
Contextual Modal Type Theory

ALEKSANDAR NANEVSKI

Harvard University

and

FRANK PFENNING

Carnegie Mellon University

and

BRIGITTE PIENTKA

McGill University

The intuitionistic modal logic of necessity is based on the judgmental notion of categorical truth.
In this paper we investigate the consequences of relativizing these concepts to explicitly specified
contexts. We obtain contextual modal logic and its type-theoretic analogue. Contextual modal
type theory provides an elegant, uniform foundation for understanding meta-variables and explicit
substitutions. We sketch some applications in functional programming and logical frameworks.

Categories and Subject Descriptors: F.4.1 [Theory of Computation]: Mathematical Logic
and Formal Languages—Modal Logic; D.3.3 [Software]: Language Constructs and Features—
Frameworks

General Terms: Design, Theory

Additional Key Words and Phrases: Type theory, logical frameworks, intuitionistic modal logic

1. INTRODUCTION

The dictionary1 defines context as “the parts of a discourse that surround a word or
passage and can throw light on its meaning” and also as “the interrelated conditions
in which something exists or occurs”. One can see from these definitions that
the notion of context, with somewhat differentiated meanings, is fundamental in
linguistics, artificial intelligence, and logic. Narrowing our scope to logic, the notion
of context enters almost immediately because the truth of a proposition is not
absolute, but depends on the context we consider it in.

Taking the next step, namely allowing the propositions in a logic itself to speak
about contexts, is the subject of modal logic and fraught with many difficulties and
paradoxes. But it is also very important. The study of contexts in logic has ram-
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ifications for topics such as modularity, reflection, spatial and temporal reasoning,
and meta-reasoning. Because of the close relationship between constructive logic
and programming languages, contexts are also directly relevant to computational
phenomena, particularly data abstraction, run-time code generation, distributed
computation, partial evaluation, and meta-programming.

Narrowing our scope a bit further, in this paper we think of a context as consist-
ing of the hypotheses we make while trying to establish a conclusion. Contexts are
therefore intrinsically tied to hypothetical judgments. We investigate how to in-
ternalize reasoning about contexts within the logic while retaining an intuitionistic
and predicative viewpoint regarding the meaning of the logical connectives. In this
manner we can give our core calculus several interesting interpretations. One, in the
realm of functional programming, relates contexts to intensional expressions and
run-time code generation in the presence of free variables. Another, in the realm
of logic programming, explains explicit substitutions and meta-variables. In each
case, the strength of the underlying logical foundations provides new insights for
language design which has so far been largely motivated operationally. We return
to these applications in Sections 6 and 7.

There seem to be two main approaches to intuitionistic modal logic. One, which
we call nominal, assigns names to contexts and includes explicit judgments to re-
late them. This can be seen as the intuitionistic analogue of Kripke’s classical
multiple-world semantics [Kripke 1959] and has been investigated in some depth by
Simpson [1994] and applied to partial evaluation [Davies 1996] and distributed com-
putation [Murphy VII et al. 2004]. We will not pursue the nominal approach here.
The other, which we call structural, identifies the context with the propositions it
contains. Pfenning and Davies [2001] present the first exploration in this direction,
singling out the empty context which represents reasoning without truth assump-
tions. This provides a constructive meaning explanation for necessity, possibility,
and lax truth. In this paper we carry the structural approach significantly further,
allowing arbitrary contexts to be captured within a proposition. This sheds new
light on some important ideas. For example, explicit substitutions [Cartmell 1986;
Abadi et al. 1990] are inevitable as evidence that we can reach one context from
another. Another example is meta-variables which arise as we introduce hypotheses
about the truth of propositions in given contexts.

We start our investigation in the simplest case, namely a propositional logic
with a contextual modality. We develop both natural deduction (Section 2) and
the sequent calculus (Section 3). In view of applications in computer science, we
then generalize to a type theory in Section 4, which differs from the logic in that
it carries explicit proof terms. We then generalize further to add dependent types
(Section 5) and show applications to staged functional programming (Section 6) and
logical frameworks (Section 7). We close with a discussion of related and future
work.

2. INTUITIONISTIC CONTEXTUAL MODAL LOGIC

The philosophical foundation of our development is Martin-Löf’s approach of sep-
arating judgments from propositions [Martin-Löf 1996]. The most basic judgment
is the truth of a proposition, written as A true. We explain the meaning of a propo-
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sition by presenting the means of inferring its truth via introduction rules, and for
exploiting the knowledge of its truth via elimination rules. The construction of
propositions in this manner is inherently open-ended, so we do not circumscribe all
propositions. In this section we assume there are some atomic propositions P and
we define implication A → B and a (contextual) modal operator [Ψ]A where Ψ is
a context.

2.1 Hypothetical Judgments

In order to explain the meaning of implication and later of the modal operators in
this manner, we need the notion of a hypothetical judgment. We write

x1:A1 true, . . . , xn:An true ` A true

to express that A is true whenever all hypotheses A1, . . . , An are true. We always
label hypotheses with distinct variables xi in order to avoid any ambiguity in proofs.
The properties of hypothetical judgments are captured by the hypothesis rule and
the substitution principle. We abbreviate a collection of assumptions by Γ. Even
though at the moment it might be convenient to view contexts as unordered, later
contexts are reified in modal operators and may even be internally dependent, at
which point order is important. We therefore view them as lists, where comma ‘,’
is overloaded in the usual way to add a new element at the end of a context or to
append two contexts.

Hypothesis Rule.

Γ, x:A true,Γ′ ` A true
hypx

Note that without distinct labels for assumptions, this rule would be ambiguous.

Substitution Principle.

If Γ ` A true and Γ, x:A true,Γ′ ` C true then Γ,Γ′ ` C true.

While the hypothesis rule is primitive, the substitution principle should always be
admissible: whenever we have a proof of A true then we can substitute that proof
for all uses of an assumption A true in another proof. We will not further elaborate
here on the standard notion of hypothetical judgments.

Now we can explain the meaning of implication.

Implication Introduction. A → B is true if B is true under the hypothesis that
A is true.

Γ, x:A true ` B true

Γ ` A → B true
→Ix

By our convention regarding well-formed contexts, x must not already be declared
in Γ.

Implication Elimination. Conversely, if we know that A → B is true, then B
is true under hypothesis that A is true. By the substitution principle we should
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therefore be able to obtain a proof of B from a proof of A.

Γ ` A → B true Γ ` A true

Γ ` B true
→E

In order to check that the elimination rules are not too strong, we should verify
that any introduction of a connective immediately followed by its elimination can
be reduced. This means the elimination rule cannot extract more knowledge from
a proposition than contributed by its proof. In other words, it is sound. Local
reductions also give rise to computation in the setting of functional programming.

Local Reduction for Implication.

D
Γ, x:A true ` B true

Γ ` A→ B true
→Ix E

Γ ` A true

Γ ` B true
→E

=⇒R

D′

Γ ` B true

Here, D′ can be obtained from D and E by application of the substitution principle.
Computationally, this corresponds to a β-reduction.

In order to check that the elimination rules are not too weak, we should verify
that we can recover the knowledge that contributed to the proof of a proposition. In
other words, starting from any proof of a proposition, we can apply the elimination
rules in such a way that we can reintroduce the proposition from the results. Local
expansions correspond to extensionality in functional programming.

Local Expansion for Implication.

D
Γ ` A→ B true =⇒E

D′

Γ, x:A true ` A→ B true Γ, x:A true ` A true
hypx

Γ, x:A true ` B true
→E

Γ ` A → B true
→Ix

Here, D′ can be obtained from D by weakening, that is, adjoining the hypothe-
sis x:A true to every judgment in D. In functional programming, local expansion
corresponds to an η-expansion.

2.2 Categorical Judgments

In this section we review the critical notion of a categorical judgment [Pfenning
and Davies 2001]. We say that A is categorically true or valid if its truth does not
depend on any hypotheses about the truth of other propositions. However, it may
depend on the validity of other proposition, because their validity may not depend
on truth assumptions.

We write ∆ for a labeled list u1::A1 valid, . . . , uk::Ak valid of assumptions about
the validity of propositions, using “·” for an empty list. With this notation we
separate assumptions about validity and truth and write

∆; Γ ` J

where J is either A true or A valid.
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Definition of Validity.

∆; · ` A true

∆; Γ ` A valid

Here the premise represents a truth-categorical judgment. Conversely, if A is valid
then we can conclude it is true.

(∆, u::A valid,∆′); Γ ` A true
vldhypu

Another way to think about this definition is in terms of a multiple-world seman-
tics. We say that A is valid if A is true in every possible world. Since we can never
circumscribe all possible worlds, we instead require that A must be true in a world
about which we assume nothing (Γ = ·), except for the propositions we assumed to
be always true (∆).

Note that by the definition of validity we can immediately reduce the goal of
proving A valid to A true. We can always apply this silently and thereby remove the
judgment A valid from consideration as the conclusion of a hypothetical judgment.
No such trick applies to assumptions of the form A valid, so we require a new
substitution principle.

Substitution Principle for Validity.

If ∆; · ` A true and (∆, u::A valid,∆′); Γ ` C true

then (∆,∆′); Γ ` C true.

Note that the first assumption expresses ∆; Γ ` A valid, thereby justifying the
substitution principle directly from the nature of hypothetical judgments in general.

Using the categorical judgment, it is now possible to introduce a modal operator
for necessary truth, 2A. Since we need a more general operator we forego this
analysis here; it can be found in the paper by Pfenning and Davies [2001]. The
result is intuitionistic S4 which captures reflexivity and transitivity of accessibility
between worlds in its nominal formulation [Simpson 1994].

