

[ρ/Φ̂]−1(π R) = π R′ where R′ = [ρ/Φ̂]−1R

[ρ/Φ̂]−1(λx.M) = λx.M ′ if x not declared or free in σ

and M ′ = [ρ, x/Φ̂, x]−1M

[ρ/Φ̂]−1(M , N) = (M ′ , N ′) where M ′ = [ρ/Φ̂]−1M and N ′ = [ρ/Φ̂]−1N

[ρ/Φ̂]−1(·) = ·
[ρ/Φ̂]−1(τ,M) = τ ′,M ′ if τ ′ = [ρ/Φ̂]−1τ and M ′ = [ρ/Φ̂]−1M .

DRAFT April 5, 2011—16 : 03

14

We can show by induction on α, that inverse substitution [ρ/Φ̂]−1α is correct,
preserves well-typedness and commutes with meta substitutions.

Lemma 4 (Inverse and meta-substitution commute). Let ρ be a variable
substitution, and α ::= M | R | τ . If [ρ/Φ̂]−1α and [ρ/Φ̂]−1([[θ]]α) exist then
[ρ/Φ̂]−1([[θ]]α) = [[θ]]([ρ/Φ̂]−1α).

Proof. By simultaneous induction on the structure of α. ut

Lemma 5 (Soundness of inverse substitution). If [ρ/Φ̂]−1α exists then
[ρ]Φ([ρ/Φ̂]−1α) = α.

Proof. By simultaneous induction on the structure of α. ut

Lemma 6 (Completeness of inverse substitution). If [ρ]Φα = α′ and
ρ � FV(α) is linear then α = [ρ/Φ̂]−1α′ exists.

Proof. By simultaneous induction on the structure of α. ut

Lemma 7 (Well-typedness of inverse substitution). Let ∆;Ψ ` ρ⇐ Φ.

1. If [ρ/Φ̂]−1M exists and ∆;Ψ `K M ⇐ [ρ]ΦA then ∆;Φ `K [ρ/Φ̂]−1M ⇐ A.
2. If [ρ/Φ̂]−1R exists and ∆;Ψ `K R⇒ [ρ]ΦA then ∆;Φ `K [ρ/Φ̂]−1R⇒ A.
3. If [ρ/Φ̂]−1τ exists and ∆;Ψ `K τ ⇐ Ψ1 then ∆;Φ `K [ρ/Φ̂]−1τ ⇐ Ψ1.

Proof. By simultaneous structural induction on the definition of inverse substi-
tutions for τ , M , R. ut

3.4 Pruning

If the constraint u[σ] = M has a solution θ, then [[[θ]]σ]θ(u) = [[θ]]M , and since
θ is closed (FMV(θ) = ∅), we have FV(σ) ⊇ FV([[θ]]M). Thus, if FV(M) 6⊆
FV(σ) we can try to find a most general meta-substitution η which prunes the
free variables of M that are not in the range of σ, such that FV([[η]]M) ⊆
FV(σ). For instance, in case u[x] = suc v[x, y], the meta-substitution x, y. v′[x]/v
does the job. However, pruning fails either if pruned variables occur rigidly,
like in u[x] = c y v[x, y] (constraint unsolvable), or if the flexible occurrence
is under another meta variable, like in u[x] = v[x,w[x, y]]. Here, two minimal
pruning substitutions η1 = x, y. v′[x]/v and η2 = x, y. w′[x]/w exist which are
not instances of each other—applying pruning might lose solutions.

We restrict pruning to situations u[ρ] = M where ρ is a variable substitution.
This is because we view pruning as a preparatory step to inverting ρ on M—
which only makes sense for variable substitutions. Also, we do not consider
partial pruning, as in pruning y from v in the situation u[x] = v[x, y, w[x, y]],
obtaining u[x] = v′[x,w[x, y]]. Such extensions to pruning are conceivable, but we
have no data indicating that they strengthen unification significantly in practice.
We employ the following judgments to define pruning (see Fig. reffig:prune):

prune ctxρ(τ / Ψ1)⇒ Ψ2 prune τ such that FVrig([τ]idΨ2) ⊆ ρ
∆ ` pruneρM ⇒ ∆′; η prune M such that FV([[η]]M) ⊆ ρ.

