This document is the online-only appendix to:

Higher-order term indexing using substitution trees BRIGITTE PIENTKA

McGill University

 $ACM\ Transactions\ on\ Computational\ Logic,\ Vol.\ V,\ No.\ N,\ November\ 2008,\ Pages\ 1-38.$

A. DETAILLED PROOFS OF PREVIOUS THEOREMS

THEOREM A.1 SOUNDNESS OF MSLG FOR OBJECTS. (PREVIOUS THM. 5.2 ON PAGE 21)

(1) If
$$(\Delta, \Omega)$$
; $\Gamma \vdash M_1 \sqcup M_2 : A \Longrightarrow M/(\Omega', \theta_1, \theta_2)$ and (Δ, Ω) ; $\Gamma \vdash M_1 \Leftarrow A$ and (Δ, Ω) ; $\Gamma \vdash M_2 \Leftarrow A$ then $(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'$ and $(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'$ and $M_1 = \llbracket \theta_1 \rrbracket M$ and $M_2 = \llbracket \theta_2 \rrbracket M$ and (Δ, Ω') ; $\Gamma \vdash M \Leftarrow A$.

(2) If
$$(\Delta, \Omega)$$
; $\Gamma \vdash R_1 \sqsubseteq R_2 : P \Longrightarrow R/(\Omega', \theta_1, \theta_2)$ and (Δ, Ω) ; $\Gamma \vdash R_1 \Rightarrow P$ and (Δ, Ω) ; $\Gamma \vdash R_2 \Rightarrow P$ then $(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'$ and $(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'$ and $R_1 = \llbracket \theta_1 \rrbracket R$ and $R_2 = \llbracket \theta_2 \rrbracket R$ and (Δ, Ω') ; $\Gamma \vdash R \Rightarrow P$.

(3) If
$$(\Delta, \Omega)$$
; $\Gamma \vdash S_1 \sqsubseteq S_2 : A > P \Longrightarrow S/(\Omega', \theta_1, \theta_2)$ and (Δ, Ω) ; $\Gamma \vdash S_1 > A \Rightarrow P$ and (Δ, Ω) ; $\Gamma \vdash S_2 > A \Rightarrow P$ then $(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'$ and $(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'$ and (Δ, Ω') ; $\Gamma \vdash S > A \Rightarrow P$ and $S_1 = [\![\theta_1]\!]S$ and $S_2 = [\![\theta_2]\!]S$.

PROOF. Simultaneous induction on the structure of the first derivation. We give here a few cases.

Case.
$$\mathcal{D} = (\Delta, \Omega); \Gamma \vdash \lambda x. M_1 \sqcup \lambda x. M_2 : A_1 \to A_2 \Longrightarrow \lambda x. M/(\Omega', \theta_1, \theta_2)$$

```
(\Delta, \Omega); \Gamma, x: A_1 \vdash M_1 \sqcup M_2 : A_2 \Longrightarrow M/(\Omega', \theta_1, \theta_2)
                                                                                                                                             by premise
(\Delta, \Omega); \Gamma \vdash \lambda x. M_1 \Leftarrow A_1 \rightarrow A_2
                                                                                                                                     by assumption
(\Delta, \Omega); \Gamma, x:A_1 \vdash M_1 \Leftarrow A_2
                                                                                                                                          by inversion
(\Delta, \Omega); \Gamma \vdash \lambda x. M_2 \Leftarrow A_1 \rightarrow A_2
                                                                                                                                     by assumption
(\Delta, \Omega); \Gamma, x: A_1 \vdash M_2 \Leftarrow A_2
                                                                                                                                          by inversion
(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'
                                                                                                                                                     by i.h.
(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'
                                                                                                                                                     by i.h.
M_1 = \llbracket \theta_1 \rrbracket M
                                                                                                                                                     by i.h.
\lambda x.M_1 = \lambda x. \llbracket \theta_1 \rrbracket M
                                                                                                                                                    by rule
                                                                                          by contextual substitution definition
\lambda x.M_1 = [\theta_1](\lambda x.M)
```

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee. © 2008 ACM 1529-3785/2008/0700-0001 \$5.00

```
M_2 = \llbracket \theta_2 \rrbracket M
                                                                                                                                                                   by i.h.
\lambda x. M_2 = \lambda x. \llbracket \theta_2 \rrbracket M
                                                                                                                                                                 by rule
\lambda x.M_2 = [\theta_2](\lambda x.M)
                                                                                                  by contextual substitution definition
(\Delta, \Omega'); \Gamma, x: A_1 \vdash M \Leftarrow A_2
                                                                                                                                                                   by i.h.
(\Delta, \Omega'); \Gamma \vdash \lambda x.M \Leftarrow A_1 \rightarrow A_2
                                                                                                                                                                 by rule
     Case. \mathcal{D} = (\Delta; \Omega); \Gamma \vdash R_1 \sqcup R_2 : P \Longrightarrow R/(\Omega', \theta_1, \theta_2)
(\Delta, \Omega); \Gamma \vdash R_1 \sqcup R_2 : P \Longrightarrow R/(\Omega', \theta_1, \theta_2)
                                                                                                                                                         by premise
(\Delta, \Omega); \Gamma \vdash R_1 \Leftarrow P
                                                                                                                                                                   by ass
(\Delta, \Omega); \Gamma \vdash R_1 \Rightarrow P
                                                                                                                                                                 by rule
(\Delta, \Omega); \Gamma \vdash R_2 \Leftarrow P
                                                                                                                                                                   by ass
(\Delta, \Omega); \Gamma \vdash R_2 \Rightarrow P
                                                                                                                                                                 by rule
(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'
                                                                                                                                                                  by i.h.
(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega' and
R_1 = \llbracket \theta_1 \rrbracket R \text{ and } R_2 = \llbracket \theta_2 \rrbracket R \text{ and } (\Omega', \Delta); \Gamma \vdash R \Rightarrow P
(\Delta, \Omega'); \Gamma \vdash R \Leftarrow P
                                                                                                                                                                 by rule
     Case. \mathcal{D} = (\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \sqcup u[\pi_{\Gamma}] : P \Longrightarrow u[\pi_{\Gamma}]/(\cdot, \cdot, \cdot)
u::P[\Psi] \in \Delta \text{ and } \Delta; \Gamma \vdash \pi \Leftarrow \Psi
                                                                                                                                                         by premise
(\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P
                                                                                                                                                 by assumption
u[\pi_{\Gamma}] = u[\pi_{\Gamma}]
                                                                                                                                                    by reflexivity
(\Delta, \Omega) \vdash \cdot \Leftarrow \cdot
                                                                                                                                                                 by rule
\Delta; \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P
                                                                                                                                                                 by rule
     Case. \mathcal{D} = (\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \underline{\cup} R : P \Longrightarrow i[\mathsf{id}_{\Gamma}]/(i::P[\Gamma], \hat{\Gamma}.u[\pi_{\Gamma}]/i, \hat{\Gamma}.R/i)
u::P[\Psi] \in \Delta \text{ and } \Delta; \Gamma \vdash \pi \Leftarrow \Psi
                                                                                                                                                         by premise
(\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P
                                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma \vdash R \Rightarrow P
                                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma \vdash R \Leftarrow P
                                                                                                                                                                 by rule
(\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \Leftarrow P
                                                                                                                                                                 by rule
u[\pi_{\Gamma}] = [\hat{\Gamma}.u[\pi_{\Gamma}]/i]i[\mathsf{id}_{\Gamma}]
u[\pi_{\Gamma}] = u[\pi_{\Gamma}]
                                                                                                                                                    by reflexivity
R = [\hat{\Gamma}.R/i]i[\mathsf{id}_{\Gamma}]
R = R
                                                                                                                                                    by reflexivity
(\Delta, \Omega) \vdash \hat{\Gamma}.R/i \Leftarrow i::P[\Gamma]
                                                                                                                           by rule using assumption
(\Delta, \Omega) \vdash u[\pi_{\Gamma}]/i \Leftarrow i :: P[\Gamma]
                                                                                                                           by rule using assumption
(\Delta, i::P[\Gamma]); \Gamma \vdash \mathsf{id}_{\Gamma} \Leftarrow \Gamma
                                                                                                                                                     by definition
(\Delta, i::P[\Gamma]); \Gamma \vdash i[\mathsf{id}_{\Gamma}] \Rightarrow P
                                                                                                                                                                 by rule
     Case. \mathcal{D} = (\Delta, \Omega); \Gamma \vdash c \cdot S_1 \sqcup c \cdot S_2 : P \Longrightarrow c \cdot S/(\Omega', \theta_1, \theta_2)
(\Delta, \Omega); \Gamma \vdash S_1 \sqcup S_2 : A > P \Longrightarrow S/(\Omega', \theta_1, \theta_2)
                                                                                                                                                         by premise
(\Delta, \Omega); \Gamma \vdash c \cdot S_1 \Rightarrow P
                                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma \vdash S_1 > A \Rightarrow P
                                                                                                                                                       by inversion
(\Delta, \Omega); \Gamma \vdash c \cdot S_2 \Rightarrow P
                                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma \vdash S_2 > A \Rightarrow P
                                                                                                                                                       by inversion
```

```
Higher-order term indexing using substitution trees
```

