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A. DETAILLED PROOFS OF PREVIOUS THEOREMS

THEOREM A.1 SOUNDNESS OF MSLG FOR OBJECTS.
(PREVIOUS THM. 5.2 ON PAGE 21)

(1) If(A,Q);FFMll_IMQ:A:>M/(Q’,91,92) and
(A Q) My <= A and (AQ);TFMy <= A
then (A, Q) F 01 < Q' and (A, Q) F 0, <= Q' and
My =[01]M and My = [02]M and (A, QY );TFM < A .
(2) If (A,Q),FFngRQ : P:>R/(Q/,91,92) and
(A Q);TFRy = P and (A,Q);TFRy= P
then (A, Q) F 61 <= Q' and (A, Q) F 6 <= Q' and
Ry = [[6‘1]]R and Ry = [[92]]R and (A,QI);F FR= P.
(3) (A, ) 'ES;USy:A> P:>S/(Q’,91,62) and
(A Q);I'E S >A= P and (A,Q);TFSy>A=P
then (A, Q) F 01 < Q' and (A, Q) F 0, < Q' and
(AY);TFS>A= P and Sy = [01]S and Sy = [62]S

PRrROOF. Simultaneous induction on the structure of the first derivation.
We give here a few cases.

Case. D= (A,Q);TF Ax.My Udx. My : Ay — Ay = Ae. M /(Y 61,605)

(A, Q)T Ay B My UMy : Ay = M/(V, 01, 603) by premise
(A, Q)T A My < Ay — As by assumption
(A Q)T Ay My < A by inversion
(A, Q);T - Ao My <= A; — Ag by assumption
(A, Q); T, x: A1 B My <= Ay by inversion
(A Q) FO < by i.h.
(A, D Eb, <= by i.h.

= [0.]M by i.h.
)\:c My = \x. [ M by rule
Az My = [61](Az. M) by contextual substitution definition
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= [6s]M by i.h.
Az My = \x.[0:] M by rule
Az M2 [[92]]()\96 M) by contextual substitution definition
(A, Q’); r F )\:c.M = A — A by rule

Case. D = (AQ)FFRll_IRQ : P:>R/(Q/,91,92)

(A Q) I+ RiURy: P—= R/(QI 91, 92) by premise
(AQ);I'FRy < P by ass
(AQ);I'FRy =P by rule
(A Q);I'F Ry <= P by ass
(AQ);TFRy=P by rule
(A, Q) F 6, < by L.h.
(A, Q) F by < Q and

R = [[91]]R and Ry = [[6‘2]]R and (Q/,A);F FR=P

(AQ);THFR<P by rule
Case. D= (A,Q);T Furr]Uulrr] : P = u[nr]/(- ")
uzP[¥]l e Aand A;TH7m < U by premise

(A,Q); T+ ufrp] = P
ulmr] = U[WF]

(A, Q)+

A, H U[FF] = P

by assumption
by reflexivity
by rule

by rule

Case. D= (A,Q);T F ulrr]UR : P = ifidp]/(i:: P[], T.ulrr]/i, T.R/4)

uzP[¥]l e Aand A;TH7m < U by premise
(A, Q)T+ ufrp] = P by assumption
AQ;I'FR=P by assumption
(AQI'FR<=P by rule
(A, Q); T Fulrr] <= P by rule
ulmr] = [F.ulre] /aliic]
u[rr] = ulmr] by reflexivity
R = [I".R/i]i[idp]
R=R by reflexivity
(A, Q) FT.R/i < i::P[T] by rule using assumption
(A, Q) Fulrr]/i < i::P[T] by rule using assumption
(A,izP[I]);T Fidp < T by definition
(A,i::P[I]);T F4[idp] = P by rule
Case. D= (A, Q);TFc-S1Uc-Se: P=c-S/(V, 01, 03)
,QRTHESIUSy: A> P = S/(,601,62) by premise