DRAFT April 5, 2011—16 : 03

3. CONSTRAINT-BASED UNIFICATION 15

prune ctxρ(τ / Ψ1)⇒ Ψ2 Prune τ : Ψ1, returning a sub-context Ψ2 of Ψ1.

prune ctxρ(· / ·)⇒ ·
prune ctxρ(τ / Ψ1)⇒ Ψ2 FVrig(M) 6⊆ ρ

prune ctxρ(τ,M / Ψ1, x:A)⇒ Ψ2

prune ctxρ(τ / Ψ1)⇒ Ψ2 FV(M) ⊆ ρ FV(A) ⊆ Ψ̂2

prune ctxρ(τ,M / Ψ1, x:A)⇒ Ψ2, x:A

∆ ` pruneρM ⇒ ∆′; η Prune M , returning ∆′ ` η ⇐ ∆.

v:B[Ψ1] ∈ ∆ prune ctxρ(τ / Ψ1)⇒ Ψ2 Ψ2 6= Ψ1 FV(B) ⊆ Ψ̂2 η = Ψ̂1.v
′[idΨ2]/v

∆ ` pruneρ(v[τ])⇒ [[η]](∆, v′:B[Ψ2]); η

v:B[Ψ1] ∈ ∆ prune ctxρ(τ / Ψ1)⇒ Ψ1

∆ ` pruneρ(v[τ])⇒ ∆; id∆

x ∈ ρ
∆ ` pruneρ x⇒ ∆; id∆

∆ ` pruneρ c⇒ ∆; id∆

∆ ` pruneρR⇒ ∆1; η1 ∆1 ` pruneρ([[η1]]M)⇒ ∆2; η2

∆ ` pruneρ(RM)⇒ ∆2; [[η2]]η1

∆ ` pruneρM ⇒ ∆′; η

∆ ` pruneρ(πM)⇒ ∆′; η

∆ ` pruneρ,xM ⇒ ∆′; η

∆ ` pruneρ(λx.M)⇒ ∆′; η

∆ ` pruneρM ⇒ ∆1; η1 ∆1 ` pruneρ([[η1]]N)⇒ ∆2; η2

∆ ` pruneρ (M , N)⇒ ∆2; [[η2]]η1

Fig. 5. Pruning.

When pruning substitution τ with domain Ψ1 we look at each term M in
τ which substitutes for an x:A of Ψ1. If M has a rigid occurrence of a variable
y 6∈ ρ, we discard the entry x:A from the domain Ψ1, thus, effectively removing
M from τ . If M has no occurrence of such an y we keep x:A. However, since
we might have removed prior entries from Ψ1 we need to ensure A is still well-
formed, by validating that its free variables are bound in the pruned context.
Finally, if M has a flexible occurrence of a y 6∈ ρ, pruning fails. Examples:

1. prune ctxx(cx, y / x′:A, y′:B) ⇒ x′:A
2. prune ctxy(cx, y / x′:A, y′:B) ⇒ y′:B
3. prune ctxy(cx, u[y] / x′:A, y′:B) ⇒ y′:B
4. prune ctxy(u[x], y / x′:A, y′:B) fails

Pruning a term M with respect to ρ ensures that all rigid variables of M are
in the range of ρ (see variable rule). Also, for each rigid occurrence of a meta-
variable v[τ] in M we try to prune the substitution τ . If τ is already pruned,
we leave v alone; otherwise, if the domain Ψ1 of τ shrinks to Ψ2 then we replace
v : B[Ψ1] by a new meta-variable v′ : B[Ψ2] with domain Ψ2. However, we need
to ensure that the type B still makes sense in Ψ2; otherwise, pruning fails.

DRAFT April 5, 2011—16 : 03

16

Lemma 8 (Soundness and completeness of pruning).

1. If ∆ `K Ψ1 ctx and prune ctxρ(τ / Ψ1) ⇒ Ψ2 then ∆ `K Ψ2 ctx and
FV([τ]idΨ2) ⊆ ρ. Additionally, if x ∈ Ψ1 \ Ψ2 then FVrig([τ]x) 6⊆ ρ.

2. If ∆ ` pruneρM ⇒ ∆′; η then ∆′ `K η ⇐ ∆ and FV([[η]]M) ⊆ ρ. Also, if θ
solves Ψ ` u[ρ] = M0{M}rig : C then there is some θ′ such that θ = [[θ′]]η.

Proof. Each by induction on the pruning derivation.
We detail 2., existence of θ′: Since θ is a solution of the constraint, [[θ]](u[ρ]) =

[[[θ]]ρ](θ(u)) = [ρ](θ(u)) = [[θ]]M0, in particular FV(ρ) = ρ ⊇ FV([[θ]]M0). This
entails FV([[θ]]M) ⊆ ρ.

Consider the interesting case M = v[τ] with prune ctxρ(τ / Ψ1) ⇒ Ψ2 and
η = Ψ̂1.v

′[idΨ2]/v. Let N = θ(v). We have FV([[[θ]]τ]N) ⊆ ρ. If we can show
FV(N) ⊆ Ψ̂2, then we can finish by setting θ′ = θ, Ψ̂2.N/v

′.
Assume now some x ∈ FV(N) with x 6∈ Ψ̂2. By 1., FVrig([τ]x) 6⊆ ρ, which

entails that FV([[[θ]]τ]x) 6⊆ ρ. This is in contradiction to FV([[[θ]]τ]N) ⊆ ρ. ut

In an implementation, we may combine pruning with inverse substitution
and the occurs check. Since we already traverse the term M for pruning, we may
also check whether [ρ/Φ̂]−1M exists and whether u occurs in M .