App-3

```
S_1 = \llbracket \theta_1 \rrbracket S
                                                                                                                                                         by i.h.
S_2 = \llbracket \theta_2 \rrbracket S
                                                                                                                                                         by i.h.
(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'
                                                                                                                                                         by i.h.
(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'
                                                                                                                                                         by i.h.
c \cdot S_1 = c \cdot [\theta_1]S
                                                                                                                                                        by rule
c \cdot S_1 = \llbracket \theta_1 \rrbracket (c \cdot S)
                                                                                            by contextual substitution definition
c \cdot S_2 = c \cdot [\![\theta_2]\!] S
                                                                                                                                                        by rule
c \cdot S_2 = \llbracket \theta_2 \rrbracket (c \cdot S)
                                                                                            by contextual substitution definition
(\Delta, \Omega'); \Gamma \vdash S > A \Rightarrow P
                                                                                                                                                         by i.h.
(\Delta, \Omega'); \Gamma \vdash c \cdot S \Rightarrow P
                                                                                                                                                       by rule
     Case. \mathcal{D} = (\Delta, \Omega); \Gamma \vdash R_1 \sqcup R_2 : P \Longrightarrow i[\mathsf{id}_{\Gamma}]/(i::P[\Gamma], \hat{\Gamma}.R_1/i, \hat{\Gamma}.R_2/i)
R_1 = H_1 \cdot S_1 \text{ and } R_2 = H_2 \cdot S_2 \text{ and } H_1 \neq H_2
                                                                                                                                                by premise
(\Delta, \Omega); \Gamma \vdash H_1 \cdot S_1 \Rightarrow P
                                                                                                                                        by assumption
(\Delta, \Omega); \Gamma \vdash H_1 \cdot S_1 \Leftarrow P
                                                                                                                                                       by rule
(\Delta, \Omega); \Gamma \vdash H_2 \cdot S_2 \Rightarrow P
                                                                                                                                        by assumption
(\Delta, \Omega); \Gamma \vdash H_2 \cdot S_2 \Leftarrow P
                                                                                                                                                       by rule
H_1 \cdot S_1 = [\hat{\Gamma}.(H_1 \cdot S_1)/i](i[\mathsf{id}_{\Gamma}])
                                                                                            by contextual substitution definition
H_1 \cdot S_1 = H_1 \cdot S_1
                                                                                                                                           by reflexivity
H_2 \cdot S_2 = [\hat{\Gamma}.(H_2 \cdot S_2)/i](i[\mathsf{id}_{\Gamma}])
                                                                                            by contextual substitution definition
H_2 \cdot S_2 = H_2 \cdot S_2
                                                                                                                                           by reflexivity
(\Delta, i :: P[\Gamma]); \Gamma \vdash \mathsf{id}_{\Gamma} \Leftarrow \Gamma
                                                                                                                                            by definition
(\Delta, i::P[\Gamma]); \Gamma \vdash i[\mathsf{id}_{\Gamma}] \Rightarrow P
                                                                                                                                                       by rule
     Case. \mathcal{D} = (\Delta, \Omega); \Gamma \vdash (M_1; S_1) \sqcup (M_2; S_2) : (A_1 \rightarrow A_2) > P
                                                                                                  \Longrightarrow (M; S)/(\Omega', \theta, \theta')
(\Delta, \Omega); \Gamma \vdash M_1 \sqcup M_2 : A_1 \Longrightarrow M/(\Omega_1, \theta_1, \theta_2)
                                                                                                                                                by premise
(\Delta, \Omega); \Gamma \vdash S_1 \sqcup S_2 : A_2 > P \Longrightarrow S/(\Omega_2, \theta_1', \theta_2')
\Omega' = (\Omega_1, \Omega_2), \ \theta = (\theta_1, \theta_1'), \ \theta' = (\theta_2, \theta_2')
(\Delta, \Omega); \Gamma \vdash (M_1; S_1) > A_1 \rightarrow A_2 \Rightarrow P
                                                                                                                                        by assumption
(\Delta, \Omega); \Gamma \vdash M_1 \Leftarrow A_1
                                                                                                                                             by inversion
(\Delta, \Omega); \Gamma \vdash S_1 > A_2 \Rightarrow P
(\Delta, \Omega); \Gamma \vdash (M_2; S_2) > A_1 \rightarrow A_2 \Rightarrow P
                                                                                                                                        by assumption
(\Delta, \Omega); \Gamma \vdash M_2 \Leftarrow A_1
                                                                                                                                             by inversion
(\Delta, \Omega); \Gamma \vdash S_2 > A_2 \Rightarrow P
M_1 = [\![\theta_1]\!]M
                                                                                                                                                         by i.h.
M_2 = \llbracket \theta_2 \rrbracket M
                                                                                                                                                         by i.h.
(\Delta, \Omega_1); \Gamma \vdash M \Leftarrow A_1
                                                                                                                                                         by i.h.
(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega_1
                                                                                                                                                         by i.h.
(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega_1
                                                                                                                                                         by i.h.
(\Delta, \Omega'); \Gamma \vdash M \Leftarrow A_1
                                                                                                                                           by weakening
S_1 = \llbracket \theta_1' \rrbracket S
                                                                                                                                                         by i.h.
S_2 = \llbracket \theta_2' \rrbracket S
                                                                                                                                                         by i.h.
(\Delta, \Omega_2); \Gamma \vdash S > A_2 \Rightarrow P
                                                                                                                                                         by i.h.
(\Delta, \Omega) \vdash \theta_1' \Leftarrow \Omega_2
                                                                                                                                                        by i.h.
(\Delta, \Omega) \vdash \theta_2' \Leftarrow \Omega_2
                                                                                                                                                         by i.h.
(\Delta, \Omega', ); \Gamma \vdash S > A_2 \Rightarrow P
                                                                                                                                           by weakening
```

$$(\Delta, \Omega) \vdash (\theta_1, \theta_1') \Leftarrow \Omega'$$

$$(\Delta, \Omega) \vdash (\theta_2, \theta_2') \Leftarrow \Omega'$$

$$M_{1} = [\![\theta_{1}, \theta'_{1}]\!] M$$

$$M_{2} = [\![\theta_{2}, \theta'_{2}]\!] M$$

$$S_{1} = [\![\theta_{1}, \theta'_{1}]\!] S$$

$$S_{2} = [\![\theta_{2}, \theta'_{2}]\!] S$$

$$(M_{1}; S_{1}) = ([\![\theta_{1}, \theta'_{1}]\!] M; [\![\theta_{1}, \theta'_{1}]\!] S)$$

$$(M_{1}; S_{1}) = [\![\theta_{1}, \theta'_{1}]\!] (M; S)$$

$$(M_{2}; S_{2}) = ([\![\theta_{2}, \theta'_{2}]\!] M; [\![\theta_{2}, \theta'_{2}]\!] S)$$

$$(M_{2}; S_{2}) = [\![\theta_{2}, \theta'_{2}]\!] (M; S)$$

$$(\Delta, \Omega'); \Gamma \vdash (M; S) > A_{1} \rightarrow A_{2} \Rightarrow P$$