2.3 Contextual Validity

The judgment A valid expresses that A is true in any world. In this section we
relativize this judgment: let Ψ be a list of assumptions y1:B1 true, . . . , ym:Bm true.
We say that A is valid relative Ψ (written as A valid[Ψ]) if A is true in every
world in which B1, . . . , Bm are true. We similarly generalize assumptions about
validity so that ∆ now has the form u1::A1 valid[Ψ1], . . . , uk::Ak valid[Ψk]. Note
that Ai valid[Ψi] is not a proposition, only notation of a judgment. A corresponding
proposition is introduced in Section 2.4.

This generalization does not directly add expressive power, since a judgment
of the general form A valid[y1:B1true, . . . , yn:Bm true] holds iff (B1 → · · · (Bm →
A)) valid. However, there is an important difference in the proof theory, which we
exploit in several applications to obtain context calculi for staged computation and
meta-variables.

As common in programming languages, we refer to Ψ as a context and to the
judgment A valid[Ψ] as contextual validity.
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Definition of Contextual Validity. In order to prove A valid[Ψ] we have to prove A
using only Ψ and without any other current hypotheses about truth. Assumptions
about contextual validity, however, carry over as before.

∆; Ψ ` A true

∆; Γ ` A valid[Ψ]

As in the case of ordinary validity in Section 2.2, proving ∆; Γ ` A valid[Ψ] can
always be immediately reduced to ∆; Ψ ` A true. Therefore we are justified in
streamlining our analysis by not considering validity on the right-hand side of a
hypothetical judgment

Contextual Entailment. We can exploit the knowledge that A valid[Ψ] to conclude
that A true, but only if we can show that all propositions in Ψ follow from the
current assumptions. We write

∆; Γ ` Ψ

to express that all the propositions in Ψ are true using the assumptions from Γ.

∆; Γ ` B1 true . . . ∆; Γ ` Bm true

∆; Γ ` y1:B1 true, . . . , ym:Bm true
ctx

Contextual Hypothesis Rule. Now we can state the contextual hypothesis rule.

(∆, u::A valid[Ψ],∆′); Γ ` Ψ

(∆, u::A valid[Ψ],∆′); Γ ` A true
ctxhypu

In order to use the assumption that A is valid relative Ψ, we must show that our
current hypotheses in Γ are strong enough to establish Ψ.

With the contextual hypothesis rule in place, it is easy to verify that the judgment
A valid from the previous section is recovered asA valid[·]. Of course, this is a special
case of contextual validity where the relevant context is taken to be empty. For
example, the instance of the contextual hypothesis rule

(∆, u::A valid[·],∆′); Γ ` ·
ctx

(∆, u::A valid[·],∆′); Γ ` A true
ctxhypu

has no premises because the empty context “·” has no members and so becomes
the modal hypothesis rule vldhypu.

Contextual Substitution Principle. The substitution principle generalizes in a
straightforward way.

If ∆; Ψ ` A true and (∆, u::A valid[Ψ],∆′); Γ ` C true

then (∆,∆′); Γ ` C true.

The first condition expresses ∆; Γ ` A valid[Ψ]. The principle is therefore justified
by the general substitution property of hypothetical judgments. The associated
substitution operation substitutes the proof of A under Ψ for uses of the assumption
that A is valid under Ψ. A more precise description is possible when we add proof
terms in Section 4.
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Contextual Identity Principle. One particular instance of contextual entailment
combined with the ordinary hypothesis rule is the contextual identity principle.

∆; Ψ ` Ψ

This holds because each conclusion Bj true is proved in one step from the cor-
responding assumption yj :Bj true by the hypothesis rule applied to yj . Like the
substitution principle, this is not a primitive rule, but every instance of it is deriv-
able in our system.

2.4 Contextual Modal Necessity

A modal logic arises from the judgmental definition of contextual validity if we
internalize the judgment as a modal propositional operator. We write [Ψ]A for the
proposition asserting that A is valid in context Ψ. The difference is of course that
a proposition can appear as part of other propositions, while judgments cannot be
combined with propositional connectives.

Necessity Introduction. The introduction rule is straightforward, simply unfold-
ing the definition of validity.

∆; Ψ ` A true

∆; Γ ` [Ψ]A true
2I

Necessity Elimination. The elimination rule is based on the substitution princi-
ple: if we can prove [Ψ]A then we are justified in assuming A valid[Ψ].

∆; Γ ` [Ψ]A true (∆, u::A valid[Ψ]); Γ ` C true

∆; Γ ` C true
2Eu

As usual, we assume that u is not already declared in ∆ so that all hypotheses have
distinct labels.

Local Reduction. We have to show that an introduction of necessity followed
immediately by its elimination can be reduced, avoiding the detour.

D
∆; Ψ ` A true

∆; Γ ` [Ψ]A true
2I E

(∆, u::A valid[Ψ]); Γ ` C true

∆; Γ ` C true
2Eu

=⇒R

E ′

∆; Γ ` C true

Here, E ′ is obtained from E by application of the contextual substitution principle,
replacing uses of the assumption u with the proof D.

Local Expansion. We have to show that we can apply the elimination rule in such
a way that we can reconstitute a proof of [Ψ]A from the result.
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∆; (Γ, x:A true, Γ′) ` A true
hypx

(∆, u::A valid[Ψ],∆′); Γ ` Ψ

(∆, u::A valid[Ψ],∆′); Γ ` A true
ctxhypu

∆;Γ, x:A true ` B true

∆;Γ ` A → B true
→Ix

∆;Γ ` A → B true ∆;Γ ` A true

∆;Γ ` B true
→E

∆; Ψ ` A true

∆;Γ ` [Ψ]A true
2I

∆;Γ ` [Ψ]A true ∆, u::A valid[Ψ];Γ ` C true

∆;Γ ` C true
2Eu

∆;Γ ` B1 true . . . ∆; Γ ` Bm true

∆;Γ ` y1:B1 true, . . . , ym:Bm true
ctx

Fig. 1. Natural Deduction for ICML

D
∆; Γ ` [Ψ]A true =⇒E

D
∆; Γ ` [Ψ]A true

E
(∆, u::A valid[Ψ]); Ψ ` Ψ

(∆, u::A valid[Ψ]); Ψ ` A true
ctxhypu

(∆, u::A valid[Ψ]); Γ ` [Ψ]A true
2I

∆; Γ ` [Ψ]A true
2Eu

Here the derivation E exists by the contextual identity principle. This is analogous
to an appeal to the contextual substitution principle during local reduction.

This particular local expansion result has an unusual shape in that the last rule
on the right-hand side is an elimination, not an introduction as in the local ex-
pansion for implication. Reading it as: “Apply the elimination rule to the proof
D of [Ψ]A true, call the result u, and then reconstitute a proof of [Ψ]A true from
u.” should illustrate that this is just a notational oddity of the 2E and similar
elimination rules which introduce new assumptions.

We call the resulting logic intuitionistic contextual modal logic (ICML). The rules
of natural deduction are summarized in Figure 1.

2.5 Examples

Before presenting more of the theory of intuitionistic contextual modal logic, we
give some example derivations. We follow the usual convention that the modal
operator (here [Ψ]) binds more tightly than the other logical connectives and that
“→” associates to the right. Where the names of the variables in contexts Ψ do
not matter we abbreviate x:A true simply by A.

(1) ` [C]A → [C,D]A true

(2) ` [C,C]A → [C]A true

(3) ` [A]A true

(4) ` [A]B → [A][B]C → [A]C true

(5) ` [·]A → A true

(6) ` [C]A → [D][C]A true
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(7) ` [C](A → B) → ([D]A → [C,D]B) true

(8) ` [A](A → B) → ([B]C → [A]C) true

(9) 6` A → [·]A true

(10) 6` A→ [B]A true

(11) 6` (A → B) → [B]C → [A]C true

The derivation of (1) closely mirrors the local expansion for the type [Ψ]A, as
presented in the previous section.

x:[C]A true ` [C]A true
hypx

u::A valid[C];x:C true, y:D true ` C true
hypx

u::A valid[C];x:C true, y:D true ` C
ctx

u::A valid[C];x:C true, y:D true ` A true
ctxhypu

u::A valid[C];x:[C]A ` [C,D]A true
2I

x:[C]A true ` [C,D]A true
2Eu

` [C]A → [C,D]A true
→Ix

We now turn to the derivation of (5). The proof of (5) shows that a proposition
derived relative to an empty context is actually unconditionally true, and can thus
be obtained in an arbitrary context.

x:[·]A true ` [·]A true
hypx

u::A valid[·]; · ` ·
ctx

u::A valid[·]; · ` A true
ctxhypu

x:[·]A true ` A true
2Eu

` [·]A → A true
→Ix

We omit the remaining derivations. On the other hand, the last three are not
derivable in general. We do not yet have the tools to prove this, but we may attempt
the proof of (9) from the bottom up.

` A true

x:A true ` [·]A true
2I

` A→ [·]A true
→Ix

As can be seen, this approach leaves us with the generally unattainable subgoal
of proving A true in an empty context. The fact that A → [·]A true is indeed
unprovable will be an immediate consequence of the completeness of the cut-free
sequent calculus introduced in Section 3.

2.6 Elementary Properties

In this section we formally prove some properties of intuitionistic contextual modal
logic on the connectives we have introduced so far. The main normal form theorem
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is postponed to Section 4.5; here we concentrate on other structural properties.
Since we have a separate judgment for contextual entailment, we need to state

several properties for a conclusion A true but also for the conclusion Ψ. We use J to
stand for either of these two judgments. We begin with weakening and two simple
properties of contextual entailment. We will often use the fundamental properties
tacitly.

Theorem 2.1 Weakening, Identity, and Extension.

(1 ) (Weakening) If ∆; Γ ` J then ∆; (Γ, x:A true,Γ′) ` J
and (∆, u::A valid[Ψ],∆′); Γ ` J .