3.5 Unifying two identical existential variables

Any solution Φ̂.N/u for a meta variable u : A[Φ] with constraint u[ρ] = u[ξ]
must fulfill [ρ]N = [ξ]N , which means that [ρ]x = [ξ]x for all x ∈ FV(N). This
means that u can only depend on those of its variables in Φ that are mapped to
the same term by ρ and ξ. Thus, we can substitute u by Φ̂.v[ρ′] where ρ′ is the
intersection of substitutions ρ and ξ. Similarly to context pruning, we obtain ρ′

as [ρ]idΦ′ , which identical to [ξ]idΦ′ , where Φ′ is a subcontext of Φ mentioning
only the variables that have a common image under ρ and ξ. This process is
given as judgement ρ ∩ ξ : Φ⇒ Φ′ with the following rules:

· ∩ · : · ⇒ ·
ρ ∩ ξ : Φ⇒ Φ′

(ρ, y) ∩ (ξ, y) : (Φ, x:A)⇒ (Φ′, x:A)
ρ ∩ ξ : Φ⇒ Φ′ z 6= y

(ρ, z) ∩ (ξ, y) : (Φ, x:A)⇒ Φ′

Lemma 9 (Soundness of intersection). If ∆;Ψ `K ρ, ξ ⇐ Φ and ρ ∩ ξ :
Φ⇒ Φ′, then ∆ `K Φ′ ctx and ∆;Φ `K idΦ′ ⇐ Φ′ and [ρ]idΦ′ = [ξ]idΦ′ .

Proof. Structural induction on the first derivation. We consider the interesting
case, where we actually retain a declaration because the variable y in ρ and ξ is
strictly shared, meaning y = [ρ]x = [ξ]x for some x.

ρ ∩ ξ : Φ⇒ Φ′

(ρ, y) ∩ (ξ, y) : (Φ, x:B)⇒ Φ′, x:B

DRAFT April 5, 2011—16 : 03

4. CORRECTNESS 17

∆;Ψ `K (ρ, y)⇐ (Φ, x:B) by assumption
∆;Ψ `K ρ⇐ Φ by inversion
Ψ(y) = B′ =K [ρ](B) by inversion
∆;Ψ `K (ξ, y)⇐ (Φ, x:B) by assumption
∆;Ψ `K ξ ⇐ Φ by inversion
Ψ(y) = B′ =K [ξ](B) by inversion
B′ =K [ρ](B) =K [ξ](B) by previous lines
recall that ρ and ξ are variable substitutions (more importantly FMV(ρ) =
FMV(ξ) = ∅ and hence they do not interact with the constraints K)
B can only depend on variables strictly shared between ρ and ξ
∆ `K Φ′ ctx by i.h.
∆;Φ′ `K B ⇐ type since Φ′ contains exactly those variables strictly shared by
ρ and ξ
∆ `K (Φ′, x:B) ctx. ut

Let us now reconsider the rule “Same meta-variable”. We have shown that the
resulting Φ′ of computing the intersection of ρ and ξ, is indeed well-formed
(Lemma 9). We can also justify why in the unification rule itself the type A of
two existential variables must be well-typed in the pruned context Φ′. Recall
that by typing invariant, we know that ∆;Ψ `K ρ ⇐ Φ and ∆;Ψ `K ξ ⇐ Φ
and [ρ]A =K [ξ]A. But this means that A can only depend on the variables
mapped to the same term by ρ and ξ. Since Φ0 is exactly the context, which
captures those shared variables, A must also be well-typed in Φ0 modulo K.
Although we have restricted intersection to variable substitutions, it could be
extended to meta-ground substitutions, i.e., substitutions that do not contain
any meta-variables.

4 Correctness

Theorem 1 (Termination). The algorithm terminates and results in one of
the following states:

– A solved state where only assignments Ψ ` u←M : A remain.
– A stuck state, i.e., no transition rule applies.
– Failure ⊥.

Proof. Let the size |M | of a term be as usual the number of nodes and leaves
in its tree representation, with the exception that we count λ-nodes twice. This
modification has the effect that |λx.M |+|R| > |M |+|Rx|, hence, an η-expanding
decomposition step also decreases the sum of the sizes of the involved terms [6].
We define the size |A[Φ]| of a type A in context Φ by |P [Φ]| = 1 +

∑
A∈Φ |A[]|,

|(Πx:A.B)[Φ]| = 1 + |B[Φ, x:A]| and |(Σx:A.B)[Φ]| = 1 + |A[Φ]| + |B[Φ]|. The
size of a type can then be obtained as |A| = |A[]| and the size of a context as
|Φ| =

∑
A∈Φ |A|. The purpose of this measure is to give Σ-types a large weight

that can “pay” for flattening.
Let the weight of a solved constraint be 0, whereas the weight |K| for a

constraint Ψ `M = M ′ : C be the ordinal (|M |+|M ′|)ω+|Ψ | if a decomposition

DRAFT April 5, 2011—16 : 03

18

step can be applied, and simply |Ψ | else. Similarly, let the weight of constraint
Φ | R:A ` E = E′ be (|E| + |E′|)ω + |Ψ |. Finally, let the weight |∆
 K| of a
unification problem be the ordinal∑

u:A[Φ]∈∆ active
|A[Φ]|ω2 +

∑
K∈K

|K|.