 θ_1 and θ'_1 refer to distinct meta-variables by typing rules for contextual substitutions θ_2 and θ'_2 refer to distinct meta-variables by typing rules for contextual substitutions

by lemma weakening by lemma weakening by lemma weakening by lemma weakening

by rule

by rule
by contextual substitution definition
by rule
by contextual substitution definition

THEOREM A.2 COMPLETENESS OF MSLG OF TERMS. (PREVIOUS THM. 5.3 ON PAGE 21)

- (1) If $\Delta, \Omega \vdash \theta_1 \Leftarrow \Omega'$ and $\Delta, \Omega \vdash \theta_2 \Leftarrow \Omega'$ and θ_1 and θ_2 are incompatible and $\Delta, \Omega; \Gamma \vdash M_1 \Leftarrow A, \Delta; \Gamma \vdash M_2 \Leftarrow A, \text{ and } \Delta, \Omega'; \Gamma \vdash M \Leftarrow A \text{ and } M_1 = \llbracket \theta_1 \rrbracket M \text{ and } M_2 = \llbracket \theta_2 \rrbracket M$ then there exists a contextual substitution $\theta_1^*, \theta_2^*, \text{ and a modal context } \Omega^*, \text{ such that } (\Delta, \Omega); \Gamma \vdash M_1 \sqcup M_2 : A \Longrightarrow M/(\Omega^*, \theta_1^*, \theta_2^*) \text{ and } \theta_1^* \subseteq \theta_1, \theta_2^* \subseteq \theta_2 \text{ and } \Omega^* \subseteq \Omega'$
- (2) If $\Delta, \Omega \vdash \theta_1 \Leftarrow \Omega'$ and $\Delta, \Omega \vdash \theta_2 \Leftarrow \Omega'$ and θ_1 and θ_2 are incompatible and $\Delta, \Omega; \Gamma \vdash R_1 \Rightarrow P, \Delta; \Gamma \vdash R_2 \Rightarrow P,$ and $\Omega', \Delta; \Gamma \vdash R \Rightarrow P$ and $R_1 = \llbracket \theta_1 \rrbracket R$ and $R_2 = \llbracket \theta_2 \rrbracket R$ then there exists a contextual substitution $\theta_1^*, \theta_2^*,$ and a modal context $\Omega^*,$ such that $(\Delta, \Omega); \Gamma \vdash R_1 \sqsubseteq R_2 : P \Longrightarrow R/(\Omega^*, \theta_1^*, \theta_2^*)$ and $\theta_1^* \subseteq \theta_1, \theta_2^* \subseteq \theta_2$ and $\Omega^* \subseteq \Omega'$
- (3) If $\Delta, \Omega \vdash \theta_1 \Leftarrow \Omega'$ and $\Delta, \Omega \vdash \theta_2 \Leftarrow \Omega'$ and θ_1 and θ_2 are incompatible and $(\Delta, \Omega); \Gamma \vdash S_1 > A \Rightarrow P$, $(\Delta, \Omega); \Gamma \vdash S_2 > A \Rightarrow P$, and $(\Delta, \Omega'); \Gamma \vdash S > A \Rightarrow P$ and $S_1 = \llbracket \theta_1 \rrbracket S$ and $S_2 = \llbracket \theta_2 \rrbracket S$ then there exists a contextual substitution θ_1^* , θ_2^* , and a modal context Ω^* , such that $(\Delta, \Omega); \Gamma \vdash S_1 \sqsubseteq S_2 : A \Longrightarrow S/(\Omega^*, \theta_1^*, \theta_2^*)$ and $\theta_1^* \subseteq \theta_1$, $\theta_2^* \subseteq \theta_2$ and $\Omega^* \subseteq \Omega'$.

PROOF. Simultaneous induction on the structure of M, R, and S. We give a few cases.