(A, Q

(A,Q)TFc S =P
(A, Q)T+HS >A=P
(A,Q)TFc - Sy=P
(A, Q)T+ S, >A=P

by assumption
by inversion
by assumption
by inversion
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Sl = [[91]]5 by i.h.
52 = [[92]]5 by i.h.
(AQ) 60, < by i.h.
(A, Q) F 0y < by L.h.
c-S1=c- [01]S by rule
c-S1=1[0](c-5) by contextual substitution definition
c-Se=c- [02]S by rule
¢Sy =[02](c- S) by contextual substitution definition
(AQ);THFS>A=P by i.h.
(A QY)TkFc-S=P by rule
Case. D= (A,Q);TF Ry URy : P = ifidp]/(i:P[T), T.Ry /i, T.Ry /i)
Ry =H;-S1 and Ry = Hy - Sy and Hy # Hy by premise
(AQ);T'HH-S1=P by assumption
(AQ);THH -S, <P by rule
(A, Q);I'FHy- Sy = P by assumption
(A, Q);I'FHy- Sy <= P by rule
H, - S, = [[.(H, - 81)/i](ifidr]) by contextual substitution definition
Hy-5=H -5 by reflexivity
Hy - Sy = [[.(Hy - S2)/i] (i[idr]) by contextual substitution definition
Hy - Sy = Hy - Sy by reflexivity
(A,i:P[T]);TFidp <= T by definition
(A,i::P[T]);T F4fidr] = P by rule

Case. D= (A,Q);TF (My;S1)U (Ma; S2) : (A1 — Ag) > P
= (M;5)/(,0,0")

(A,Q);FI—Mll_IMg:A1:>M/(Ql, 01, 92) by premise
(A,Q);FFS&QSQZA2>P:>S/(QQ, 9’1, 9’2)

Q= (Q1,0), 0 =(01,0,), 0" = (62,65)

(A, Q);TF (My;51) > A — Ay =P by assumption
(A Q)M < A4 by inversion
(A,Q),Fl— S1> A= P

(A Q);TF (My; S9) > Ay — Ay = P by assumption
(A Q)T F My <= Ay by inversion
(A,Q),FF So > Ay = P

M1 = [[91]]M by i.h.
M2 = [[92]]M by i.h.
(A,Ql);FI—M<:A1 by i.h.
(A FO <Y by i.h.
(A Q) F by <=y by i.h.
(A Q)T HM<= A by weakening
Sy =[01]S by i.h.
So = [65]S by i.h.
(A, Q);TES> A= P by i.h.
(A Q) F 0] < Qs by i.h.
(A, Q) F 0, < Qy by i.h.
(AQ,);TES> A= P by weakening
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(A, Q) F (61,0)) < & 61 and 0] refer to distinct meta-variables
by typing rules for contextual substitutions

(A, Q) F (62,05) < & 02 and 64 refer to distinct meta-variables
by typing rules for contextual substitutions

My = [01,0)]M by lemma weakening
Mg = [0z, 05] M by lemma weakening
= [61,01]S by lemma weakening

= [02,05]S by lemma weakening

(M1 Sl) ([[91, ]]M, [[91,9/]] ) by rule
(My;81) = [01,01](M; S) by contextual substitution definition
(MQ; SQ) ([[92, 92]]M, [[92, 92]] ) by rule
(Msy; Sg) [62,05](M;S) by contextual substitution definition
(AQY)TH(M; S)>A — Ay= P by rule

THEOREM A.2 COMPLETENESS OF MSLG OF TERMS.
(PREVIOUS THM. 5.3 ON PAGE 21)

(1) IfAQF0; < Q and A, QF 0 <= Q' and 61 and 05 are incompatible

and A, QT My <= A, A;T My < A, and A, QYT M < A and
= [[6‘1]]M and M2 = [[6‘2]]M

then there exists a contextual substitution 07, 65, and a modal context Q*, such
that (A, Q);T B My UMy : A = M/(Q*,07,05) and 05 C 01, 65 C 02 and
Q*C

(2) FAQFO <= and A, QF 0 <= Q' and 01 and 03 are incompatible
and A, ;T Ry = P, A;TFRy= P, and Q,A;THR= P and
R1 = [[91]]R and RQ = HGQHR
then there exists a contextual substitution 07, 05, and a modal context 2, such
that (A, Q);T F RiURy : P = R/(Q*,07,05) and 07 C 64, 05 C 05 and
Q*C

(3) If AQF 60, <= Q and A, QF 0, <= Q' and 01 and 03 are incompatible and
(AQ);THES >A=P, (AQ;TFSy>A= P, and
(A,QI);F FS>A= P and S; = [[6‘1]]5 and Sy = [[6‘2]]5
then there exists a contextual substitution 07, 05, and a modal context Q*, such
that (A, Q)T F S1USs :+ A = S/(02%,07,05) and 07 C 61, 05 C 03 and
Q* C .