By inspection of the transition rules we can show that each unification step
reduces the weight of the unification problem. ut

4.1 Solutions to unification

A solution to a set of equations K is a meta-substitution θ for all the meta-
variables in ∆ s.t. ∆′ ` θ ⇐ ∆ and

1. for every Ψ ` u←M : A in K we have Ψ̂ .M/u ∈ θ,
2. for all equations Ψ `M = N : A in K, we have [[θ]]M = [[θ]]N .

A ground solution to a set of equations K can be obtained from a solution
to K by applying a grounding meta-substitution θ′ where · ` θ′ ⇐ ∆′ to the
solution θ. We write θ ∈ Sol(∆
 K) for a ground solution to the constraints K.

Before, we prove that transitions preserve solutions, we first prove that there
always exists a meta-substitution relating the original meta-variable context ∆0

to the meta-variable context∆1 we transition to. It is useful to state this property
in isolation, although it is also folded into theorem 2.

Lemma 10. If ∆0
 K0 7→ ∆1
 K1 then there exists a meta-substitution θ
s.t. ∆1 `K1 θ ⇐ ∆0.

Proof. By case analysis on the unification steps. ut

We also observe that if we start in a state ∆0
 K0 and transition to a state
∆1
 K1 the meta-variable context strictly grows, i.e., dom(∆0) ⊆ dom(∆1). We
subsequently show that if we have a solution for ∆0
 K0, then transitioning to a
new state ∆1
 K1 will not add any additional solutions nor will it destroy some
solution we may already have. In other words, any additional constraints which
may be added in ∆1
 K1 are consistent with the already existing solution.

Theorem 2 (Transitions preserve solutions). Let ∆0
 K0 7→ ∆1
 K1.

1. If θ0 ∈ Sol(∆0
 K0) then there exists a meta-substitution θ′ s.t.
∆1 `K1 θ

′ ⇐ ∆0 and a solution θ1 ∈ Sol(∆1
 K1) such that [[θ1]]θ′ = θ0.
2. If θ1 ∈ Sol(∆1
 K1) then [[θ1]]id∆0 ∈ Sol(∆0
 K0).

Proof. Proof by case analysis on the transitions. We only show the cases to prove
that we are forward closed (statement 1). The second statement, that unification
steps are backwards closed, is obvious: by if we transition from ∆0
 K0 to
∆1
 K1 then there exists a meta-substitution ∆1 `K1 θ ⇐ ∆0; hence, by
composition [[θ1]]θ is ground and is a solution for ∆0
 K0.

DRAFT April 5, 2011—16 : 03

4. CORRECTNESS 19

Case: Decomposition Since ∆0 does not change in any of the decomposition
rules, the solution is almost trivially preserved; for the η-contraction rules, we
simply observe that equality is always modulo η. For the eliminating projections
transition, we use the substitution lemma and observe that meta-substitutions
and ordinary substitutions commute.

Case: Lowering If θ0 is a solution forK0 and the active meta-variable u:(Πx:A.B)[Φ],
then Φ̂.M/u ∈ θ0 and ·; [[θ0]]Φ ` M ⇐ [[θ0]](Πx:A.B). By inversion lemma,
M = λx.N and taking into account the definition of meta-substitutions, we
have ·; [[θ0]](Φ, x:A) ` N ⇐ [[θ0]]B and hence Φ̂, x.N/v is a solution for v. Choose
for θ′ = id∆0 and for θ1 = θ, Φ̂, x.N/v. We note that v is new and for every
instantiation Ψ̂ ′.M ′/u′ ∈ θ and u′ : C ′[Ψ ′] ∈ ∆0, if ·; [[θ]]Ψ ′ ` M ′ ⇐ [[θ]]C ′ we
have also ·; [[θ1]]Ψ ′ `M ′ ⇐ [[θ1]]C ′. The case for lowering Σ-types is similar.

Case: Flattening Using the substitution lemma, solutions are preserved.

Case: Pruning θ0 is a solution for K0 and the active meta-variable u:A[Φ] ∈ ∆0.
Hence, Φ̂.M/u ∈ θ0. Moreover, if we have the constraint Ψ ` u[ρ] = N : B, we
have [ρ]M = [[θ0]]N . By previous soundness lemma for pruning, ∆p ` θp ⇐ ∆0

and there exists a θ′ s.t. [[θ′]]θp = θ.