(2 ) (Identity) ∆; Ψ ` Ψ.

(3 ) (Extension) If ∆; Γ ` Ψ then ∆; (Γ, x:A true) ` (Ψ, x:A true).

Proof. By straightforward inductions.

Next, the substitution properties, some of which we already stated as design
principles above.

Theorem 2.2 Substitution.

(1 ) (Substitution) If ∆; Γ ` A true and ∆; (Γ, x:A true,Γ′) ` J
then ∆; (Γ,Γ′) ` J .

(2 ) (Contextual Substitution) If ∆; Ψ ` A and (∆, u::A valid[Ψ],∆′); Γ ` J
then (∆,∆′); Γ ` J .

(3 ) (Simultaneous Substitution) If ∆; Γ ` Ψ and ∆; Ψ ` J then ∆; Γ ` J .

Proof. For substitution and contextual substitution by induction over the sec-
ond given derivation. For simultaneous substitution by induction over the second
given derivation where we augment the first given derivation using extension when-
ever necessary to apply the induction hypothesis.

The only property we have not yet discussed is simultaneous substitution, so
named because it eliminates all assumptions in the context Ψ in one operation. If J
is itself a context it corresponds to composition of two substitutions, as will become
clear when we make proof terms explicit. Otherwise it is simply the application of
a simultaneous substitution to a term.

3. VERIFICATIONS

The system of natural deduction presented so far provides a meaning explanation
of the connectives in terms of rules of proof. As a preliminary check we have
ascertained that, locally, the introduction of a connective followed by its elimina-
tion can be reduced. The corresponding global property means that we can al-
ways understand the meaning of a proposition by examining only its constituents.
More specifically, to accept the meaning explanations as sound we require each true
proposition to have a verification which only refers to constituent propositions. In
general, a proof may not have this property, and the existence of local reductions
by themselves is insufficient to guarantee it.

We therefore develop a sequent calculus which is based on two judgments: A has
a verification (written A verif) and A is a hypothesis (written A hyp). Ignoring, for

ACM Transactions on Computational Logic, Vol. V, No. N, March 2007.



Contextual Modal Type Theory · 11

the moment, validity, our form of hypothetical judgment is

x1:A1 hyp, . . . , xn:An hyp =⇒ C verif

where, as usual, all variables labeling hypotheses must be distinct. We refer to this
judgment form as a sequent. The derivation of a sequent will serve as its verification
and must therefore mention only propositions already in the sequent.

These two new judgments are connected explicitly via an init rule and two prin-
ciples which will always be admissible: identity and cut. We give these three first
in their simplest from, ignoring modalities.

Initial Sequents. First we state that we are willing to accept a hypothesis as a
verification when the proposition is atomic and can not be decomposed further. We
write P for atomic propositions.

Γ, x:P hyp,Γ′ =⇒ P verif
initx

Note that because judgments about P on the left- and right-hand side are different,
this is not a consequence of the general definition of hypothetical judgments, but
is an explicit rule relating two judgments.

Identity Principle. There is a verification of any proposition from itself as an
assumption.

Γ, x:A hyp,Γ′ =⇒ A verif for any proposition A.

Identity is not a rule in our system, since a verification of A should always analyze
its structure.

Cut Principle. The principle of cut states that if we have a verification of A then
we are justified in making the assumption A hyp.

If Γ =⇒ A verif and Γ, x:A hyp,Γ′ =⇒ C verif then Γ,Γ′ =⇒ C verif.

Cut is not a rule in our system, since it would destroy the very nature of verifi-
cations: the proposition A need not occur in the conclusion, but would appear in
both premises.

3.1 Sequent Calculus for Contextual Modal Logic

Given the system of natural deduction, it is easy to generalize the ideas above
to a sequent calculus that incorporates verifications both for truth and validity.
Following standard convention, we do not explicitly mention judgments and labels
of hypotheses, identifying them instead by their position in sequents. Sequents then
have the form

∆; Γ =⇒ C

asserting that C has a verification, and

∆; Γ =⇒ Ψ

asserting that each proposition in Ψ has a verification. Moreover, we take the liberty
of writing Γ, A and ∆, A[Ψ] if A or A[Ψ] occurs anywhere in Γ or ∆, respectively.
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∆;Γ, P =⇒ P
init

∆, A[Ψ];Γ =⇒ Ψ ∆, A[Ψ];Γ, A =⇒ C

∆, A[Ψ];Γ =⇒ C
reflect

∆;Γ, A =⇒ B

∆;Γ =⇒ A → B
→R

∆;Γ, A → B =⇒ A ∆;Γ, A → B,B =⇒ C

∆;Γ, A → B =⇒ C
→L

∆;Ψ =⇒ A

∆;Γ =⇒ [Ψ]A
2R

∆, A[Ψ];Γ, [Ψ]A =⇒ C

∆;Γ, [Ψ]A =⇒ C
2L

∆; Γ =⇒ B1 . . . ∆; Γ =⇒ Bm

∆;Γ =⇒ B1, . . . , Bm
ctx

Fig. 2. Sequent Calculus for ICML

These conventions should be understood only as a short-hand notation and do not
introduce any essential ambiguity into the system: contexts Γ and ∆ should still
be considered ordered.

The inference rules for sequents can be derived systematically from the rules for
natural deduction. For each connective there are right and left rules, corresponding
to the introduction and elimination rules of natural deduction. We have arranged
the system so that no explicit rules are required for weakening and contraction,
which simplifies the proof of the admissibility of cut and the relationship to natural
deduction. We forego the straightforward development and just summarize the
resulting system in Figure 2.

These rules are designed to correspond most directly to natural deduction, which
means that some of the premises are redundant with respect to provability. Specif-
ically, A → B in the right premise of →L and [Ψ]A in the premise of 2L are not
needed if we are only concerned with provability, although we do need them if we
want to model all normal natural deductions directly.

First, we show that cut is admissible in this system. Recall that we follow the
general conventions of the sequent calculus and freely allow exchange between as-
sumptions.

Theorem 3.1 Admissibility of Cut.

(1 ) (Weakening) If ∆; Γ =⇒ C then ∆, A[Ψ]; Γ =⇒ C and ∆; Γ, A =⇒ C

(2 ) (Identity) ∆; Γ, A =⇒ A for any proposition A.

(3 ) (Contextual Identity) ∆; Ψ =⇒ Ψ for any context Ψ.

(4 ) (Cut) If ∆; Γ =⇒ A and ∆; Γ, A =⇒ C then ∆; Γ =⇒ C

(5 ) (Contextual Cut) If ∆; Ψ =⇒ A and ∆, A[Ψ]; Γ =⇒ C then ∆; Γ =⇒ C

Proof. Weakening is a trivial induction over the given derivation. Note that
the size or structure of a derivation does not change when weakening is applied.
We can therefore use it tacitly in the proof of the other properties.

The identity principles are proved by induction on the structure of A and Ψ,
respectively.

Admissibility of cut and contextual cut is proved by a nested induction, first on
the structure of A and A[Ψ], and second on the structure of the two derivations
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that are cut.

Now it is easy to establish that every derivation has a verification and vice versa.
We only state the main property along these lines. We commit a slight abuse of
notation by writing Γ and ∆ on both sides, even though the actual judgments in
hypotheses for natural deductions and sequents are different (A true vs. A hyp).

Theorem 3.2 Proofs and Verifications. ∆; Γ ` A true iff ∆; Γ =⇒ A.

Proof. From left to right by induction over the structure of the given proof,
using admissibility of identity for hypotheses and cut for elimination rules.

From right to left by induction over the structure of the given verification, using
substitution properties.

By examining the relationships between proofs and verifications we can see that
the admissibility of cut is the global version of local soundness, and that the ad-
missibility of identity is the global version of local completeness. A more formal
analysis of this relationship is beyond the scope of the present paper.

3.2 Examples

We revisit only two of the examples from Section 2.5, giving the sequent derivation
of (5) and showing that (9) is not provable. We use the admissible Identity instead
of the init rule to emphasize that A need not be atomic.

A[·]; [·]A =⇒ ·
ctx

A[·]; [·]A,A =⇒ A
Identity

A[·]; [·]A =⇒ A
reflect

[·]A =⇒ A
2L

=⇒ [·]A → A
→R

We can now show that (9) is not derivable for an arbitrary A. In each sequent there
is at most one applicable rule in the bottom-up construction of a potential deriva-
tion, leaving us with the subgoal of verifying A in an empty context of hypotheses.
This subgoal does not have a verification in general.

· =⇒ A

A =⇒ [·]A

=⇒ A → [·]A

4. SIMPLE CONTEXTUAL MODAL TYPE THEORY

In this section we develop a type theory based on contextual modal logic. We
postpone the treatment of dependencies to the next section and cover functions and
the contextual modality we have introduced. This could serve as the foundation
for a functional language, although there are some difficulties of extending it to a
fully dependent type theory, as we see in Section 5.
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∆; (Γ, x:A, Γ′) ` x : A
hyp

(∆, u::A[Ψ],∆′); Γ ` σ : Ψ

(∆, u::A[Ψ],∆′); Γ ` clo(u, σ) : A
ctxhyp

∆;Γ, x:A ` M : B

∆;Γ ` lam(x:A.M) : A → B
→I

∆; Γ ` M : A → B ∆; Γ ` N : A

∆;Γ ` app(M, N) : B
→E

∆;Ψ ` M : A

∆;Γ ` box(Ψ. M) : [Ψ]A
2I

∆;Γ ` M : [Ψ]A ∆, u::A[Ψ]; Γ ` N : C

∆;Γ ` letbox(M, u.N) : C
2E

∆;Γ ` N1 : B1 . . . ∆;Γ ` Nm : Bm

∆;Γ ` (N1/y1, . . . ,Nm/ym) : (y1:B1, . . . , ym:Bm)

Fig. 3. Proof Term Assignment for ICML

4.1 Proof Term Assignment

In the terminology of Martin-Löf [1996], the truth judgment for ICML is synthetic
in that we have to provide a separate proof as evidence for the judgment. By anno-
tating the judgment with proof terms we obtain two benefits: first, the judgment
is now analytic in the sense that it contains its evidence, and second, it provides us
with a notation for programs under the Curry-Howard interpretation of proofs as
programs.