PROOF. Simultaneous induction on the structure of M, R, and S. We give a few
cases.

Case. R =u[rr| and u::P[T] € A

(A, Q)T+ ufrp] = P by assumption
Ry = [61](u[rr)) by assumption
Ry = u[nr] by contextual substitution definition

= [02] (u[nr]) by assumption
Ry = u[nr] by contextual substitution definition
(A, Q); T F ulrp)Uulrr] : P = ulmr]/(, -, ") by rule

'QQI7'g917'g92
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Case. M = \xz.M’'.

My = [01](Az.M") by assumption
My = da. 6] M’ by contextual substitution definition
M| =[61]M'" and My = Az.M{ by inversion
My = [62](Az.M") by assumption
My = \x.[0:] M’ by contextual substitution definition
M} = [02] M and My = \z. M by inversion
(A Q) TH XM < A — Ay by assumption
(A Q)T Ay B M <= As by inversion
(A Q)T F X e M{ < A — Ay by assumption
(A, Q)T 2: A1 - M| < Ay by inversion
(A Q)T F .My < Ay — A by assumption
(A, Q)T A1 E M) < Ay by inversion
(A, Q)T Ay My UM, 2 Ay = M'/(Q2%,07,03) by i.h.
QF C Y, 05 C oy, 05 C 6,

(A, Q); T F e M{ UMz M) - Ay — Ay = XM’ /(Q*,07,0%) by rule

Case. R = i[idr]
(A;Q); T+ i[idp] = P by assumption
i=P[I"] € Q by inversion
Ry = [61](i[idr]) by assumption
Ry = [02] (i[idr]) by assumption
I'R'Ji €0, and T".R" /i € 02 by assumption
R’ and R” are incompatible by assumption
R =R by contextual substitution definition
Ry =R" by contextual substitution definition
Sub-Case 1. : Ry = u[rr| and Ry = R”
(A, Q);T F ulrp]UR" : P = i[idp]/(i:: P[T], D.ufmr] /i, T.R" /i) by rule

i:P[T] C Q, (D.ulnr]/i) C 61, (D.R" /i) C 6o

Sub-Case 2. : Ry = R and Ry = u[ny] R R
(A, Q);I'E R Uulrr] « P == i[idr]/(i= P[], I.R' /i, T.ulmr] /i) by rule
(Pl C &, (T.ufnp]/i) C O, (T.R' /i) C 64

Sub-Case 3. : Rl = H1 . Sl and RQ = H2 . S2

Hy - S7 is incompatible with Hs - Sy and Hy # Ho A by assumption
(A,Q),F [ Hl . Sl QHQ . 52 . P —— Z[Idp]/(lP[F],F(Hl . Sl)/Z,F(HQ . SQ)/Z)
by rule

(i:P[T]) C ¥, (I.H,y - Sy /i) C 61, (D.Hy - Sy/i) C 6y
0

THEOREM A.3 SOUNDNESS FOR MSLG OF SUBSTITUTIONS.
(PREVIOUS THM. 5.5 ON PAGE 22)
If (A,Ql) - p1 U pa: Oy — p/(Q,91,92) and
(A,Ql) H p1 <= QQ and (A,Ql) H P2 <= QQ
then (A,Q) = P <= QQ, (A,Ql) Fo, < Q, (A,Ql) Foy < Q, and
[01]p = p1 and [02]p = p2
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PrROOF. Induction on the first derivation.