Case: Same meta-variable θ0 is a solution for K0 and the active meta-variable
u:A[Φ] ∈ ∆0. Hence, Φ̂.M/u ∈ θ and ·; [[θ0]](Φ) `M ⇐ [[θ0]]A. Moreover, [ρ]M =
[ξ]M . Therefore, FV([ρ]M) = FV([ξ]M) and Φ0 contains exactly those meta-
variables which are shared among ρ and ξ by definition of ρ ∩ ξ; moreover,
we must have [[θ0]]([ρ]A) = [[θ0]]([η]A). Since meta-substitutions commute with
variable substitutions, we have [ρ]([[θ0]]A) = [η]([[θ0]]A), hence FV(M) = Φ̂0 and
FV([[θ0]]A) = Φ̂0 and ·; [[θ0]](Φ0) ` M ⇐ [[θ0]]A; choosing id∆0 for θ′ and for
θ1 = θ, Φ̂0.M/v solutions are preserved.

Case:Solving θ0 is a solution for K0 and the active meta-variable u:A[Φ] ∈
∆0. Hence, Φ̂.N/u ∈ θ0. Therefore, we have [ρ]N = [[θ]]M . By completeness of
inverse substitution, we know N = [ρ/Φ]−1([[θ]]M). By assumption we also know
[ρ/Φ]−1M = M ′ exists. Therefore, by lemma that inverse and meta-substitution
commute, we have N = [[θ]]([ρ/Φ]−1M) = [[θ]]M ′. Therefore, the solution θ0 is
preserved. ut

4.2 Transitions preserve types

Our goal is to prove that if we start with a well-typed unification problem our
transitions preserve the type, i.e., we can never reach an ill-typed state and
hence, we cannot generate a solution which may contain an ill-typed term.

Lemma 11 (Equality modulo is preserved by transitions).
If ∆0
 K0 7→ ∆1
 K1 and A =K0 B, then A =K1 B.

DRAFT April 5, 2011—16 : 03

20

Proof. Let θ be a solution for K0; by assumption, we have that [[θ]]A = [[θ]]B. By
theorem 2, transitions preserve solutions, we know θ is also a solution for K1,
and therefore A =K1 B. ut

In the statement below it is again important to note that the meta-context
strictly grows, i.e., ∆0 ⊆ ∆1 and that there always exists a meta-substitution θ
which maps ∆0 to ∆1. Moreover, since transitions preserve solutions, if we have
a solution for K0 there exists a solution for K1.

Lemma 12 (Transitions preserve typing). Let ∆0
 K0 7→ ∆1
 K1 and
∆1 `K1 θ ⇐ ∆0.

1. If ∆0;Ψ `K0 M ⇐ A then ∆1; [[θ]]Ψ `K1 [[θ]]M ⇐ [[θ]]A.
2. If ∆0;Ψ `K0 R⇒ A then ∆1; [[θ]]Ψ `K1 [[θ]]R⇒ A′ and [[θ]]A =K1 A

′.

Proof. By induction on the derivation of ∆0;Ψ `K0 J . Most cases are by in-
version, appeal to induction hypothesis, and re-assembling the result. The most
interesting case is transitioning between normal and neutral terms. Here we use
the previous lemma on “Equality modulo preserved by transitions”. ut

Next, we define when a set of equations which constitute a unification prob-
lem are well-formed using the judgment ∆0
K0 K wf, which states that each
equation Ψ ` M = N : A must be well-typed modulo the equations in K0, i.e.,
∆0;Ψ `K0 M ⇐ A and ∆0;Ψ `K0 N ⇐ A . We simply write ∆0
 K wf to
mean ∆0
K K wf.

Lemma 13 (Equations remain well-formed under meta-substitutions).
If ∆0
 K wf and ∆1 `[[θ]]K θ ⇐ ∆0 then ∆1
 [[θ]]K wf.

Proof. By assumption ∆0
 K wf. By definition, for every constraint Ψ `
M = N : A ∈ K, we have ∆0;Ψ `K M ⇐ A and ∆0;Ψ `K N ⇐ A. By meta-
substitution principle modulo (lemma 3), we know ∆1; [[θ]]Ψ `[[θ]]K [[θ]]M ⇐ [[θ]]A
and ∆1; [[θ]]Ψ `[[θ]]K [[θ]]N ⇐ [[θ]]A, and hence ∆1 `[[θ]]K [[θ]]K wf. ut

Lemma 14 (Well-formedness of equations is preserved by transitions).
If ∆0
 K0 7→ ∆1
 K1 and ∆0
K0 K wf then ∆1 `K1 K wf.