 $\begin{array}{lll} Case. & R = u[\pi_{\Gamma}] \text{ and } u :: P[\Gamma] \in \Delta \\ (\Delta,\Omega); \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P & \text{by assumption} \\ R_1 = \llbracket \theta_1 \rrbracket (u[\pi_{\Gamma}]) & \text{by contextual substitution definition} \\ R_2 = \llbracket \theta_2 \rrbracket (u[\pi_{\Gamma}]) & \text{by assumption} \\ R_2 = u[\pi_{\Gamma}] & \text{by contextual substitution definition} \\ R_2 = u[\pi_{\Gamma}] & \text{by contextual substitution definition} \\ (\Delta,\Omega); \Gamma \vdash u[\pi_{\Gamma}] \, \underline{\sqcup} \, u[\pi_{\Gamma}] : P \Longrightarrow u[\pi_{\Gamma}]/(\cdot,\cdot,\cdot) & \text{by rule} \\ \cdot \subseteq \Omega', \, \cdot \subseteq \theta_1, \, \cdot \subseteq \theta_2 & \text{by assumption} \\ \end{array}$

```
Case. M = \lambda x.M'.
M_1 = [\theta_1](\lambda x.M')
                                                                                                                                 by assumption
M_1 = \lambda x. \llbracket \theta_1 \rrbracket M'
                                                                                       by contextual substitution definition
M_1' = [\![\theta_1]\!] M' and M_1 = \lambda x. M_1'
                                                                                                                                      by inversion
M_2 = [\theta_2](\lambda x.M')
                                                                                                                                 by assumption
M_2 = \lambda x. \llbracket \theta_2 \rrbracket M'
                                                                                       by contextual substitution definition
M_2' = [\theta_2]M' \text{ and } M_2 = \lambda x. M_2'
                                                                                                                                      by inversion
(\Delta, \Omega'); \Gamma \vdash \lambda x.M' \Leftarrow A_1 \rightarrow A_2
                                                                                                                                 by assumption
(\Delta, \Omega'); \Gamma, x:A_1 \vdash M' \Leftarrow A_2
                                                                                                                                     by inversion
(\Delta, \Omega); \Gamma \vdash \lambda x. M_1' \Leftarrow A_1 \rightarrow A_2
                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma, x: A_1 \vdash M_1' \Leftarrow A_2
                                                                                                                                     by inversion
(\Delta, \Omega); \Gamma \vdash \lambda x. M_2' \Leftarrow A_1 \rightarrow A_2
                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma, x: A_1 \vdash M_2' \Leftarrow A_2
                                                                                                                                     by inversion
(\Delta, \Omega); \Gamma, x: A_1 \vdash M_1' \sqcup M_2' : A_2 \Longrightarrow M'/(\Omega^*, \theta_1^*, \theta_2^*)
                                                                                                                                                by i.h.
\Omega^* \subseteq \Omega', \, \theta_1^* \subseteq \theta_1, \, \theta_2^* \subseteq \theta_2
(\Delta, \Omega); \Gamma \vdash \lambda x. M'_1 \sqcup \lambda x. M'_2 : A_1 \to A_2 \Longrightarrow \lambda x. M'/(\Omega^*, \theta_1^*, \theta_2^*)
                                                                                                                                               by rule
     Case. R = i[id_{\Gamma}]
(\Delta; \Omega); \Gamma \vdash i[\mathsf{id}_{\Gamma}] \Rightarrow P
                                                                                                                                 by assumption
i::P[\Gamma] \in \Omega
                                                                                                                                     by inversion
R_1 = \llbracket \theta_1 \rrbracket (i[\mathsf{id}_{\Gamma}])
                                                                                                                                 by assumption
R_2 = \llbracket \theta_2 \rrbracket (i[\mathsf{id}_\Gamma])
                                                                                                                                by assumption
\hat{\Gamma}.R'/i \in \theta_1 and \hat{\Gamma}.R''/i \in \theta_2
                                                                                                                                by assumption
R' and R'' are incompatible
                                                                                                                                 by assumption
R_1 = R'
                                                                                       by contextual substitution definition
R_2 = R''
                                                                                       by contextual substitution definition
    Sub-Case 1.: R_1 = u[\pi_{\Gamma}] and R_2 = R''
(\Delta,\Omega);\Gamma\vdash u[\pi_{\Gamma}]\,\underline{\sqcup}\,R'':P\Longrightarrow i[\mathrm{id}_{\Gamma}]/(i::P[\Gamma],\hat{\Gamma}.u[\pi_{\Gamma}]/i,\hat{\Gamma}.R''/i)
                                                                                                                                               by rule
i::P[\Gamma] \subseteq \Omega', \ (\hat{\Gamma}.u[\pi_{\Gamma}]/i) \subseteq \theta_1, \ (\hat{\Gamma}.R''/i) \subseteq \theta_2
    Sub-Case 2. : R_1 = R' and R_2 = u[\pi_{\Gamma}]
(\Delta, \Omega); \Gamma \vdash R' \sqcup u[\pi_{\Gamma}] : P \Longrightarrow i[\mathsf{id}_{\Gamma}]/(i::P[\Gamma], \hat{\Gamma}.R'/i, \hat{\Gamma}.u[\pi_{\Gamma}]/i)
                                                                                                                                               by rule
(i::P[\Gamma] \subset \Omega', (\Gamma.u[\pi_{\Gamma}]/i) \subset \theta_2, (\Gamma.R'/i) \subset \theta_1
    Sub-Case 3.: R_1 = H_1 \cdot S_1 and R_2 = H_2 \cdot S_2
H_1 \cdot S_1 is incompatible with H_2 \cdot S_2 and H_1 \neq H_2
                                                                                                                                 by assumption
(\Delta, \Omega); \Gamma \vdash H_1 \cdot S_1 \sqcup H_2 \cdot S_2 : P \Longrightarrow i[id_{\Gamma}]/(i::P[\Gamma], \hat{\Gamma}.(H_1 \cdot S_1)/i, \hat{\Gamma}.(H_2 \cdot S_2)/i)
                                                                                                                                               by rule
(i::P[\Gamma]) \subseteq \Omega', (\hat{\Gamma}.H_1 \cdot S_1/i) \subseteq \theta_1, (\hat{\Gamma}.H_2 \cdot S_2/i) \subseteq \theta_2
    Theorem A.3 Soundness for mslg of substitutions.
    (PREVIOUS THM. 5.5 ON PAGE 22)
If (\Delta, \Omega_1) \vdash \rho_1 \sqcup \rho_2 : \Omega_2 \Longrightarrow \rho/(\Omega, \theta_1, \theta_2) and
      (\Delta, \Omega_1) \vdash \rho_1 \Leftarrow \Omega_2 \ and \ (\Delta, \Omega_1) \vdash \rho_2 \Leftarrow \Omega_2
then (\Delta, \Omega) \vdash \rho \Leftarrow \Omega_2, (\Delta, \Omega_1) \vdash \theta_1 \Leftarrow \Omega, (\Delta, \Omega_1) \vdash \theta_2 \Leftarrow \Omega, and
      [\![\theta_1]\!] \rho = \rho_1 \text{ and } [\![\theta_2]\!] \rho = \rho_2
```

```
Proof. Induction on the first derivation.
```

```
Case. \mathcal{D} = (\Delta, \Omega_1) \vdash \cdot : \cdot \Longrightarrow \cdot / (\cdot, \cdot, \cdot)
                                                                                                                               by syntactic equality
\cdot = [\![\cdot]\!](\cdot)
                                                                                                     contextual substitution definition
     Case. \mathcal{D} = (\Delta, \Omega_1) \vdash (\rho_1, \hat{\Psi}.R_1/i) \sqcup (\rho_2, \hat{\Psi}.R_2/i) : (\Omega_2, i :: P[\Psi])
                                                                                        \Longrightarrow (\rho, \hat{\Psi}.R/i)/((\Omega, \Omega'), (\theta_1, \theta_1'), (\theta_2, \theta_2'))
(\Delta, \Omega_1) \vdash \rho_1 \sqcup \rho_2 : \Omega_2 \Longrightarrow \rho/(\Omega, \theta_1, \theta_2)
                                                                                                                                                    by premise
(\Delta, \Omega_1); \Psi \vdash R_1 \sqcup R_2 : P \Longrightarrow R/(\Omega', \theta_1', \theta_2')
                                                                                                                                                    by premise
(\Delta, \Omega_1) \vdash (\rho_1, \hat{\Psi}.R_1/i) \Leftarrow (\Omega_2, i::P[\Psi])
                                                                                                                                            by assumption
(\Delta, \Omega_1) \vdash \rho_1 \Leftarrow \Omega_2
                                                                                                                                                  by inversion
(\Delta, \Omega_1); \Psi \vdash R_1 \Leftarrow P
(\Delta, \Omega_1); \Psi \vdash R_1 \Rightarrow P
                                                                                                                                                 by inversion
(\Delta, \Omega_1) \vdash (\rho_2, \hat{\Psi}.R_2/i) \Leftarrow (\Omega_2, i::P[\Psi])
                                                                                                                                            by assumption
(\Delta, \Omega_1) \vdash \rho_2 \Leftarrow \Omega_2
                                                                                                                                                 by inversion
(\Delta, \Omega_1); \Psi \vdash R_2 \Rightarrow P
(\Delta, \Omega'); \Psi \vdash R \Rightarrow P
                                                                                                                     by soundness theorem 5.2
(\Delta, \Omega'); \Psi \vdash R \Leftarrow P
R_1 = \llbracket \theta_1' \rrbracket R, \Delta, \Omega_1 \vdash \theta_1' \Leftarrow \Omega'
                                                                                                                     by soundness theorem 5.2
R_2 = \llbracket \theta_2^{\bar{i}} \rrbracket R, \Delta, \Omega_1 \vdash \theta_2^{\bar{i}} \Leftarrow \Omega'
                                                                                                                     by soundness theorem 5.2
R_1 = \llbracket \theta_1, \theta_1' \rrbracket R
                                                                                                                                              by weakening
R_2 = [\theta_2, \theta_2']R
                                                                                                                                              by weakening
\rho_1 = \llbracket \theta_1 \rrbracket \rho
                                                                                                                                                             by i.h.
\rho_2 = \llbracket \theta_2 \rrbracket \rho
                                                                                                                                                             by i.h.
\rho_1 = \llbracket \theta_1, \theta_1' \rrbracket \rho
                                                                                                                               by weakening lemma
\rho_2 = \llbracket \theta_2, \theta_2' \rrbracket \rho
                                                                                                                               by weakening lemma
(\rho_1, \hat{\Psi}.R_1/i) = ([\![\theta_1, \theta_1']\!]\rho, [\![\theta_1, \theta_1']\!]\hat{\Psi}.R/i)
                                                                                                                                                            by rule
(\rho_2, \hat{\Psi}.R_2/i) = ([\theta_2, \theta_2']]\rho, [\theta_2, \theta_2']\hat{\Psi}.R/i)
                                                                                                                                                            by rule
(\rho_1, \hat{\Psi}.R_1/i) = [\theta_1, \theta_1'](\rho, \hat{\Psi}.R/i)
                                                                                               by contextual substitution definition
(\rho_2, \hat{\Psi}.R_2/i) = [\theta_2, \theta_2'](\rho, \hat{\Psi}.R/i)
                                                                                               by contextual substitution definition
(\Delta, \Omega) \vdash \rho \Leftarrow \Omega_2
                                                                                                                                                             by i.h.
(\Delta, \Omega, \Omega') \vdash \rho \Leftarrow \Omega_2
                                                                                                                                              by weakening
(\Delta, \Omega, \Omega'); \Psi \vdash R \Leftarrow P
                                                                                                                                              by weakening
(\Delta, \Omega, \Omega') \vdash (\rho, \hat{\Psi}.R/i) \Leftarrow (\Omega_2, i::P[\Psi])
                                                                                                                                                            by rule
\Delta, \Omega_1 \vdash (\theta_1, \theta_1') \Leftarrow (\Omega, \Omega')
                                                                                                                                           by typing rules
\Delta, \Omega_1 \vdash (\theta_2, \theta_2') \Leftarrow (\Omega, \Omega')
                                                                                                                                           by typing rules
```