When assigning proof terms we have to be careful to respect variable scope and
allow consistent renaming of bound variables, because some operations are applied
to full contexts and hence to all variables in a term simultaneously. We there-
fore chose an abstract syntax where binding is made explicit, using a dot (“.”) to
separate a variable or context on the left from its scope on the right.

This proof term assignment uses the following proof term language, where x
stands for ordinary variables and u for contextual modal variables. Keeping in
mind one of our applications, we will refer to u as standing for meta-variables.

Terms M,N ::= x | lam(x:A.M) | app(M,N)
| clo(u, σ) | box(Ψ.M) | letbox(M,u.N)

Substitutions σ, τ ::= · | σ,M/x
Contexts Γ,Ψ ::= · | Γ, x:A

Modal Contexts ∆ ::= · | ∆, u::A[Ψ]

Recall that all variables declared in a context or modal context must be distinct.

Since the binding structure is somewhat non-standard, we explicitly define the
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set of free variables for terms, FV(M), and substitutions, FV(σ).

FV(x) = {x}
FV(lam(x:A.M)) = FV(M) − {x}
FV(app(M,N)) = FV(M) ∪ FV(N)
FV(clo(u, σ)) = FV(σ)
FV(box(Ψ.M)) = { }
FV(letbox(M,u.N)) = FV(M) ∪ FV(N)

FV(·) = { }
FV(σ,M/x) = FV(σ) ∪ FV(M)

The term constructor box(Ψ.M) binds all the variables from the context Ψ simul-
taneously. Consequently, the renaming of bound variables or α-conversion now also
includes terms of the form box(Ψ.M) where variables in Ψ may be renamed, and we
tacitly apply α-conversion as necessary. Furthermore, according to the typing rule
2I from Figure 3, Ψ is required to contain all the free variables of M in box(Ψ.M).
Thus, FV(box(Ψ.M)) is appropriately defined to be empty. M may still contain free
meta-variables from the modal context ∆, so we next define the free meta-variables
in a term and substitution, FMV(M) and FMV(σ).

FMV(x) = { }
FMV(lam(x:A.M)) = FMV(M)
FMV(app(M,N)) = FMV(M) ∪ FMV(N)
FMV(clo(u, σ)) = {u} ∪ FMV(σ)
FMV(box(Ψ.M)) = FMV(M)
FMV(letbox(M,u.N)) = FMV(M) ∪ (FMV(N) − {u})

FMV(·) = { }
FMV(σ,M/x) = FMV(σ) ∪ FMV(M)

The context Ψ in box(Ψ.M) binds ordinary variables, but does not bind any meta-
variables, so the free meta-variables of box(Ψ.M) are those of M . On the other
hand, the free meta-variables of letbox(M,u.N) include those of M and N , but u
has to be excluded because it is bound in letbox(M,u.N) with the scope extending
through N . Of course, bound meta-variables are subject to α-conversion, too.

4.2 Examples

In this section we present the ICML proof terms corresponding to the propositions
from the example in Section 2.5. For brevity, we omit the types from the proof
terms.
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M1 : [x:C]A→ [y1:C, y2:D]A =

lam(z. letbox(z, u. box(y1, y2. clo(u, [y1/x]))))

M2 : [x1:C, x2:C]A → [y:C]A =

lam(z. letbox(z, u. box(y. clo(u, [y/x1, y/x2]))))

M3 : [x:A]A =

box(x. x)

M4 : [x:A]B → [y1:A][y2:B]C → [z:A]C =

lam(x1. lam(x2.

letbox(x1, u. letbox(x2, v. box(z. letbox(clo(v, [z/y1]),

w. clo(w, [clo(u, [z/x])/y2])))))))

M5 : [·]A → A =

lam(x. letbox(x, u. clo(u, [·])))

M6 : [x:C]A→ [y1:D][y2:C]A =

lam(x1. letbox(x1, u. box(y1. box(y2. clo(u, [y2/x])))))

M7 : [x:C](A → B) → [y:D]A→ [z1:C, z2:D]B =

lam(x1. lam(x2.

letbox(x1, u. letbox(x2, v. box(z1, z2. app(clo(u, [z1/x]), clo(v, [z2/y])))))))

M8 : [x:A](A → B) → [y:B]C → [z:A]C =

lam(x1. lam(x2.

letbox(x1, u. letbox(x2, v. box(z:A. clo(v, [app(clo(u, [z/x]), z)/y]))))))

4.3 Substitution on Terms

In this section we define the operations of substitution, simultaneous substitution,
and substitution for meta-variables, both into a term and substitution. Substitution
for ordinary and meta-variables will be total operations since any side condition
can be satisfied by α-conversion. First, ordinary capture-avoiding substitution on
a single variable, [M/x]N and [M/x]σ.

[M/x](x) = M
[M/x](y) = y if y 6= x
[M/x](lam(y:B.N)) = lam(y:B. [M/x]N) provided y 6∈ FV(M) and y 6= x
[M/x](app(N1, N2)) = app([M/x]N1, [M/x]N2)
[M/x](clo(u, σ)) = clo(u, [M/x]σ)
[M/x](box(Ψ. N)) = box(Ψ. N)
[M/x](letbox(N1, u.N2)) = letbox([M/x]N1, u. [M/x]N2)

[M/x](·) = ·
[M/x](σ,N/y) = [M/x]σ, ([M/x]N)/y
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The substitution commutes with the constructors in all the cases, except in the case
for box(Ψ.M). As already discussed, box(Ψ.M) does not contain any free variables,
and in particular, it does not contain the free variable x. Thus, box(Ψ.M) is not
changed when [M/x] is applied to it.

This substitution satisfies the following versions of the substitution principle,
annotated with proof terms.

Theorem 4.1 Substitution on Terms.

(1 ) If ∆; Γ `M : A and ∆; Γ, x:A,Γ′ ` N : C then ∆; Γ,Γ′ ` [M/x]N : C.

(2 ) If ∆; Γ `M : A and ∆; Γ, x:A,Γ′ ` σ : Ψ then ∆; Γ,Γ′ ` [M/x]σ : Ψ.

Proof. By induction on the structure of the second given derivation.

Next we define simultaneous substitution [σ]M and [σ]τ . It is only total when the
substitution σ is defined on all free variables in M and τ , respectively. This will be
satisfied, because simultaneous substitution is only applied when the assumptions
of the theorem following this definition are satisfied. Simultaneous substitutions
commute with the term constructors, as one would expect. The only exception are
the terms of the form box(Ψ.M); they do not contain any free variables and thus
remain unchanged by the substitution.

[σ1,M/x, σ2](x) = M
[σ](lam(y:B.N)) = lam(y:B. [σ, y/y]N) if y 6∈ FV(σ) and y 6∈ dom(σ)
[σ](app(N1, N2)) = app([σ]N1, [σ]N2)
[σ](clo(u, τ)) = clo(u, [σ]τ)
[σ](box(Ψ. N)) = box(Ψ. N)
[σ](letbox(N1, u.N2)) = letbox([σ]N1, u. [σ]N2)

[σ](·) = ·
[σ](τ,N/y) = [σ]τ, ([σ]N)/y

Sometimes we need to rename the domain of a substitution to match a given
context. When σ = (M1/x1, . . . ,Mn/xn) and Ψ = (y1:A1, . . . , yn:An) then σ/Ψ =
(M1/y1, . . . ,Mn/yn).

Simultaneous substitutions satisfy the simultaneous substitution principle, an-
notated with proof terms. The second property amounts to composition of the
substitutions τ and σ.

Theorem 4.2 Simultaneous Substitution on Terms.

(1 ) If ∆; Γ ` σ : Ψ and ∆; Ψ ` N : C then ∆; Γ ` [σ]N : C.

(2 ) If ∆; Γ ` σ : Ψ and ∆; Ψ ` τ : Θ then ∆; Γ ` [σ]τ : Θ.

Proof. By induction on the structure of the second given derivation.

Substitutions for meta-variables u are a little more difficult. One complication is
that simultaneous substitutions σ are not first class: from the logical point of view
it makes sense to restrict them to clo(u, σ). So we cannot just substitute a term
M to obtain clo(M,σ) because the latter is not well-formed. The solution to this
problem becomes clear when we recall that u should stand for meta-variables. The
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closure clo(u, σ) is a postponed substitution. As soon as we know which term u
should stand for we can apply σ to it.

Moreover, because of α-conversion, the variables that are substituted at different
occurrences of u may be different. This is because a declaration such as u::A[x:B]
is indistinguishable from u::A[x′:B], by renaming. This is a bit pedantic here, but
unavoidable in the dependent case. As a result, substitution for a meta-variable
must carry a context, written as [[Ψ.M/u]]N and [[Ψ.M/u]]σ where Ψ binds all free
variables in M . This complication can be eliminated in an implementation of our
calculus based on de Bruijn indexes.