Proof. By assumption ∆
K0 K wf, we know that for each Ψ `M = N : A ∈ K,
∆;Ψ `K0 M ⇐ A and ∆;Ψ `K0 N ⇐ A. By lemma 12, typing is preserved by
transitions, we know that ∆;Ψ `K1 M ⇐ A and ∆;Ψ `K1 N ⇐ A. Therefore
∆
K1 K wf. ut

Theorem 3 (Unification preserves types).
If ∆0
 K0 wf and ∆0
 K0 7→ ∆1
 K1 then ∆1
 K1 wf.

Proof. By case analysis on the transition rules and lemma 10.

DRAFT April 5, 2011—16 : 03

4. CORRECTNESS 21

Case: Decomposition rules We consider the decomposition rule for pairs. Let K0

be the set of equations which contains Ψ ` (M1,M2) = (N1, N2) : Σx:A.B .
By assumption we have ∆0;Ψ `K0 (M1,M2)⇐ Σx:A.B. By inversion, we have
∆0;Ψ `K0 M1 ⇐ A and ∆0;Ψ `K0 M2 ⇐ [M1/x]A(B). By assumption we
have ∆0;Ψ `K0 (N1, N2)⇐ Σx:A.B. By inversion, we have ∆0;Ψ `K0 N1 ⇐ A
and ∆0;Ψ `K0 N2 ⇐ [N1/x]A(B). Let K1 = K0 ∧ Ψ ` M1 = N1 : A. Then
∆0
 K1 wf. Moreover, ∆0;Ψ `K1 N2 ⇐ [M2/x]A(B). Hence, Ψ ` M2 = N2 :
[M1/x]A(B) is well-formed and ∆0
 K2 wf where we replace the constraint
Ψ ` (M1,M2) : Σx:A.B with Ψ ` M1 = N1 : A ∧ Ψ ` M2 = N2 : [M1/x]A(B)
in K.

Next, we consider the decomposition rules for evaluation contexts. Let K0 be
the set of equations containing Ψ | R : Πx:A.B ` E[•M] = E′[•M ′]. By
assumption this constraint is well-typed, and hence ∆0;Ψ `K0 R ⇒ Πx:A.B
and ∆0;Ψ `K0 R M ⇒ B2 and ∆0;Ψ `K0 R M ′ ⇒ B1 where B1 =K0 B2. In
addition ∆0;Ψ `K0 M ⇐ A and ∆0;Ψ `K0 M

′ ⇐ A.
Let K1 = K0 ∧ Ψ ` M = M ′ : A. Clearly, ∆0
 K1 wf. Moreover, since the
evaluation E[R M] and E′[R M ′] are well-typed modulo K0 and the fact that
Ψ ` M = M ′ : A, we have also that E′[R M] is well-typed modulo K1 and
Ψ | R M : [M/x]B ` E = E′ is well-typed in ∆0 modulo K1. Therefore, we have
∆0
 K2 wf where K2 = K1 ∧ Ψ | R M : [M/x]B ` E = E′.

Case:Pruning rule Let K0 be the set of equations containing Ψ ` u[ρ] = M : A.
By assumption, we know that ∆0;Ψ `K0 u[ρ]⇐ A and ∆0;Ψ `K0 M ⇐ A.

By soundness of pruning (lemma 8), we know that ∆1 `K0 η ⇐ ∆0. By
lemma 13, we know that ∆1
 [[η]](K0) wf

Case:Intersections Let K0 be the set of equations containing Ψ ` u[ρ] = u[ξ] : C.
By assumption, we know that ∆0;Ψ `K0 u[ρ] ⇐ C and ∆0;Ψ `K0 u[ξ] ⇐ C.
Let u : A[Φ] ∈ ∆. By inversion, we have [ξ]A =K0 C =K0 [ρ]A. This means
FV([ξ]A) = FV([ρ]A) and by definition of ρ ∩ ξ : Φ ⇒ Φ0, the context Φ0 will
contain exactly those variables shared in ξ and ρ. By soundness lemma 9, we
have ∆0 `K0 Φ0 ctx. Therefore, ∆0;Φ0 `K0 A ⇐ type and (∆0, v:A[Φ0]) mctx.
By typing rules, we have (∆0, v:A[Φ0]);Φ `K0 u ⇐ A and (∆0, v:A[Φ0]);Φ `K0

v[idΦ0] ⇐ A. Hence, Φ ` u ← v[idΦ0 : A is well-typed in ∆0 modulo K0.
Hence, θ = Φ̂.v[idΦ0]/u is a well-formed meta-substitution. By lemma 3, we have
[[θ]]∆
 ([[θ]]K0 ∧ [[θ]]Φ ` u←M : [[θ]]A) wf