Theorem A.4 Completeness for MSLG of Contextual substitutions. (Previous Thm. 5.6 on page 23)

If $(\Delta, \Omega) \vdash \theta_1 \Leftarrow \Omega'$ and $(\Delta, \Omega) \vdash \theta_2 \Leftarrow \Omega'$ and θ_1 and θ_2 are incompatible and $\rho_1 = \llbracket \theta_1 \rrbracket \rho$ and $\rho_2 = \llbracket \theta_2 \rrbracket \rho$ then $(\Delta, \Omega) \vdash \rho_1 \sqcup \rho_2 : \Omega_1 \Longrightarrow \rho/(\Omega^*, \theta_1^*, \theta_2^*)$ such that $\Omega^* \subseteq \Omega'$, $\theta_1^* \subseteq \theta_1$, $\theta_2^* \subseteq \theta_2$.

PROOF. Induction on the structure of ρ .

Case. $\rho = \cdot$

$$\begin{array}{lll} \rho_1 = \|\theta_1\|(\cdot) & \text{by assumption} \\ \rho_1 = \cdot \text{ and } \Omega_1 = \cdot & \text{by inversion} \\ \rho_2 = \|\theta_2\|(\cdot) & \text{by assumption} \\ \rho_2 = \cdot \text{ and } \Omega_1 = \cdot & \text{by inversion} \\ (\Delta, \Omega) \vdash \cdot \sqcup \cdot : \Longrightarrow \cdot /(\cdot, \cdot, \cdot) & \text{by rule} \\ \cdot \subseteq \Omega_1, \cdot \subseteq \theta_1, \cdot \subseteq \theta_2 & \text{by rule} \\ Case. \ \rho = (\rho', \hat{\Psi}.R/i) & \text{by assumption} \\ \rho'_1 = \|\theta_1\|(\rho'), \hat{\Psi}.R/i) & \text{by assumption} \\ \rho'_1 = (\|\theta_1\|(\rho'), \hat{\Psi}.R/i) & \text{by contextual substitution definition} \\ \rho'_1 = (\|\theta_1\|(\rho'), \hat{\Psi}.R/i) & \text{by equality} \\ \rho_1 = \|\theta_1\|\rho' & & \\ R_1 = \|\theta_1\|R & & \\ \rho'_2 = \|\theta_2\|(\rho'), \hat{\Psi}.R/i) & \text{by assumption} \\ \rho'_2 = (\|\theta_2\|(\rho'), \hat{\Psi}.R/i) & \text{by contextual substitution definition} \\ \rho'_2 = (\|\theta_2\|R) & \text{by contextual substitution definition} \\ \rho_2 = (\theta_2, \hat{\Psi}.R_2/i) & \text{by contextual substitution definition} \\ \rho_2 = (\theta_2, \hat{\Psi}.R_2/i) & \text{by completeness lemma 5.3} \\ \Omega^* \subseteq \Omega', \ \theta_1^* \subseteq \theta_1, \ \theta_2^* \subseteq \theta_2 & \text{by completeness lemma 5.3} \\ \Omega^* \subseteq \Omega', \ \theta_1^* \subseteq \theta_1, \ \theta_2^* \subseteq \theta_2 & \text{by i.h.} \\ \Omega^{**} \subseteq \Omega', \ \theta_1^{**} \subseteq \theta_1, \ \theta_2^{**} \subseteq \theta_2 & \text{by i.h.} \\ \Omega^{**} \subseteq \Omega', \ \theta_1^{**} \subseteq \theta_1, \ \theta_2^{**} \subseteq \theta_2 & \text{by i.h.} \\ \Omega^{**} \subseteq \Omega', \ \theta_1^*, \ R_1/i) \sqcup (\rho_2, \hat{\Psi}.R_2/i) : (\Omega_1, i :: P[\Psi]) \\ \Longrightarrow (\rho', \hat{\Psi}.R/i)/((\Omega^{**}, \Omega^*), \ (\theta_1^{**}, \theta_1^*), \ (\theta_2^{**}, \theta_2^*)) & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \theta_1, \ (\theta_2^{**}, \theta_2^{**}) \subseteq \theta_2 & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \theta_1, \ (\theta_2^{**}, \theta_2^{**}) \subseteq \theta_2 & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \theta_1, \ (\theta_2^{**}, \theta_2^{**}) \subseteq \theta_2 & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \theta_1, \ (\theta_2^{**}, \theta_2^{**}) \subseteq \theta_2 & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \theta_1, \ (\theta_2^{**}, \theta_2^{**}) \subseteq \theta_2 & \text{by rule} \\ \Omega^{**}, \Omega^*) \subseteq \Omega', \ (\theta_1^{**}, \theta_1^{**}) \subseteq \Omega$$

Е

Lemma A.5 Insertion of substitution into tree.

(PREVIOUS LEMMA 5.7 ON PAGE 25)

If $\Delta \vdash C \sqcup \delta : \Omega \Longrightarrow (V, S)$ and $\Delta \vdash \delta \Leftarrow \Omega$ and for any $(\Omega_i \vdash \rho_i \twoheadrightarrow C') \in C$ with $\Delta, \Omega_i \vdash \rho_i \Leftarrow \Omega$ then

- (1) for any $(N_i, \theta_2) \in V$ where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta_2 \rrbracket \rho_i = \delta$.
- (2) for any $(N_i, \Omega' \vdash \rho', \theta_1, \theta_2) \in S$ where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta_2 \rrbracket \rho' = \delta$ and $\llbracket \theta_1 \rrbracket \rho' = \rho_i$.

PROOF. By structural induction on the first derivation and by using the previous soundness lemma for mslg of substitutions (lemma 5.5).

Case.
$$\mathcal{D} = \frac{}{\Delta \vdash \mathsf{nil} \sqcup \delta : \Omega \Longrightarrow (\cdot, \cdot)}$$

Trivially true.