[[Ψ.M/u]](x) = x
[[Ψ.M/u]](lam(y:B.N)) = lam(y:B. [[Ψ.M/u]]N)
[[Ψ.M/u]](app(N1, N2)) = app([[Ψ.M/u]]N1, [[Ψ.M/u]]N2)
[[Ψ.M/u]](clo(u, τ)) = [[[Ψ.M/u]]τ/Ψ]M
[[Ψ.M/u]](clo(v, τ)) = clo(v, [[Ψ.M/u]]τ) provided v 6= u
[[Ψ.M/u]](box(Γ. N)) = box(Γ. [[Ψ.M/u]]N)
[[Ψ.M/u]](letbox(N1, v.N2)) = letbox([[Ψ.M/u]]N1, v. [[Ψ.M/u]]N2)

provided v 6∈ FMV(M) and v 6= u

[[Ψ.M/u]](·) = ·
[[Ψ.M/u]](τ,N/y) = [[Ψ.M/u]]τ, ([[Ψ.M/u]]N)/y

Applying [[Ψ.M/u]] to the closure clo(u, τ) first obtains the simultaneous substi-
tution τ ′ = [[Ψ.M/u]]τ , but instead of returning clo(M, τ ′), it proceeds to eagerly
apply τ ′ to M . Before τ ′ can be carried out, however, it’s domain must be renamed
to match the variables in Ψ, denoted by τ ′/Ψ.

While the definition of the discussed case may seem circular at first, it is ac-
tually well-founded. The computation of τ ′ recursively invokes [[Ψ.M/u]] on τ , a
constituent of clo(u, τ). Then τ ′/Ψ is applied to M , but applying simultaneous sub-
stitutions has already been defined without appeal to meta-variable substitution.

As an illustration of this operation, consider the expression

[[x:A→ A, y:A.app(x, y)/u]]clo(u, [lam(z:A. z)/x, t/y])

Here we assume that u::A[x:A → A, y:A] and t:A (and t does not depend on u),
so that all the terms involved are well typed. We obtain app(lam(z:A. z), t), be-
cause upon substituting app(x, y) for u, the local variables x and y are immediately
replaced with lam(z:A. z) and t, respectively.

Another property worth emphasizing here is that the side conditions in the defi-
nition of meta-variable substitution only involve meta-variables, but no checks in-
volving ordinary variables are needed. This property will be exploited in Section 7
to efficiently implement meta-variables in a logical framework.

Substitution of a meta-variable satisfies the following contextual substitution
property. Again, this is the contextual substitution property from Section 2.6
annotated with proof terms.

Theorem 4.3 Contextual Substitution on Terms.

(1 ) If ∆; Ψ `M : A and (∆, u::A[Ψ],∆′); Γ ` N : C
then (∆,∆′); Γ ` [[Ψ.M/u]]N : C.
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(2 ) If ∆; Ψ `M : A and (∆, u::A[Ψ],∆′); Γ ` τ : Θ
then (∆,∆′); Γ ` [[Ψ.M/u]]τ : Θ.

Proof. By simple inductions on the second given derivation, appealing to The-
orem 4.2 in the case for meta-variables.

4.4 Proof Reductions and Expansions

In this section we present the local reductions and expansions, employing the sub-
stitution operations defined above. First, the two local reductions.

app(lam(x:A.N),M) =⇒R [M/x]N
letbox(box(Ψ.M), u.N) =⇒R [[Ψ.M/u]]N

In order to formulate the local expansion for the contextual modality, we need
to construct identity substitutions. The corresponding operation id, is defined for
each context Ψ as follows.

id(·) = (·)
id(Ψ,x:A) = (idΨ, x/x)

Obviously, idΨ stands for different substitutions, depending on the particular in-
stance of Ψ. In other words, id is a meta-level operation just like substitution, and
not a proper part of the proof term calculus. We easily verify that it is indeed an
identity substitution.

Theorem 4.4 Identity Substitution.

(1 ) ∆; Ψ ` idΨ : Ψ for any Ψ.

(2 ) [idΨ]M = M provided ∆; Ψ `M : A for some ∆ and A.

(3 ) [idΨ]σ = σ provided ∆; Ψ ` σ : Γ for some ∆ and Γ.

Proof. By easy inductions.

Now we can write out the two local expansions.

M : A→ B =⇒E lam(x:A. app(M,x)) for x 6∈ FV(M)
M : [Ψ]A =⇒E letbox(M,u. box(Ψ. clo(u, idΨ)))

Despite appearances, the second rule shows, as expected, that we can always create
a term of type [Ψ]A by introduction (the inner box). The fact that the elimination
is a let form makes it textually appear on the outside, but conceptually we apply
an elimination to M , name the result u, and then reconstruct box(Ψ. clo(u, idΨ)) of
type [Ψ]A from u.

Due to the presence of the letbox elimination, the calculus also requires two
commuting reductions to reach a normal form in which no types are introduced and
later eliminated. An example to illustrate the need for the commuting reduction is

lam(x:[·]A. app(letbox(x, u. lam(z:[·]A→ [·]A. app(z, box(·. clo(u, ·))))),
lam(w:[·]A.w)))

In a more natural mathematical syntax:

λx.(let boxu = x in λz.z (box u) end) (λw.w)
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This term has no redex because the letbox hides the application of λz.z (box u) to
λw.w. This leads to the following commuting reductions:

app(letbox(N1, v.N2),M) =⇒C letbox(N1, v. app(N2,M))
provided v 6∈ FMV(M)

letbox(letbox(N1, v.N2), u.M) =⇒C letbox(N1, v. letbox(N2, u.M))
provided v 6∈ FMV(u.M)

It is easy to see from the substitution properties that local reductions, local ex-
pansions, and commuting reductions preserve types. In this proof, and also later in
the paper, we use inversion in a purely syntactic manner: when we know a judg-
ment has a derivation, and the judgment matches the conclusion of only one rule,
then the premises of that rule must also have derivations. A slight generalization
allows a finite number of rules to match the judgment, in which case we have to
split the proof into several cases.

Theorem 4.5 Subject Reduction and Expansion.

(1 ) If ∆; Γ `M : A and M =⇒R M
′ then ∆; Γ `M ′ : A.

(2 ) If ∆; Γ `M : A and M : A =⇒E M ′ then ∆; Γ `M ′ : A.

(3 ) If ∆; Γ `M : A and M =⇒C M ′ then ∆; Γ `M ′ : A.

Proof. For subject reduction by inversion on the given typing derivation and
appeal to one of the substitution properties. For subject expansion the proof is
direct. For commuting reductions by inversion on the giving typing derivation and
weakening.

4.5 Strong Normalization

In order to prove strong normalization, we can exploit strong normalization for
the simply-typed λ-calculus with sums under permutation conversions [de Groote
2002]. The result is somewhat weaker than the corresponding property for the
usual calculi of explicit substitution, because we treat application of substitutions
as a single-step meta-level operation. For a reduction relation =⇒, we write =⇒∗

for zero or more reductions and =⇒+ for one or more reductions. We omit the
straightforward congruence rules for all reductions and note that subject reduction
(Theorem 4.5) continues to hold.

For the target of our translation, we use the following fragment of the simply-
typed λ-calculus, where a stands for base types.

Types α, β, γ ::= a | α → β | α+ β
Terms s, t, r ::= x | λx.t | s t | ι1(t) | ι2(t) | δ(s, x.t, y.r)

λ-abstraction and application are as usual, ι1 and ι2 are left and right injections
into a sum, and δ represents a case construct. We continue to use our convention
that x.t binds x with scope t. We omit the standard typing rules but show the
reductions. De Groote calls the last two permutation conversions even though they
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are applied as reductions.

(λx.t) s =⇒D [s/x]t
δ(ι1(s), x.t, y.r) =⇒D [s/x]t
δ(ι2(s), x.t, y.r) =⇒D [s/y]r

δ(s, x.t, y.r) p =⇒D δ(s, x.t p, y.r p) provided x /∈ FV(p), y /∈ FV(p)
δ(δ(s, x.t, y.r), u.p, v.q) =⇒D δ(s, x.δ(t, u.p, v.q), y.δ(r, u.p, v.q))

provided x /∈ FV(u.p, v.q), y /∈ FV(u.p, v.q)

We use three auxiliary operations on terms and types in the target language
to form iterated function types, abstract over a context, and apply a term to a
sequence of arguments.

Π(x1:β1, . . . , xm:βm)(α) = β1 → · · · → βm → α
Λ(x1:β1, . . . , xm:βm)(s) = λx1. . . . λxm.s

App(s)(t1, . . . , tm) = s t1 . . . tm

The interpretation of types is a simple compositional translation (A)o, where
[y1:B1, . . . , ym:Bm]A is mapped α + α, where α = Bo1 → · · ·Bom → Ao. The sum
is necessary because the target of the translation does not have a let construct.
We also extend this translation to ordinary hypotheses and contextual validity
assumptions.

(a)o = a
(A → B)o = Ao → Bo

([Ψ]A)o = (Π(Ψo)(Ao)) + (Π(Ψo)(Ao))

(·)o = ·
(Γ, x:A)o = Γo, x:Ao

(·)o = ·
(∆, u::A[Ψ])o = ∆o, u:Π(Ψo)(Ao)

In the translation of terms (M)o, meta-variables are mapped to ordinary vari-
ables that take additional arguments, and closures clo(u, (M1/y1, . . . ,Mm/ym)) are
mapped to corresponding sequences of applications ((uM1) . . .Mm). The letbox

construct is translated to a case construct in order to preserve the commuting
reductions.

(x)o = x
(lam(x:A.M))o = λx.Mo

(app(M,N))o = MoNo

(clo(u, σ))o = App(u)(σo)
(box(Ψ.M))o = ι1(Λ(Ψo)(Mo))

(letbox(M,u.N))o = δ(Mo, u.No, u.No)

(·)o = ·
(σ,M/x)o = σo,Mo

The choice of the first or second injection in the translation of box is arbitrary.
Under these translations, the following theorem is easy to show. We omit some

properties pertaining to simultaneous substitutions that follow directly from the
properties of terms.
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Theorem 4.6 Interpretation.