Case. D= (A, )= /(")
=110
Case. D= (A, Q) F (p1,V.Ry /i) U
(A,Ql) H p1 U pa: Oy — p/(Q,91,92)
(A, 21); @ - RyURy : P = R/(Y,0},04)
(A,Ql) H (pl,\I/.Rl/i) = (QQ,ZP[‘I’])
(A,Ql) H p1 <= QQ
(A,Ql);\lf FR <P
(A,Ql) H (pQ,\IJRQ/’L) <~ (QQ,’LP[\I/])
(A,Ql) H p2 <= Oy
(A,Ql);\lf FRy=P
(AQ);YFR=P
(A, Q)T+ R«<P
Ry = [0{]R, A, Qy 0, <
Ry = [04]R, A, Qy 0 <
Ry = [01,01]R
Ry = [02, 03] R
pl = [61]p
= [02]p
[[91,9/]];)
= [62,05]p
(plvlll Ri/i) = ([[91,6‘/]]p, [[6‘17 1]]\11 R/i)
(p27 ‘? RQ/’) ([[927 6‘2]]p, Jl6.27 92]]\11 R/z)
(o1, W.R1 /i) = [01, 8] (p, U.R/i)
(p2, 0. R /1) = [0, 03] (p. ¥R )
(A, Q) F p<=Qy
(A, Q) Fp<=Qy
(A,Q,Q):;UFR <P
(A, Q, Q) F (p, U.R/i) < (g, i::P[¥])

(2,8)

A, Q) F (6:,0]) <
) F (Q,9Q)

A, Q) (02,03) <=

O

by syntactic equality
contextual substitution definition

(pg, @Rg/lz : (QQ, ZP[‘I’])
= (p, W.R/i)/((2, ), (61,61), (62,05))

by premise

by premise

by assumption
by inversion

by inversion
by assumption
by inversion

by soundness theorem 5.2

by rule

by soundness theorem 5.2

by soundness theorem 5.2

by weakening

by weakening

by i.h.

by i.h.

by weakening lemma

by weakening lemma

by rule

by rule

by contextual substitution definition
by contextual substitution definition
by i.h.

by weakening

by weakening

by rule

by typing rules

by typing rules

THEOREM A.4 COMPLETENESS FOR MSLG OF CONTEXTUAL SUBSTITUTIONS.

(PREVIOUS THM. 5.6 ON PAGE 23)

If (A F 6 <= Q and (A, Q) F 0y <= Q and 01 and 02 are incompatible and
p1 = [01]p and p2 = [02]p then (A, Q) F p1 U p2: Q = p/(2%,07,05) such that

O C Q05 C 0y, 05 C 0.

PROOF. Induction on the structure of p.

Case. p=-
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p1 = [011(")
p1=-and Q =-
p2 = [02](")
p2 = - and Ql =

(A,Q)FUﬁ/(,,)
'g917'g01,'g92

Case. p= (p',W.R/7)

o = [0, . R/)

o = ([10:1(0), V10:1R/3)
Py = (p1, ¥.R1/i)

p1 = [0:1]p'

Ry =[h]R

o = [0:1(0/, R /)

o = ([0:1(), ©.[0:]R/3)
P = (p2, V.Ra/i)

by assumption
by inversion
by assumption
by inversion
by rule

by assumption
by contextual substitution definition
by equality

by assumption
by contextual substitution definition
by equality

p2 = [0:2]p'

Ro = [05] R

(A, Q) - Ry URy : P = R/(Q*,05,05)
QFC, 07 Coy, 05 C 0,y

(A, Q) F pr U pg s Q = p/J(QF,03%,65%) by i.h.
O C O, 6 C 0y 05 C Oy

(A,Q) FA(pl, \I/Rl/l) (] (pQ,\IJRQ/’L) : (Ql,’LP[\I/])

= (p', W.R/i)/ (2, Q), (67,67), (05",03)) by rule
(Q**,Q*) c le (6‘;*79?) C by, (6‘5*793) C b

by completeness lemma 5.3

O

LEMMA A.5 INSERTION OF SUBSTITUTION INTO TREE.

(PREVIOUS LEMMA 5.7 ON PAGE 25)

IfFAFCUS: Q= (V,S) and A+ § <= Q and for any (Qi+p; — C') € C with
A Q; Ep; <= Q then
(1) for any (Ni,02) € V where N; = (2 F p; — C), we have [02]p; = 9.
(2) for any (N;, Q' F p',01,0) € S where N; = (Q; = p; — C;), we have [02]p" = ¢

and [01]p" = pi.