By i.h., for any $(N_i, \theta_2) \in V$, $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $[\![\theta_2]\!] \rho_i = \delta$ and for ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

any $(N_i, \Omega' \vdash \rho', \theta'_1, \theta'_2) \in S$ where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta'_2 \rrbracket \rho' = \delta$ and $\llbracket \theta'_1 \rrbracket \rho' = \rho_i$.

$$Case. \ \, \mathcal{D} = \frac{ \begin{array}{c} \Delta & \vdash C \sqcup \delta : \Omega \implies (V,S) \\ \Delta, \Omega_1 \vdash \rho_1 \sqcup \delta : \Omega \implies \rho_1/(\Omega_1, \mathrm{id}_{\Omega_1}, \theta_2) \\ \hline \Delta \vdash [(\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), C] \sqcup \delta : \Omega \implies ((V \ , \ (\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1)), S) \end{array}} FC$$

By i.h., for any $(N_i, \theta_2) \in V$, $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta_2 \rrbracket \rho_i = \delta$ and for any $(N_i, (\Omega' \vdash \rho', \theta'_1, \theta'_2)) \in S$ where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta'_2 \rrbracket \rho' = \delta$ and $\llbracket \theta'_1 \rrbracket \rho' = \rho_i$. By soundness lemma 5.5, $\llbracket \theta_2 \rrbracket \rho_1 = \delta$, therefore for any $(N_i, \theta') \in (V, ((\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), \theta_2))$, where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$ we have $\llbracket \theta' \rrbracket \rho_i = \delta$.

Case.

$$\mathcal{D} = \frac{\Delta \qquad \vdash C \sqcup \delta : \Omega \implies (V, S)}{\Delta, \Omega_1 \vdash \rho_1 \sqcup \delta : \Omega \implies \rho^* / (\Omega_2, \theta_1, \theta_2)} PC$$

$$\mathcal{D} = \frac{\Delta \vdash [(\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), C] \sqcup \delta : \Omega \implies (V, (S, ((\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), \Omega_2 \vdash \rho^*, \theta_1, \theta_2)))}{\Delta \vdash [(\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), C] \sqcup \delta : \Omega \implies (V, (S, ((\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), \Omega_2 \vdash \rho^*, \theta_1, \theta_2)))} PC$$

By i.h., for any $(N_i, \theta_2') \in V$, $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta_2' \rrbracket \rho_i = \delta$ and for any $(N_i, (\Omega' \vdash \rho', \theta_1', \theta_2')) \in S$ where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$, we have $\llbracket \theta_2' \rrbracket \rho' = \delta$ and $\llbracket \theta_1' \rrbracket \rho' = \rho_i$. By soundness lemma 5.5, $\llbracket \theta_2 \rrbracket \rho^* = \delta$ and $\llbracket \theta_1 \rrbracket \rho^* = \rho_1$, therefore for any $(N_i, \Omega' \vdash \rho', \theta_1', \theta_2') \in (S, ((\Omega_1 \vdash \rho_1 \twoheadrightarrow C_1), \Omega_2 \vdash \rho^*, \theta_1, \theta_2))$, where $N_i = (\Omega_i \vdash \rho_i \twoheadrightarrow C_i)$ we have $\llbracket \theta_1' \rrbracket \rho' = \rho_i$ and $\llbracket \theta_2' \rrbracket \rho' = \delta$.

Theorem A.6 Soundness of instance algorithm for terms. (Previous Thm. 6.1 on page 28)

- (1) If Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash M_1 \doteq M_2 : A/(\theta, \rho)$ where (Δ_1, Ω) ; $\Gamma \vdash M_1 \Leftarrow A$ and Δ_2 ; $\Gamma \vdash M_2 \Leftarrow A$ then $\llbracket \theta, \rho \rrbracket M_1 = M_2$.
- (2) If Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash R_1 \stackrel{.}{=} R_2 : P/(\theta, \rho)$ where (Δ_1, Ω) ; $\Gamma \vdash R_1 \Rightarrow P$ and Δ_2 ; $\Gamma \vdash R_2 \Rightarrow P$ then $\llbracket \theta, \rho \rrbracket R_1 = R_2$.
- (3) If Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash S_1 \doteq S_2 > A \Rightarrow P/(\theta, \rho)$ where (Δ_1, Ω) ; $\Gamma \vdash S_1 > A \Rightarrow P$ and Δ_2 ; $\Gamma \vdash S_2 > A \Rightarrow P$ then $\llbracket \theta, \rho \rrbracket S_1 = S_2$.

PROOF. Simultaneous structural induction on the first derivation. The proof

$$Case. \ \, \mathcal{D} = \frac{}{\Delta_2; (\Delta_1, i :: P[\Gamma]); \Gamma \vdash i[\mathsf{id}_{\Gamma}] \stackrel{.}{=} R : P \mathrel{/} (\cdot, (\hat{\Gamma}.R/i))} \, \mathsf{mvar-1}$$

$$\begin{array}{ll} (\Delta_1,i::P[\Gamma]);\Gamma\vdash i[\mathsf{id}_\Gamma]\Rightarrow P & \text{by assumption} \\ \Delta_2;\Gamma\vdash R\Rightarrow P & \text{by assumption} \\ R=R & \text{by reflexivity} \\ \llbracket\hat{\Psi}.R/i\rrbracket(i[\mathsf{id}_\Gamma])=R & \text{by substitution definition} \end{array}$$

$$Case. \ \ \mathcal{D} = \frac{u :: P[\Gamma] \in \Delta}{(\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \ \ \vdots \ R : P \ / \ (\hat{\Gamma}.([\pi_{\Gamma}]^{-1} \ R/u), \cdot)} \ \text{mvar-2}$$

 $\Delta_1; \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P \text{ where } u :: P[\Gamma] \in \Delta_1$ by assumption

 $\begin{array}{ll} \Delta_2; \Gamma \vdash R \Rightarrow P & \text{by assumption} \\ [\pi_{\Gamma}]([\pi_{\Gamma}]^{-1}R) = R & \text{by property of inversion} \\ [\hat{\Gamma}.[\pi_{\Gamma}]^{-1}R/u](u[\pi_{\Gamma}]) = R & \text{by substitution definition} \end{array}$

$$Case. \ \, \mathcal{D} = \frac{\Delta_2; (\Delta_1, \Omega); \Gamma, x : A_1 \vdash M_1 \stackrel{.}{=} M_2 : A_2 \mathrel{/} (\theta, \rho)}{\Delta_2; (\Delta_1, \Omega); \Gamma \vdash \lambda x . M_1 \stackrel{.}{=} \lambda x . M_2 : A_1 \rightarrow A_2 \mathrel{/} (\theta, \rho)} \operatorname{lam}$$

 $\begin{array}{ll} (\Delta_1,\Omega);\Gamma\vdash\lambda x.M_1\Leftarrow A_1\to A_2 & \text{by assumption}\\ (\Delta_1,\Omega);\Gamma,x:A_1\vdash M_1\Leftarrow A_2 & \text{by inversion}\\ \Delta_2;\Gamma\vdash\lambda x.M_2\Leftarrow A_1\to A_2 & \text{by inversion}\\ \Delta_2;\Gamma,x:A_1\vdash M_2\Leftarrow A_2 & \text{by inversion}\\ \llbracket \theta,\rho\rrbracket M_1=M_2 & \text{by i.h.}\\ \llbracket \theta,\rho\rrbracket \lambda x.M_1=\llbracket \theta,\rho\rrbracket \lambda x.M_2 & \text{by equality and contextual substitution definition} \end{array}$

Case.
$$\mathcal{D} = \Delta_2$$
; $(\Delta_1, \Omega_1, \Omega_2)$; $\Gamma \Vdash (M_1; S_1) \doteq (M_2; S_2) : A_1 \to A_2 > P / ((\theta_1, \theta_2), (\rho_1, \rho_2))$