(1 ) If ∆; Γ `M : A then ∆o,Γo `Mo : Ao.

(2 ) If ∆; Γ `M : A and ∆; Γ, x:A,Γ′ ` N : B then ([M/x]N)o = [Mo/x]No.

(3 ) If ∆; Γ ` σ : Ψ and ∆; Ψ `M : A then App(Λ(Ψo)(Mo))(σo) =⇒∗
D ([σ]M)o.

(4 ) If ∆; Ψ ` M : A and (∆, u::A[Ψ],∆′); Γ ` N : C then [Λ(Ψo)(Mo)/u]No =⇒∗
D

([[Ψ.M/u]]N)o.

Proof. By simple structural inductions. The typing assumptions are necessary
for the substitution properties because [M/x](box(Ψ. N)) = box(Ψ. N). The reduc-
tions are necessary in the last part to eliminate potential redexes after substituting
a λ-abstraction for u.

Theorem 4.7 Strong Normalization.

(1 ) If ∆; Γ `M : A and M =⇒R N or M =⇒C N then Mo =⇒+
D No.

(2 ) The combination of =⇒R and =⇒C is strongly normalizing on well-typed terms.

Proof. Part (1) follows by definition of =⇒R and =⇒C , inversion on the typ-
ing derivation, and appeal to the preceding theorem. Part (2) follows from Part
(1) and the strong normalization theorem for the simply-typed λ-calculus with
sums [de Groote 2002].

5. DEPENDENT CONTEXTUAL MODAL TYPE THEORY

As shown in the previous section, a type theory with the contextual modal operator
requires commuting reductions and therefore lacks unique canonical forms. In the
context of functional programming this is acceptable, because commuting reduc-
tions never arise when evaluating a closed term because we do not normalize under
variable binding operators. For a logical framework such as LF [Harper et al. 1993],
however, object-language expressions and deductions are represented by canonical
forms in the type theory underlying the logical framework. Therefore commuting
conversions are to be avoided: they complicate the definitional equality and make
it difficult to obtain adequate encodings due to the lack of uniqueness of canonical
forms.

In this section we define a dependent contextual modal type theory in the LF
family. In order to avoid commuting conversions, we internalize contextual validity
not via [Ψ]A, but instead we internalize the hypothetical validity judgment. In brief,
we pass from u::A[Ψ] ` M : C to mlam(u.M) : Πu::A[Ψ].C instead of from Ψ `
M : C to box(Ψ.M) : [Ψ]C as before. A similar technique has been employed in the
definition of linear logical frameworks in order to retain canonical forms [Hodas and
Miller 1994; Cervesato and Pfenning 2002]. We exploit here a recent presentation
technique for logical frameworks due to Watkins et al. [2002] in which only canonical
forms are well-typed. In order to achieve this we divide the term calculus into
atomic objects R and normal objects M . We reuse the same letters as before for
various syntactic categories; the reader should therefore keep in mind that they
are appropriately restricted in this section. In particular, all references to M and
N stand for normal objects, and all references to A, B, or C stand for normal
types. Furthermore, contexts Γ and Ψ contain only declarations x:A where A is
normal, all terms occurring in substitutions σ are either normal (in N/x) or atomic
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(in R//x), and so on. Finally, while the syntax only guarantees that terms N are
normal (that is, contain no β-redexes), the typing rules will in addition guarantee
that all well-typed terms are fully η-expanded.

Normal Kinds K ::= type | Πx:A.K | Πu::A[Ψ].K

Atomic Types P,Q ::= a | app(P,N) | mapp(P, Ψ̂.N)
Normal Types A,B,C ::= P | Πx:A.B | Πu::A[Ψ].B

Atomic Objects R ::= x | app(R,N) | clo(u, σ) | mapp(R, Ψ̂.N)
Normal Objects M,N ::= lam(x.M) | mlam(u.M) | R

Contexts Γ,Ψ ::= · | Γ, x:A
Substitutions σ ::= · | σ,N/x | σ,R//x

Modal Contexts ∆ ::= · | ∆, u::A[Ψ]

Signatures Σ ::= · | Σ, a:K | Σ, c:A

Since we do not need types inside objects, we write Ψ̂ for a list of variables
x1, . . . , xn which we think of as a context Ψ without types.

Signatures declare global constants and never change in the course of a typing
derivation. We therefore suppress the signatures throughout. The modal restriction
on occurrences of ordinary variables does not apply to constants, since they are
assumed to be meaningful in all possible worlds. This can be seen specifically in
the Π2E rule, where Γ is not available in the second premise, but the (implicit)
signature Σ is propogated unchanged to both premises.

At the heart of the presentation technique are two observations. The first is that
we can characterize canonical forms via bi-directional type-checking. The second is
that we can formulate normalization as a primitive recursive functional, exploiting
the structure of the types and objects. To see the need for the latter, consider the
standard rule for application

Γ `M : Πx:A.B Γ ` N : A

Γ `M N : [N/x]B
ΠE

This is not correct here because [N/x]B is in general not a canonical form. Instead
we need to define a form of substitution [N/x]aA(B) which is guaranteed to return
a canonical form, given that N is canonical at type A, and B is a canonical type.
We postpone the somewhat tedious definition of this operator to Section 5.1, where
one can also find the related operations [[Ψ̂.M/u]]aA[Ψ](B), [σ]aΨ(B), and auxiliary
definitions. The superscript a expresses that the substitution is applied to a type;
other superscripts indicate substitution into other kinds of expressions (e.g., n for
normal terms or r for atomic terms). We refer to these operations collectively as
hereditary substitutions.

Typing at the level of objects is divided into three judgments:

∆; Γ `M ⇐ A Check normal object M against canonical A
∆; Γ ` R ⇒ A Synthesize canonical A for atomic object R
∆; Γ ` σ ⇐ Ψ Check σ against Ψ

We always assume that ∆ and Γ and the subject (M , R, or σ) are given, and that
the contexts ∆ and Γ contain only canonical types. For checking M ⇐ A we also

ACM Transactions on Computational Logic, Vol. V, No. N, March 2007.



24 · Aleksandar Nanevski et al.

assume A is given and canonical, and similarly for checking σ ⇐ Ψ we assume Ψ is
given and all types in it are canonical. For synthesis R ⇒ A we assume R is given
and we generate a canonical A. Similarly, at the level of types we have

∆; Γ ` A ⇐ type Check normal type A
∆; Γ ` P ⇒ K Synthesize kind K for atomic type family P

with corresponding assumptions on the constituents. We omit the judgments for
well-formed kinds; the ones for contexts are given later in this section.

Judgmental Rules. When checking a normal object that happens to be atomic
(that is, has the form R) against a type A we have to synthesize the type for R
and compare it with A. Since all synthesized types are canonical, this comparison
is simple α-conversion. Moreover, we need to enforce that A is atomic. Otherwise
our terms would be β-normal but not necessarily η-long.

∆; Γ ` R ⇒ P ′ P ′ = P

∆; Γ ` R ⇐ P
⇒⇐

The rules for ordinary variables and constants are as in the simply typed case. For
meta-variables (rule mvar) we need to be careful about directions and dependencies.
While clo(u, σ) synthesizes a type, we need the type of u, namely A[Ψ] so we can
check σ against Ψ. However, the variables Ψ in A[Ψ] are bound variables with
scope A; we assume they are tacitly renamed to match the domain of σ. Moreover,
we need to apply σ to transport A from Ψ (upon which it may depend) to Γ. The
hereditary simultaneous substitution [σ]aΨ(A) always returns a canonical type.

∆; Γ, x:A,Γ′ ` x ⇒ A
var

c:A ∈ Σ

∆; Γ ` c⇒ A
con

∆, u::A[Ψ],∆′; Γ ` σ ⇐ Ψ

∆, u::A[Ψ],∆′; Γ ` clo(u, σ) ⇒ [σ]aΨ(A)
mvar

Dependent Functions. Now that our type theory is dependent, we have to be
concerned about the well-formedness of types. The formation rule for dependent
function types is familiar and straightforward.

∆; Γ ` A⇐ type ∆; Γ, x:A ` B ⇐ type

∆; Γ ` Πx:A.B ⇐ type
ΠF

This formation rule entails some restrictions on the occurrences of x in B, since x
is an ordinary variable rather than a meta-variable. For example, x cannot occur
(free) in Ψ̂.M , which is enforced in the Π2E rule for mapp(R, Ψ̂.M), explained later.
This is important for the consistency of the type theory.

In general, introduction forms for a type constructor break down a type when read
from the conclusion to the premise. This means if the type in the conclusion is given,
we can extract the type for the premise, and therefore introduction forms should be
checked against a type. Conversely, elimination forms break down the type when
read from premise to conclusion. This means if the type in the premise can be
synthesized, we can extract the component type for the conclusion, and therefore
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elimination forms should synthesize their type. Together with the consideration
that the types of variables should always be known, this yields the following rule
for the dependent function types Πx:A.B.

∆; Γ, x:A `M ⇐ B

∆; Γ ` lam(x.M) ⇐ Πx:A.B
ΠI

∆; Γ ` R ⇒ Πx:A.B ∆; Γ `M ⇐ A

∆; Γ ` app(R,M) ⇒ [M/x]aA(B)
ΠE

Contextual Modal Functions. Contextual modal functions can also be dependent,
but the corresponding constructor binds a meta-variable instead of an ordinary
variable.