PRrROOF. By structural induction on the first derivation and by using the previous

soundness lemma for mslg of substitutions (lemma 5.5).

Case. D =

AbnilUs: Q= ()
Trivially true.

A FCUS:Q — (V,5)
Ax FppUd:Q :>idQ/(Q,p1,6)

NC
A [(Qlkpl —>->Cl),C] Ud: 0 — (VY,S)

Case. D =

By i.h., for any (N;,02) € V, N, = (; - p; = C;), we have [02]p; = § and for
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any (N;, Q'+ p',67,05) € S where N; = (Q; F p; — C;), we have [05]p’ = § and
[61]p" = ps.

A FCUG:Q = (V,5)
A, Fpr U6 Q = p1/(Q,idg,,02)
Case. D = FC
AF [(Qlkpl —» Cl),C] Uo:N— ((V , (Qlel —» Cl)),S)

By ih., for any (N;,02) € V, N; = (8, = p; — C;), we have [02]p;, = § and for
any (N;, (Q F p',07,05)) € S where N; = (Q; b p; — C;), we have [05]p" = §
and [01]p’ = pi. By soundness lemma 5.5, [02]p1 = 0, therefore for any (N;,0') €
(‘/, ((Ql)—pl - Cl),92)), where Nl = (Ql H Pi = Cz) we have [[9/]][)1 =9.

Case.
A FCOUS:Q = (V,5)
A,Ql Fpll_lézﬂ :>p*/(92,91,92)

D= PC
AF [(Qlkpl — Cl),C] Ué: Q= (‘/, (S R ((Qlel —» Cl),ngp*,Hl,Hg))

By i.h., for any (N;,05) € V, N, = (4 F p; = C;), we have [05]p; = § and for
any (N;, (U F p',01,05)) € S where N; = (; F p; = C;), we have [05]p" = 6 and
[01]p" = pi. By soundness lemma 5.5, [62]p* = 6 and [6:1]p* = p1, therefore for any
(Ni,Q/ H p’,@i,%) S (S N ((Qll—pl —» Cl),Qg)—p*,el,og)), where N; = (Qz H pi —
C;) we have [01]p" = p; and [65]p" = 6.

O

THEOREM A.6 SOUNDNESS OF INSTANCE ALGORITHM FOR TERMS.
(PREVIOUS THM. 6.1 ON PAGE 28)

(1) If Ag; (A1, Q)T My = Ma : A/(0, p)

where (A1, Q);T'F My < A and Ag;T'F My < A then [0, p] My = Ms.
(2) If Ag; (A1, Q); T F Ry = Ry : P/(0,p)

where (A1,Q);T'F Ry = P and Ag;T' = Ry = P then [0, p]R1 = Rs.
(3) If Ag; (A1,Q);TH ST =52 > A= P/(0,p)

where (A1,Q);T'F ST > A= P and Ay;T'+ Sy > A= P then [0, p]S1 = Sa.

PROOF. Simultaneous structural induction on the first derivation. The proof

Case. D = - mvar-1
Ag; (Ay,i:P[I)); T Fiflidr] =R: P/ (-, (T.R/1))

(Aq,i:P[I)); T k- ifidp] = P by assumption
Ay;THFR=P by assumption
R=R by reflexivity
[¥.R/i](iidr]) = R by substitution definition
uzP[[ € A
Case. D = mvar-2

(A, Q)T Fufrp] = R: P/ (D.([rr] "' R/u),")

Ay;T Fu[rp] = P where u:P[I'] € Aq by assumption
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Ay;THFR=P by assumption
[mr]([rr] ' R) = R by property of inversion
[.[7r] " R/u](ulrr]) = R by substitution definition
AQ;(Al,Q);F,JJ:Al |—M1 iMQ ZAQ / (H,p)
Case. D = lam

Aoy (A1, Q)T F MMy = e My : Ay — As / (0, p)

(A1,Q);TF XMy < Ay — A by assumption
(A1,Q); T, Ay = My <= Ay by inversion
Ag;T'F Az My <= Ay — Ag by assumption
Ao, ;T 2 AL E My <= Ay by inversion
16, p]\x. My = [0, p] \x. M; by equality and contextual substitution definition