Case:Solving Let K0 be the set of equations containing Ψ ` u[ρ] = M : C.
By assumption M ′ = [ρ/Φ̂]−1M exists and u:A[Φ] ∈ ∆. Since ∆0
 K0 wf, we
also have ∆0;Ψ `K0 M ⇐ C and ∆0;Ψ `K0 u[ρ] ⇐ C. By inversion, we have
C =K0 [ρ]A. By lemma about the well-typedness of inverse substitutions (lemma
7), we have ∆0;Φ `K0 M ′ ⇐ A. Hence, θ = Φ̂.M ′/u is a well-formed meta-
substitution and by lemma 3, we have [[θ]]∆0
 [[θ]](K0 ∧ Φ ` u ← M ′ : A) wf

ut

DRAFT April 5, 2011—16 : 03

22

5 Conclusion

We have presented a constraint-based unification algorithm which solves higher-
order patterns dynamically and showed its correctness. There are several key
aspects of our algorithm: First, we define pruning formally and show sound-
ness in the dependently typed case. Our pruning operation differs from previous
formulations in how it treats non-patterns which may occur in the term to be
pruned: if it encounters a non-pattern term M where FV(M) ⊆ ρ, then pruning
may succeed; otherwise it fails. This strategy avoids non-termination problems
present in previous formulations [2], but is also less ambitious than the algorithm
proposed by Reed [16]. We have extended higher-order pattern unification to
handle Σ-types; this has been an open problem so far, and it is of practical
relevance:

1. In LF-based systems such as Beluga, Twelf or Delphin, a limited form of
Σ-types arises due to context blocks: Σ-types are used to introduce several
assumptions simultaneously. For Beluga, the second author has implemented
the flattening of context blocks and it works well in type reconstruction.

2. In dependently typed languages such as Agda, Σ-types, or, more gener-
ally, record types, are commonly used but unification has not been adapted
to records. McBride [?, p.6] gives a practial example where the unification
problem T (fst γ) (snd γ) = T ′ γ appears, which is not solved by Agda at this
point. With the techniques described in this article we will be able to solve
such problems and make systems such as Agda more robust.

Correctness of our unification constraint solver is proved using typing mod-
ulo [16]. This is possible since we have no constraints on the type level and
we are dealing with terms whose normalization via hereditary substitutions can
be defined by recursion on their type. Even in the presence of unsolvable con-
straints, which lead to ill-typed terms, normalization is terminating. This does
not scale to Agda which has large eliminations and unification on the type level;
there, ill-typed terms may lead to divergence of type reconstruction. A solution
has been described by Norell [11]: unsolved constraints block normalization, thus
guaranteeing termination of the unification algorithm. The idea has been imple-
mented in Agda 2 and can be extended to Σ-types and the unification rules
described in this article.

Acknowledgments. We thank Jason Reed for his insightful work and his explana-
tions given via email. Thanks to Conor McBride for in-depth comments on this
text and his suggestions for improvement. We also acknowledge the anonymous
referees who have given constructive critique on this article.

References

1. Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic
and Computation, 13(5):639–688, 2003.

DRAFT April 5, 2011—16 : 03

5. CONCLUSION 23

2. Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification
via explicit substitutions: The case of higher-order patterns. In Proceedings of
the Joint International Conference and Symposium on Logic Programming, pages
259–273, Bonn, Germany, September 1996. MIT Press.

3. Dominic Duggan. Unification with extended patterns. Theoretical Computer Sci-
ence, 206(1-2):1–50, 1998.

4. Conal Elliott. Extensions and Applications of Higher-Order Unification. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1990. Available
as Technical Report CMU-CS-90-134.

5. Roland Fettig and Bernd Löchner. Unification of higher-order patterns in a simply
typed lambda-calculus with finite products and terminal type. In 7th International
Conference on Rewriting Techniques and Applications (RTA’96), New Brunswick,
NJ, USA, volume 1103 of Lecture Notes in Computer Science (LNCS), pages 347–
361. Springer, 1996.

6. Healfdene Goguen. Justifying algorithms for βη conversion. In Proc. of the 8th Int.
Conf. on Foundations of Software Science and Computational Structures, FoSSaCS
2005, volume 3441 of Lect. Notes in Comput. Sci., pages 410–424. Springer, 2005.

7. W. D. Goldfarb. The undecidability of the second-order unification problem.
Theor. Comput. Sci., 13:225–230, 1981.

8. Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eighth International Logic Programming Conference, pages 255–269, Paris, France,
June 1991. MIT Press.

9. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic, 9(3):1–49, 2008.

10. Ulf Norell. Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Dept of Comput. Sci. and Engrg., Chalmers, Göteborg, Swe-
den, September 2007.

11. Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, September 2007. Technical Report 33D.

12. Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in
Artificial Intelligence, pages 202–206. Springer, 1999.

13. Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department
of Computer Science, Carnegie Mellon University, 2003. CMU-CS-03-185.

14. Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In 5th International Joint
Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Artificial In-
telligence (LNAI), 2010.

15. Adam Poswolsky and Carsten Schürmann. System description: Delphin—a func-
tional programming language for deductive systems. In International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP’08),
volume 228 of Electronic Notes in Theoretical Computer Science (ENTCS), pages
135–141. Elsevier, 2009.

16. Jason Reed. Higher-order constraint simplification in dependent type theory. In
International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP’09), 2009.