∆ ` Ψ ctx ∆; Ψ ` A⇐ type ∆, u::A[Ψ]; Γ ` B ⇐ type

∆; Γ ` Πu::A[Ψ].B ⇐ type
Π2F

The second premise shows that for a declaration u::A[Ψ], A must be a valid type
in Ψ. In particular, Ψ can not mention any ordinary variables in Γ from the
surrounding context. This restriction on the formation of dependent function types
is again essential in order to obtain a clean language for meta-variables.

The rule for meta-variables should now be easy to follow, given the foregoing
development. The introduction rule for forming a modal function is straightforward.
The argument to a modal function must bind its free variables to avoid unexpected
capture and related problems. However, the types of these free variables are not
needed, since they can be obtained from the type synthesized by R. We therefore
write here Ψ̂ for the result of erasing types from the context Ψ. Some renaming of
bound variables may be necessary to apply this rule to bring the variables in A[Ψ]
in accordance with the variables in Ψ̂.M .

∆, u::A[Ψ]; Γ `M ⇐ B

∆; Γ ` mlam(u.M) ⇐ Πu::A[Ψ].B
Π2I

∆; Γ ` R ⇒ Πu::A[Ψ].B ∆; Ψ `M ⇐ A

∆; Γ ` mapp(R, Ψ̂.M) ⇒ [[Ψ̂.M/u]]
a
A[Ψ](B)

Π2E

Simultaneous Substitutions. Simultaneous substitutions are checked against a
context which prescribes types for the terms in the substitution. The principal
complication here are dependencies. When we check ∆; Γ ` (σ,M/x) ⇐ (Ψ, x:A)
then A will be canonical in Ψ, while the substitution itself is checked in Γ. So we
need to apply σ to A before checking M against the result. However, this substitu-
tion must return a canonical type, so we once again need hereditary substitution.

∆; Γ ` (·) ⇐ (·)

∆; Γ ` σ ⇐ Ψ ∆; Γ `M ⇐ [σ]aΨ(A)

∆; Γ ` (σ,M/x) ⇐ (Ψ, x:A)

∆; Γ ` σ ⇐ Ψ ∆; Γ ` R ⇒ A′ A′ = [σ]aΨ(A)

∆; Γ ` (σ,R//x) ⇐ (Ψ, x:A)
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Besides M/x for canonical M , there is a second way to construct a substitution
to replace a variable by an atomic term R, written R//x. This is justified from the
nature of hypothetical judgments, since an assumption x:A represents x ⇒ A so
we can substitute R for x if R ⇒ A. Again, dependencies slightly complicate the
form of the rule which is the third one listed above.

Substitutions R//x are necessary so that we can extend a given substitution with
x//x when traversing a binding operator in a type-free way. We could not extend
substitutions with x/x, since x is not a canonical term unless it is of atomic type.
Identity substitutions can now have the form x1//x1, . . . , xn//xn.

Atomic Types. Atomic types mirror the structure of atomic terms, except that
the head of an atomic type is always a constant and never a variable.

a:K ∈ Σ

∆; Γ ` a⇒ K
acon

∆; Γ ` P ⇒ K K = type

∆; Γ ` P ⇐ type
⇒⇐

∆; Γ ` P ⇒ Πx:A.K ∆; Γ ` N ⇐ A

∆; Γ ` app(P,N) ⇒ [N/x]kA(K)
ΠE

∆; Γ ` P ⇒ Πu::A[Ψ].K ∆; Ψ ` N ⇐ A

∆; Γ ` mapp(P, Ψ̂.N) ⇒ [[Ψ̂.N/u]]
k
A[Ψ](K)

Π2E

Well-Formed Contexts. The context formation rules are foreshadowed by the
formation rules for types. We have the judgments ∆ ` Γ ctx and ` ∆ mctx. We
omit the straightforward judgments defining the well-formedness of signatures.

∆ ` · ctx

∆ ` Γ ctx ∆; Γ ` A⇐ type

∆ ` (Γ, x:A) ctx

` · mctx

` ∆ mctx ∆ ` Ψ ctx ∆; Ψ ` A⇐ type

` (∆, u::A[Ψ]) mctx

We show these rules here to emphasize that the context ∆ of meta-variables is
ordered from left to right: meta-variables declared earlier can appear in the types
of later meta-variables, but not vice versa.

5.1 Hereditary Substitution Operations

The substitution functions we need must construct canonical terms, since those
are the only ones that are well-formed (and the only ones of interest in a logical
framework). Hence, in places where the ordinary substitution would construct a
redex (λy.M)N we must continue, substituting N for y in M . But that could again
create a redex, so any redex created by this embedded substitution operation must
also continue, and so on. We therefore call this operation hereditary substitution.

The difficulty is that hereditary substitution could easily fail to terminate. Con-
sider, for example, [(λx. x x)/y]h(y y) which arises if one tries to compute the normal
form of (λy. y y) (λx. x x). Clearly, on well-typed terms this should not occur. More-
over, in a typing derivation in our system, hereditary substitutions are only ever
applied to terms already checked. Nonetheless, a typing derivation itself contains
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appeals to hereditary substitutions, so exploiting (dependent) typing derivations in
the development of the theory of hereditary substitutions is not straightforward.

Fortunately, hereditary substitution can be defined as a primitive recursive func-
tional if we pass in the type of the variable we substitute for. For example, if we
hereditarily substitute [λy.M/x](xN) then, if everything is well-typed, x:A1 → A2

for some A1 and A2. So we would write [λy.M/x]A1→A2
(xN), indexing the oper-

ation with the type of x. If the substitution is to continue hereditarily we must
further substitute N for y in M , again hereditarily. But notice that if the original
substitution is well-typed then y:A1, so we invoke [N/y]A1

M . Even though we
switched from substituting into xN to substituting into M (which may be more
complex then xN), we have reduced the type of the variable we are substituting
for from A1 → A2 to A1.

This is analogous and was in fact inspired by an analogous structural measure in
the proof of the admissibility of cut in the sequent calculus [Pfenning 2000], which
proceeds by nested induction, first on the structure of the cut formula and second
on the structure of derivations being cut.

In the formal development it is simpler if we can stick to the structure of the
example above and use only non-dependent types in hereditary substitutions. We
therefore first define type approximations α and an erasure operation ()

−
that

removes dependencies. Before applying any hereditary substitution [M/x]aA(B)
we first erase dependencies to obtain α = A− and then carry out the hereditary
substitution formally as [M/x]aα(B). A similar convention applies to the other forms
of hereditary substitutions.

Type approximation α, β ::= a | α → β | α[γ] ⇒ β
Context approximation γ, ψ ::= · | γ, x:α | γ, x:

The last form of context approximation, x: is needed when the approximate type
of x is not available.2 It does not arise directly from erasure.

Types and contexts relate to type and context approximations via an erasure
operation ()− which we overload to work on types and contexts.

(a)− = a

(app(P,N))
−

= P−

(mapp(P, Ψ̂.N))
−

= P−

(Πx:A.B)− = A− → B−

(Πu::A[Ψ]. B)
−

= A−[Ψ−] ⇒ B−

(·)− = ·

(Ψ, x:A)
−

= Ψ−, x:A−

We can now define [M/x]nα(N) and [M/x]rα(R) by nested induction, first on the
structure of the type approximation α and second on the structure of the objects
N and R. In other words, we either go to a smaller type approximation (in which
case the objects can become larger), or the type approximation remains the same
and the objects become smaller. We write α ≤ β and α < β if α occurs in β (as a

2See the definition of [σ]nψ(lam(y. M)) in the electronic appendix.
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proper subexpression in the latter case). Such occurrences can be inside a context
approximation ψ in the modal approximation β1[ψ] ⇒ β2, so we also write α < ψ
if α ≤ β for some y:β in ψ, and we write α < β[ψ] if α ≤ β or α < ψ.

If the original term is not well-typed, a hereditary substitution, though termi-
nating, cannot always return a meaningful term. We formalize this as failure to
return a result. Later we show that on well-typed terms, hereditary substitution
will always return well-typed terms.

As a convention when discussing expressions that may fail to be defined, whenever
we state an equality T1 = T2, we imply that T1 and T2 are both defined and equal.

The LF Fragment. We start with the LF fragment to highlight the basic ideas in
the simpler case before adding meta-variables. We have the following operations,
where the superscript indicates the domain of the operation.3

[M/x]nα(N) = N ′ Hereditary substitution into N
[M/x]rα(R) = R′ or M ′ : α′ Hereditary substitution into R
[M/x]aα(A) = A′ Hereditary substitution into A
[M/x]pα(P ) = P ′ Hereditary substitution into P

Any of these functions can implicitly fail, which is propagated to the top level.
Substitution [M/x]rα into an atomic term could return either an atomic term or a
normal term, depending on the variable at the head of the term. If the variable at
the head is different from x it returns an atomic term. If it is equal to x it must call
substitution hereditarily, in which case the result is normal. In the latter case we
also return a type approximation α′ ≤ α. One further remark: where hereditary
substitution [M/x]∗α is invoked in the typing judgment, we have M ⇐ A for some
A such that α = (A)

−
. As we recurse we maintain this invariant.

The cases for substitution into a normal term are just compositional.

[M/x]nα(lam(y.N)) = lam(y.N ′) where N ′ = [M/x]nα(N)
choosing y 6∈ FV(M) and y 6= x

[M/x]nα(R) = M ′ if [M/x]rα(R) = M ′ : α′

[M/x]nα(R) = R′ if [M/x]rα(R) = R′

[M/x]nα(N) fails otherwise

Because of compositionality, the hereditary substitution may fail to be defined only
if the substitutions into the subterms are undefined. The side conditions y 6∈ FV(M)
and y 6= x do not cause failure, because they can always be satisfied by appropriately
renaming y.