Case. D = AQ; (Al,Ql,QQ);F [+ (Ml, Sl) = (MQ,SQ) : A1 — AQ > P

/((6‘1792)7 (Plap2))
Agi (A, );T = My = My : Ay / (01, p1)

Ag; (A1,Q9); T IFS) =S5 : As > P/ (02, p2) by premise
(A1;Q1,Q);TF (My;5) < Ay — Ay = P by assumption
(Ap; Q1 ); T My <= Ay by inversion
(Al;Qg);F FSi<Ay=P

Ag;T'H (Mg; S2) < Ay — Ay = P by assumption
Ao;T'F My <= Ay by inversion
AQ;FFSQ<A2:>P

[[Hl,pl]]Ml = MQ by i.h.
[02, p2] S1 = So by i.h.
101,02, p1, p2] M1 = M by weakening (using linearity condition)
[61, 02, p1, p2] S1 = S2 by weakening (using linearity condition)
[61, 02, p1, p2] (M1 S1) = [ida, 61, 02, p1, p2] (M2 S2) by rule

and substitution definition

O

THEOREM A.7 COMPLETENESS OF INSTANCE ALGORITHM FOR TERMS.
(PREVIOUS THM. 6.2 ON PAGE 28)

(1) If(Al,Q),Fl—Ml < A and AQ;P'_MQ < A and
Agk 0 <= Ay and As b p <= Q and [0, p] M1 = My then
Ag; (A1,Q);T = My = My : A/(6%, p) where 6* C 0.

(2) If (A1,9Q);TF Ry = P and Ag;T'F Ry = P and
Ay 0 <Ay and A b p<=Q and [0, p] Ry = Ra then
Ag; (A1,9Q);T + Ry = Ry : P/(0*, p) where 8* C 0.

(3) If (A1,Q);THS; >A= P and Ay;T Sy > A= P and
Ay 0 <= Ay and Mg b p<=Q and [0, p]S1 = S then
Az (A1,Q);TF Sy = S3: A> P/(0%, p) where 6* C 0.

PROOF. Simultaneous structural induction on the first typing derivation.
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(Al,Q);F,,TZAl - M1 = A2

(Al,Q);F F Az M, < Al — A2

AQ;F F\x. My < Al — AQ

Ag;F,LL‘:Al My < A2

10, p](Ax.My) = Az. My

Az [0, p] (My) = Az. Mo

[0, p] (M) = M

Ao (A1, Q)T 22 Ay = My = My Ay /(0% p*)
0* C 0 and p* Cp

Case. D =

Ag; (Al,Q);F H )\$M1 = )\I'Mg : Al — Ag/(e*,

Case. D =

(Aq,i:P[T)); T Filidr] = P

i::P[I');T Fifidp] = P

AQ;F FRy=P

[0, ] (i[idr]) = R»

FRQ/Z cp R

Ag; (Al,zP[lj]),l“ H Z[Idr] = R2 : P/(,FRQ/Z)
- Cida and (I.Ra/i) C p

uzP[l] € Ay
(Al, ),1—‘ = ’u[ﬂ'p] = P

Case. D =

uzP[[);T F u[nr] = P

Ay = Al unP[T], AY

AQ;F = RQ = P

0= (01,T.R/u,6,)

[0, p) (u[mr]) = R2

[WP]R: R2

R = [Tfp]_l R2 and [FF]([TFF]_l Rg) = R2

Ag,u:z:P[[];T b ufrp] = Ry : P/(I.[rr] ™" Ra/u, )

(I.[rr] "' Ry/u) COand - Cp

(Al,Q);F F M1 = Al
Case. D =

by assumption

by inversion

by assumption

by substitution definition
by syntactic equality

by i.h.

) by rule

by rule
by assumption
by assumption
by assumption
by rule

by rule

by assumption

by assumption

by assumption

by substitution definition

by inverse substitution property
by rule

(Al,Q);F”— S1>A=P

(Al,Q),F I+ (Ml,Sl) > Al — A= P

AQ;FF(MQ;S2)>A1—>A:>P
AQ;FFM2<:A1
AQ;FFSQ>A:>P

by assumption

by substitution definition
by inversion

by inversion

by inversion

by assumption

by inversion
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Higher-order term indexing using substitution trees : App-11

Ag;(Al,Ql);Fl—MliMQZAl/(HT,pl) and HT g@ by i.h.