 Δ_2 ; (Δ_1, Ω_1) ; $\Gamma \vdash M_1 \doteq M_2 : A_1 / (\theta_1, \rho_1)$ $\Delta_2; (\Delta_1, \Omega_2); \Gamma \Vdash S_1 \doteq S_2 : A_2 > P / (\theta_2, \rho_2)$ by premise $(\Delta_1; \Omega_1, \Omega_2); \Gamma \vdash (M_1; S_1) < A_1 \rightarrow A_2 \Rightarrow P$ by assumption $(\Delta_1; \Omega_1); \Gamma \vdash M_1 \Leftarrow A_1$ by inversion $(\Delta_1; \Omega_2); \Gamma \vdash S_1 < A_2 \Rightarrow P$ $\Delta_2; \Gamma \vdash (M_2; S_2) < A_1 \rightarrow A_2 \Rightarrow P$ by assumption $\Delta_2; \Gamma \vdash M_2 \Leftarrow A_1$ by inversion $\Delta_2; \Gamma \vdash S_2 < A_2 \Rightarrow P$ $[\![\theta_1, \rho_1]\!] M_1 = M_2$ by i.h. $[\![\theta_2, \rho_2]\!] S_1 = S_2$ by i.h. $[\theta_1, \theta_2, \rho_1, \rho_2]M_1 = M_2$ by weakening (using linearity condition) $[\theta_1, \theta_2, \rho_1, \rho_2] S_1 = S_2$ by weakening (using linearity condition) $[\theta_1, \theta_2, \rho_1, \rho_2](M_1 S_1) = [id_{\Delta_2}\theta_1, \theta_2, \rho_1, \rho_2](M_2 S_2)$ by rule and substitution definition

THEOREM A.7 COMPLETENESS OF INSTANCE ALGORITHM FOR TERMS. (PREVIOUS THM. 6.2 ON PAGE 28)

- (1) If (Δ_1, Ω) ; $\Gamma \vdash M_1 \Leftarrow A$ and Δ_2 ; $\Gamma \vdash M_2 \Leftarrow A$ and $\Delta_2 \vdash \theta \Leftarrow \Delta_1$ and $\Delta_2 \vdash \rho \Leftarrow \Omega$ and $\llbracket \theta, \rho \rrbracket M_1 = M_2$ then Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash M_1 \doteq M_2 : A/(\theta^*, \rho)$ where $\theta^* \subseteq \theta$.
- (2) If (Δ_1, Ω) ; $\Gamma \vdash R_1 \Rightarrow P$ and Δ_2 ; $\Gamma \vdash R_2 \Rightarrow P$ and $\Delta_2 \vdash \theta \Leftarrow \Delta_1$ and $\Delta_2 \vdash \rho \Leftarrow \Omega$ and $\llbracket \theta, \rho \rrbracket R_1 = R_2$ then Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash R_1 \doteqdot R_2 : P/(\theta^*, \rho)$ where $\theta^* \subseteq \theta$.
- (3) If (Δ_1, Ω) ; $\Gamma \vdash S_1 > A \Rightarrow P$ and Δ_2 ; $\Gamma \vdash S_2 > A \Rightarrow P$ and $\Delta_2 \vdash \theta \Leftarrow \Delta_1$ and $\Delta_2 \vdash \rho \Leftarrow \Omega$ and $\llbracket \theta, \rho \rrbracket S_1 = S_2$ then Δ_2 ; (Δ_1, Ω) ; $\Gamma \vdash S_1 \doteq S_2 : A > P/(\theta^*, \rho)$ where $\theta^* \subseteq \theta$.

Proof. Simultaneous structural induction on the first typing derivation.

```
App-10 • Brigitte Pientka
```

$$Case. \ \mathcal{D} = \frac{(\Delta_1, \Omega); \Gamma, x: A_1 \vdash M_1 \Leftarrow A_2}{(\Delta_1, \Omega); \Gamma \vdash \lambda x. M_1 \Leftarrow A_1 \rightarrow A_2}$$
 by assumption
$$\Delta_2; \Gamma, x: A_1 \vdash M_2 \Leftarrow A_2$$
 by assumption by inversion
$$[\theta, \rho][(\lambda x. M_1) = \lambda x. M_2$$
 by assumption by assumption
$$\lambda x. [\theta, \rho](M_1) = \lambda x. M_2$$
 by assumption by assumption by substitution definition definition by substitution definition definition definition definition definition definition definition definition definiti

Case.
$$\mathcal{D} = \frac{u :: P[\Gamma] \in \Delta_1}{(\Delta_1, \cdot); \Gamma \vdash u[\pi_{\Gamma}] \Rightarrow P}$$

 $\begin{array}{lll} u::P[\Gamma];\Gamma\vdash u[\pi_{\Gamma}]\Rightarrow P & \text{by rule} \\ \Delta_1=\Delta_1',u::P[\Gamma],\Delta_1'' & \\ \Delta_2;\Gamma\vdash R_2\Rightarrow P & \text{by assumption} \\ \theta=(\theta_1,\hat{\Gamma}.R/u,\theta_2) & \text{by assumption} \\ \llbracket \theta,\rho\rrbracket(u[\pi_{\Gamma}])=R_2 & \text{by assumption} \\ \llbracket \pi_{\Gamma}\rrbracket R=R_2 & \text{by assumption} \\ R=[\pi_{\Gamma}]^{-1}R_2 \text{ and } [\pi_{\Gamma}]([\pi_{\Gamma}]^{-1}R_2)=R_2 & \text{by inverse substitution property} \\ \Delta_2,u::P[\Gamma];\Gamma\vdash u[\pi_{\Gamma}]\doteq R_2:P/(\hat{\Gamma}.[\pi_{\Gamma}]^{-1}R_2/u,\cdot) & \text{by rule} \\ (\hat{\Gamma}.[\pi_{\Gamma}]^{-1}R_2/u)\subseteq \theta \text{ and } \cdot\subseteq \rho & \end{array}$

$$Case. \ \mathcal{D} = \frac{(\Delta_1, \Omega); \Gamma \vdash M_1 \Leftarrow A_1 \qquad (\Delta_1, \Omega); \Gamma \Vdash S_1 > A \Rightarrow P}{(\Delta_1, \Omega); \Gamma \Vdash (M_1; S_1) > A_1 \rightarrow A \Rightarrow P}$$

$$\begin{split} \llbracket \theta, \rho \rrbracket(M_1; S_1) &= S' & \text{by assumption} \\ \llbracket \theta, \rho \rrbracket(M_1) \; ; \; \llbracket \theta, \rho \rrbracket(S_1) &= S' & \text{by substitution definition} \\ S' &= (M_2; S_2) & \text{by inversion} \\ \llbracket \theta, \rho \rrbracket(M_1) &= M_2 & \text{by inversion} \\ \llbracket \theta, \rho \rrbracket(S_1) &= S_2 & \text{by inversion} \\ \Delta_2; \Gamma \vdash (M_2; S_2) &> A_1 \to A \Rightarrow P & \text{by assumption} \\ \Delta_2; \Gamma \vdash M_2 \Leftarrow A_1 & \text{by inversion} \\ \Delta_2; \Gamma \vdash S_2 &> A \Rightarrow P & \end{split}$$

$$\begin{array}{ll} \Delta_2; (\Delta_1,\Omega_1); \Gamma \vdash M_1 \doteq M_2 : A_1/(\theta_1^*,\rho_1) \text{ and } \theta_1^* \subseteq \theta & \text{by i.h.} \\ \Delta_2; (\Delta_1,\Omega_2); \Gamma \vdash S_1 \doteq S_2 : A > P/(\theta_2^*,\rho_2) \text{ and } \theta_2^* \subseteq \theta & \text{by i.h.} \\ (\Delta,\Omega); \Gamma \vdash (M_1;S_1) \doteq (M_2;S_2) : A_1 \to A > P/((\theta_1^*,\theta_2^*),(\rho_1,\rho_2)) & \text{by rule} \\ (\theta_1^*,\theta_2^*) \subseteq \theta & \text{by subset property} \end{array}$$

THEOREM A.8 INTERACTION BETWEEN MSLG AND INSTANCE ALGORITHM. (PREVIOUS THM. 6.4 ON PAGE 29)