17. Jason Reed. A Hybrid Logical Framework. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2009.

DRAFT April 5, 2011—16 : 03

24

18. Anders Schack-Nielson and Carsten Schürmann. Pattern unification for the lambda
calculus with linear and affine types. In International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP’10), volume 34 of Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS), pages 101–116, July
2010.

19. Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concur-
rent logical framework I: Judgements and properties. Technical report, School of
Computer Science, Carnegie Mellon University, Pittsburgh, 2003.

A Hereditary substitution

Normal forms are maintained through the use of hereditary substitution, written
as [N/x]A(B) to guarantee that when we substitute term N which has type
A for the variable x in the type B, we obtain a type B′ which is in normal
form. Hereditary substitutions continue to substitute, if a redex is created; for
example, when replacing naively x by λy.c y in the object x z, we would obtain
(λy.c y) z which is not in normal form and hence not a valid term in our
grammar. Hereditary substitutions continue to substitute z for y in c y to obtain
c z as a final result.

Hereditary substitution can be defined recursively considering the term to
which the substitution operation is applied and the type of the object which is
being substituted. We define the hereditary substitution operations for normal
object, neutral objects and substitutions. The hereditary substitution operations
will be defined by nested induction, first on the structure of the type A and
second on the structure of the objects N , R, and σ. In other words, we either
go to a smaller type, in which case the objects themselves can become larger,
or the type remains the same and the objects become smaller. We write A ≤ B
and A < B if A occurs in B (as a proper sub-expression in the latter case)4.
Hereditary substitution is defined in Figure 6. For an in depth discussion, we
refer the reader to Nanevski et al. [9].

If the original term is not well-typed, a hereditary substitution, though ter-
minating, cannot always return a meaningful term. We formalize this as failure
to return a result. However, on well-typed terms, hereditary substitution will
always return well-typed terms. The definition for single hereditary substitu-
tions can be easily extended to simultaneous substitutions substitution written
as [σ]Ψ (M). We annotate the substitution with the sub-script Ψ for two reasons.
First, σ itself does not carry its domain and hence we will look up the instan-
tiation for a variable x in σ/Ψ . Second, we rely on the type of x in the context
Ψ to guarantee that applying σ to an object terminates. Either we apply σ to
sub-expressions or the type of the object we substitute will be smaller. Subse-
quently, we often omit the typing subscript at the substitution operation for
better readability.

4 To ensure termination, it suffices to rely on type approximations of the dependent
type; we leave this out from the discussion.

DRAFT April 5, 2011—16 : 03

A. HEREDITARY SUBSTITUTION 25

Normal Terms / Types

[M/x]A(Πy:B1.B2) = Πy:B′1.B
′
2 where B′1 = [M/x]A(B1) and B′2 = [M/x]A(B2),
y 6∈ FV(M), and y 6= x

[M/x]A(Σy:B1.B2) = Σy:B′1.B
′
2 where B′1 = [M/x]A(B1) and B′2 = [M/x]A(B2),
y 6∈ FV(M), and y 6= x

[M/x]A(type) = type

[M/x]A(λy.N) = λy.N ′ where [M/x]A(N) = N ′, y 6∈ FV(M), and y 6= x

[M/x]A(N1, N2) = (N ′1, N
′
2) where [M/x]A(N1) = N ′1 and [M/x]A(N1) = N ′1

[M/x]A(R) = M ′ if [M/x]A(R) = M ′ : A′

[M/x]A(R) = R′ if [M/x]A(R) = R′

[M/x]A(N) fails otherwise

Neutral terms

[M/x]A(x) = M : A

[M/x]A(y) = y if y 6= x

[M/x]A(u[σ]) = u[σ′] where [M/x]A(σ) = σ′

[M/x]A(RN) = R ′N ′ where [M/x]A(R) = R′ and [M/x]A(N) = N ′

[M/x]A(RN) = M ′′ : B if [M/x]A(R) = λy.M ′ :Πy:A1.B where
Πx:A1.B ≤ A and [M/x]A(N) = N ′

and [N ′/y]A1(M ′) = M ′′

[M/x]A(πR) = πR′ where [M/x]A(R) = R′

[M/x]A(fstR) = M1 : B1 where [M/x]A(R) = (M1,M2) :Σx:B1.B2 where
Σx:B1.B2 ≤ A

[M/x]A(sndR) = M2 : B2 where [M/x]A(R) = (M1,M2) :Σx:B1.B2 where
Σx:B1.B2 ≤ A

[M/x]A(R) fails otherwise

Substitution

[M/x]A(·) = ·
[M/x]A(σ , N) = (σ′ , N ′) where [M/x]A(σ) = σ′ and [M/x]A(N) = N ′

[M/x]A(σ) fails otherwise

Fig. 6. Hereditary substitutions for LF objects with contextual variables

DRAFT April 5, 2011—16 : 03