Ag; (Al,Qg);F FS1=5:A> P/(@;,pg) and 9; cé by i.h.

(A, Q)T F (My;81) = (Ma; S2) « Ay — A > P/((67,63), (p1, p2)) by rule

(07,63) C 0 by subset property
(I

THEOREM A.8 INTERACTION BETWEEN MSLG AND INSTANCE ALGORITHM.
(PREVIOUS THM. 6.4 ON PAGE 29)

(1) If(Al,Q),Fl—Ml < A and AQ;P'_MQ < A and
(AQ,Al),Q;F F My UM, : A— M/(Q/,pl,pg) then
(A;;QTEM =M : A/(-,p1) and Ag; QT H M = My 2 A/(-, p2).
(2) If(Al,Q),Fl—R1:>P G/ﬂdAg;Fl—R2:>P and
(AQ,Al),Q;F H RiURy: P—= R/(Q/,pl,pg) then
Ay TER=Ry: P/(-,p1) and Ag; QYT H R = Ry : P/(-, pa2).
(3) If (A,Q);THS; >A= P and Ay;T Sy > A= P and
(Ao, A1), ;T HSIUSy: A> P = S/(Y, p1,p2) then
AT HES=5:A>P/(,p1) and Ag; ;T H S = S3: A> P/(-, p2).

PROOF. Simultaneous structural induction on the first derivation.
Let A = AQ, Al.

(AQ,Al,Q);F,.IZAl + My U M, : A2 — M/(Q/,pl,pQ)

Case. D =
(A,Q),F FXx. MyUMNe. My : Ay — Ay —> /\,TM/(QI, pl,pg)
Al;Q/;F,,TZAl I—MZMl ZAQ/(',pl) by i.h.
Ay QTR MM = e My Ay — As/(5, 1) by rule
Ag; VT Ay B M = My : As /(- p2) by i.h.
Ag; VT H Ao M = e My : Ay — A /(- p2) by rule
u:(P[]) € A
Case. D = n n
(A, Q); T u[rp]UR : P = i[idp]/(i::P[T],T.u[nr] /i, T.R /i)
Ay i P[T);T Fifidr] = R« P/(-,T.R/i) by rule meta-1
Aqy;i:P[T); T Fifidr] = ulnr] : P/(-,Toufrr] /i) by rule meta-1

Case. D = (A,Q),F FHy-SiUHy-Sy: P— Z[Idr]/
((i=:P[T]), (Hy - S1/i), (Hg - S2/i))

H, # Hs and i must be new R by inversion
Al,Q,F H Z[Idr] = H1 . Sl : P/(,I:Hl . Sl/l) by meta-1
AQ,Q,F H Z[Idr] = HQ . SQ : P/(,FHQ . SQ/Z) by meta-1

Case. D = (A,Q),F H (Ml;Sl)g(Mg;Sg) A — Ay > P —
(M7 S)/((le QQ)? (pla p2)a (p/lvp/2))
(A Q)T F M UM, : Ay = M/ (4, p1,0)) by inversion
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App-12 . Brigitte Pientka

F S1USy: Ay >P:>S/(Qg, pg,pé)
F(M1;51)>A1—>A2:>P
|—M1<:A1

FSi>A,= P
F(MQ;S2)>A1—>A2:>P

(A,Q),F |—SQ > A2 = P

A QuTEM =M 2 A/ p1)
AQ,Ql,FFM:MQAl/(,p/l)

Al;QQ;F S = Sl :AQ > P/(-,pg)

AQ,QQ;F S = SQ : AQ > P/(-,pg)

A1 QL QT E (M3 S) = (My; S1) - A/, (p1, 1))
Ao, 1, Qo T F (M3 S) = (Ma; S2) : A1/(-, (p2, p5))
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by assumption

by inversion
by assumption

by inversion
by i.h.

by i.h.

by i.h.

by i.h.

by rule

by rule O