- (1) If (Δ_1, Ω) ; $\Gamma \vdash M_1 \Leftarrow A$ and Δ_2 ; $\Gamma \vdash M_2 \Leftarrow A$ and (Δ_2, Δ_1) , Ω ; $\Gamma \vdash M_1 \sqcup M_2 : A \Longrightarrow M/(\Omega', \rho_1, \rho_2)$ then $(\Delta_1; \Omega'; \Gamma \vdash M \doteq M_1 : A/(\cdot, \rho_1)$ and $\Delta_2; \Omega'; \Gamma \vdash M \doteq M_2 : A/(\cdot, \rho_2)$.
- (2) If (Δ_1, Ω) ; $\Gamma \vdash R_1 \Rightarrow P$ and Δ_2 ; $\Gamma \vdash R_2 \Rightarrow P$ and $(\Delta_2, \Delta_1), \Omega$; $\Gamma \vdash R_1 \sqsubseteq R_2 : P \Longrightarrow R/(\Omega', \rho_1, \rho_2)$ then Δ_1 ; Ω' ; $\Gamma \vdash R \doteqdot R_1 : P/(\cdot, \rho_1)$ and Δ_2 ; Ω' ; $\Gamma \vdash R \doteqdot R_2 : P/(\cdot, \rho_2)$.
- (3) If (Δ_1, Ω) ; $\Gamma \vdash S_1 > A \Rightarrow P$ and Δ_2 ; $\Gamma \vdash S_2 > A \Rightarrow P$ and $(\Delta_2, \Delta_1), \Omega$; $\Gamma \vdash S_1 \sqsubseteq S_2 : A > P \Longrightarrow S/(\Omega', \rho_1, \rho_2)$ then $\Delta_1; \Omega'$; $\Gamma \vdash S \doteq S_1 : A > P/(\cdot, \rho_1)$ and $\Delta_2; \Omega'$; $\Gamma \vdash S \doteq S_2 : A > P/(\cdot, \rho_2)$.

PROOF. Simultaneous structural induction on the first derivation. Let $\Delta = \Delta_2, \Delta_1$.

Case.
$$\mathcal{D} = \frac{(\Delta_2, \Delta_1, \Omega); \Gamma, x: A_1 \vdash M_1 \sqcup M_2 : A_2 \Longrightarrow M/(\Omega', \rho_1, \rho_2)}{(\Delta, \Omega); \Gamma \vdash \lambda x. M_1 \sqcup \lambda x. M_2 : A_1 \to A_2 \Longrightarrow \lambda x. M/(\Omega', \rho_1, \rho_2)}$$

$$\begin{array}{ll} \Delta_1; \Omega'; \Gamma, x : A_1 \vdash M \doteq M_1 : A_2/(\cdot, \rho_1) & \text{by i.h.} \\ \Delta_1; \Omega'; \Gamma \vdash \lambda x . M \doteq \lambda x . M_1 : A_1 \rightarrow A_2/(\cdot, \rho_1) & \text{by rule} \\ \Delta_2; \Omega'; \Gamma, x : A_1 \vdash M \doteq M_2 : A_2/(\cdot, \rho_2) & \text{by i.h.} \\ \Delta_2; \Omega'; \Gamma \vdash \lambda x . M \doteq \lambda x . M_2 : A_1 \rightarrow A_2/(\cdot, \rho_2) & \text{by rule} \end{array}$$

$$Case. \ \, \mathcal{D} = \frac{u :: (P[\Gamma]) \in \Delta}{(\Delta, \Omega); \Gamma \vdash u[\pi_{\Gamma}] \, \underline{\sqcup} \, R : P \Longrightarrow i[\mathrm{id}_{\Gamma}]/(i :: P[\Gamma], \hat{\Gamma}.u[\pi_{\Gamma}]/i, \hat{\Gamma}.R/i)}$$

$$\begin{array}{ll} \Delta_1; i :: P[\Gamma]; \Gamma \vdash i[\mathsf{id}_{\Gamma}] \stackrel{.}{=} R : P/(\cdot, \hat{\Gamma}.R/i) & \text{by rule meta-1} \\ \Delta_1; i :: P[\Gamma]; \Gamma \vdash i[\mathsf{id}_{\Gamma}] \stackrel{.}{=} u[\pi_{\Gamma}] : P/(\cdot, \hat{\Gamma}.u[\pi_{\Gamma}]/i) & \text{by rule meta-1} \end{array}$$

Case.
$$\mathcal{D} = (\Delta, \Omega); \Gamma \vdash H_1 \cdot S_1 \sqsubseteq H_2 \cdot S_2 : P \Longrightarrow i[\mathsf{id}_{\Gamma}]/$$

$$((i::P[\Gamma]), (H_1 \cdot S_1/i), (H_2 \cdot S_2/i))$$

$$H_1 \neq H_2$$
 and i must be new by inversion $\Delta_1; \Omega; \Gamma \vdash i[\mathsf{id}_{\Gamma}] \doteq H_1 \cdot S_1 : P/(\cdot, \hat{\Gamma}.H_1 \cdot S_1/i)$ by meta-1 $\Delta_2; \Omega; \Gamma \vdash i[\mathsf{id}_{\Gamma}] \doteq H_2 \cdot S_2 : P/(\cdot, \hat{\Gamma}.H_2 \cdot S_2/i)$ by meta-1

Case.
$$\mathcal{D} = (\Delta, \Omega); \Gamma \vdash (M_1; S_1) \sqsubseteq (M_2; S_2) : A_1 \to A_2 > P \Longrightarrow (M; S)/((\Omega_1, \Omega_2), (\rho_1, \rho_2), (\rho'_1, \rho'_2))$$

$$(\Delta, \Omega); \Gamma \vdash M_1 \sqcup M_2 : A_1 \Longrightarrow M/(\Omega_1, \ \rho_1, \rho_1')$$
 by inversion

App-12 · Brigitte Pientka

```
(\Delta,\Omega); \Gamma \vdash S_1 \underline{\sqcup} S_2 : A_2 > P \Longrightarrow S/(\Omega_2, \ \rho_2, \rho_2')
(\Delta,\Omega); \Gamma \vdash (M_1; S_1) > A_1 \to A_2 \Rightarrow P
                                                                                                                                                       by assumption
(\Delta, \Omega); \Gamma \vdash M_1 \Leftarrow A_1 
 (\Delta, \Omega); \Gamma \vdash S_1 > A_2 \Rightarrow P
                                                                                                                                                             by inversion
(\Delta,\Omega);\Gamma\vdash(M_2;S_2)>A_1\to A_2\Rightarrow P
                                                                                                                                                       by assumption
(\Delta, \Omega); \Gamma \vdash M_2 \Leftarrow A_1
(\Delta, \Omega); \Gamma \vdash S_2 > A_2 \Rightarrow P
                                                                                                                                                             by inversion
\Delta_1; \Omega_1; \Gamma \vdash M \doteq M_1 : A_1/(\cdot, \rho_1)
                                                                                                                                                                         by i.h.
\Delta_2; \Omega_1; \Gamma \vdash M \doteq M_2 : A_1/(\cdot, \rho_1')
\Delta_1; \Omega_2; \Gamma \vdash S \doteq S_1 : A_2 > P/(\cdot, \rho_2)
                                                                                                                                                                          by i.h.
                                                                                                                                                                         by i.h.
\Delta_2, \Omega_2; \Gamma \vdash S \doteq S_2 : A_2 > P/(\cdot, \rho_2)
                                                                                                                                                                         by i.h.
\Delta_1; \Omega_1, \Omega_2; \Gamma \vdash (M; S) \doteq (M_1; S_1) : A_1/(\cdot, (\rho_1, \rho'_1))
                                                                                                                                                                        by rule
\Delta_2, \Omega_1, \Omega_2; \Gamma \vdash (M; S) \doteq (M_2; S_2) : A_1/(\cdot, (\rho_2, \rho_2'))
                                                                                                                                                                by rule \square
```