Substitution into an atomic term may fail to be defined depending on what is

3We use n for normal object, r for atomic object, a for normal type, p for atomic type, and s for
substitution; k for kind is used earlier but its straightforward definition is omitted. We also use γ
for contexts and δ for modal contexts. In general, we write ∗ in the substitution [M/x]∗α to denote
n, r, a, etc.
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returned as a result of substituting into the function part of an application.

[M/x]rα(x) = M : α
[M/x]rα(y) = y for y 6= x

[M/x]rα(app(R,N)) = app(R′, N ′) if [M/x]rα(R) = R′ and N ′ = [M/x]nα(N)
[M/x]rα(app(R,N)) = M2 : α2 if [M/x]rα(R) = lam(y.M ′) : α1 → α2

where α1 → α2 ≤ α and N ′ = [M/x]nα(N)
and M2 = [N ′/y]nα1

(M ′)
[M/x]rα(app(R,N)) fails otherwise

For example, if [M/x]rα(app(R,N)) does not return an atomic term or a lambda
expression, or if the returned approximation α1 → α2 is not a subexpression of
α, then the substitution into app(R,N) is undefined. Shortly, we will prove that
α1 → α2 will always be a subexpression of α so that the check is superfluous.
We nevertheless include the check here to make it obvious that the hereditary
substitution is well-founded, because recursive appeals to substitutions take place
on smaller terms with equal approximation, or on a smaller approximation.

Since variables only range over objects, hereditary substitution for types A and
atomic types P is trivially compositional. We only show these cases here and omit
them in the rest of the development.

[M/x]aα(Πy:B.C) = Πy:B′.C ′ where B′ = [M/x]aα(B) and C ′ = [M/x]aα(C)
choosing y 6∈ FV(M) and y 6= x

[M/x]aα(P ) = P ′ where P ′ = [M/x]pα(P )

[M/x]pα(a) = a
[M/x]pα(app(P,N)) = app(P ′, N ′) where P ′ = [M/x]pα(P ) and N ′ = [M/x]nα(N)

An even more straightforward definition applies for the substitution into kinds.

The Full Language. Following the above idea and the definition of non-hereditary
substitution, it is not difficult to extend the definitions to the full language. We
present the complete definition of hereditary substitution in the electronic appendix,
using the notation

[M/x]∗α( )

[[Ψ̂.M/u]]
∗
α[ψ]( )

[σ]∗ψ( )

for ∗ = n, r, s, a, p, k, γ, δ and = N,R, σ,A, P,K,Γ,∆, respectively.
To illustrate the extension, we present here a characteristic fragment of the defini-

tion of hereditary modal substitution, that is, the substitution for a meta-variable.
We will concentrate on the case where we apply a hereditary modal substitution to
an atomic term [[Ψ̂.M/u]]

r
α[ψ](R). The result of this substitution is either an atomic

term R′ or a normal term M ′ : α′ with a type approximation.
In the definition of this substitution, we require that Ψ̂ lists exactly the variables

from the context approximation ψ which appears as a bounding index of the sub-
stitution. Because Ψ̂ in Ψ̂.M is a binder and its variables can be renamed, this
requirement really expresses that the number of bound variables in Ψ̂.M matches
the number of variables in the context approximation ψ.
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We highlight the most interesting cases, namely when substituting into a meta-
variable closure clo(u, σ) and a modal application mapp(R, Γ̂.N).

First, the cases where we have reached a closure. If the meta-variable at the head
is the same as we are substituting for, we need to invoke a hereditary simultaneous
substitution, similar to the non-hereditary meta-variable substitution in Section 4.3.

[[Ψ̂.M/u]]
r
α[ψ](clo(u, τ)) = M ′ : α where τ ′ = [[Ψ̂.M/u]]

s
α[ψ](τ)

and M ′ = [τ ′/Ψ̂]nψ(M)

[[Ψ̂.M/u]]rα[Ψ](clo(v, τ)) = clo(v, τ ′) if v 6= u

with τ ′ = [[Ψ̂.M/u]]sα[ψ](τ)

[[Ψ̂.M/u]]
r
α[Ψ](clo(v, τ)) fails otherwise

The failure case only applies when one of the appropriate recursive calls fails.
For an application, the result differs depending on whether the head of R is equal

to the meta-variable we are substituting for or not. If so, then substitution needs
to proceed hereditarily and we return a normal term together with it approximate
type. If not, we just substitute recursively and re-build an application.

[[Ψ̂.M/u]]
r
α[ψ](mapp(R, Γ̂.N)) = M2 : α2 if [[Ψ̂.M/u]]

r
α[ψ](R) =

mlam(v.M ′) : α1[γ] ⇒ α2

where α1[γ] ⇒ α2 ≤ α[ψ]

and γ̂ = Γ̂

and N ′ = [[Ψ̂.M/u]]
n
α[ψ](N)

and M2 = [[Γ̂.N ′/v]]
n
α1[γ](M

′)

[[Ψ̂.M/u]]rα[ψ](mapp(R, Γ̂.N)) = mapp(R′, Γ̂.N ′) if [[Ψ̂.M/u]]rα[ψ](R) = R′

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]
r
α[ψ](mapp(R, Γ̂.N)) fails otherwise

In the above cases we do not substitute into Γ̂, as Γ̂ is just a list of ordinary variables
without any type information. In the first case, we need to verify that γ̂ = Γ̂ in
order to establish our invariant to allow the final computation of M2. Since Γ̂.N
binds the variable in Γ̂ and therefore allows their renaming, this requires only that
γ and Γ̂ have the same length. If not, hereditary substitution will fail, as it will in
the case where the result of substituting into R returns a normal term which is not
a meta-variable abstraction.

5.2 Properties of Hereditary Substitutions

The first property states that the hereditary substitution operations terminate,
independently of whether the terms involved are well-typed or not.

Theorem 5.1 Termination.

(1 ) If [M/x]rα(R) = M ′ : α′ then α′ ≤ α

(2 ) [M/x]∗α( ), [[Ψ̂.M/u]]
∗
α[ψ]( ) and [σ]∗ψ( ) terminate, either by returning a result

or failing after a finite number of steps.

Proof. The first part is verified by induction on the definition of all operations.
The second part follows by a nested induction, first on the structure of α, α[ψ]
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and ψ and second on the structure of the term we apply hereditary substitution to.
Note that type approximations contain context approximations and vice versa, so
the structural ordering on these is meaningful and well-founded.

Termination is the key property allows us to disentangle the mutual dependency
between typing and normalization which is the most difficult obstacle to overcome
in the meta-theory of dependent type theories.

Theorem 5.2 Decidability of Type Checking.

All judgments in the dependent contextual modal type theory are decidable.

Proof. The typing judgments are syntax-directed and therefore clearly decid-
able. Hereditary substitution always terminates, giving us a decision procedure for
dependent typing.

It is remarkable that we can prove decidability even without proving that hered-
itary substitution of well-typed terms into well-typed terms again yields well-typed
terms. Nonetheless, such a theorem is critical for the logical framework methodol-
ogy, and to relate our formulation of the type theories to others in the literature.
We state here only the version of the theorem needed to validate the operations
that arise during type-checking; more details and appropriate generalizations can
be found in the electronic appendix.

Theorem 5.3 Hereditary Substitution Principles for Types.

Assume the contexts in the given judgments below are well-formed.

(1 ) If ∆; Γ `M ⇐ A and ∆; Γ, x:A ` B ⇐ type then ∆; Γ ` [M/x]a
A−

(B) ⇐ type.

(2 ) If ∆; Ψ `M ⇐ A and ∆, u::A[Ψ]; Γ ` B ⇐ type

then ∆; [[Ψ̂.M/u]]aA−[Ψ−](Γ) ` [[Ψ̂.M/u]]aA−[Ψ−](B) ⇐ type

(3 ) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` B ⇐ type then ∆; Γ ` [σ]aΨ−
(B) ⇐ type.

Proof. Direct consequence of the hereditary substitution principles given in
the electronic appendix. In brief, we generalize the judgments over all syntactic
categories and then proceed by nested induction on the index of the hereditary
substitution (A−, A−[Ψ−], and Ψ−, respectively) and the structure of the derivation
we substitute into.

For more detail on the technique of hereditary substitutions and discussion of
related issues we refer the reader to the technical report by Watkins et al. [2002].
Simultaneous and modal substitution add some bulk to the development, but do
not require any essentially new ideas not already introduced above.

6. STAGED FUNCTIONAL COMPUTATION

In this section we show how contextual modal type theory can avoid generating
spurious redexes in staged computation and run-time code generation, producing
simpler and more efficient code than is possible with validity alone.

Davies and Pfenning [2001] have proposed the use of the modal necessity operator
2 in order to provide type-theoretic support for staged computation and, more
specifically, run-time code generation. Abstractly, values of type 2A have the form
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box(M), where M is an (unevaluated) source expression. In other words, the box

constructor functions like a quotation operator. The introduction rule

∆; · `M : A

∆; Γ ` box(M) : 2A
2I

enforces that M does not contain any free ordinary variables x, only other meta-
variables in ∆. In the implementation of this calculus for run-time code genera-
tion [Wickline et al. 1998], a value box(M) of type 2A is actually not maintained
as a source expression, but compiled to a generator which will produce compiled
code for M at run-time. The modal restriction means that programs are correctly
staged, that is, all the information to generate efficient code from M is indeed
available when the generator is invoked. Abstractly, the elimination rule

∆; Γ `M : 2A ∆, u::A; Γ ` N : C

∆; Γ ` let boxu = M in N end : C
2E

binds u to the source expression that M evaluates to and substitutes it in N .
Variables u::A then refer to source expressions.

u::A in ∆

∆; Γ ` u : A
mvar

In the implementation, an occurrence of u in N inside a box operator corresponds to
the inner generator invoking the outer one during its operation, while an occurrence
of u in N not underneath a box will invoke the generator and then jump to it,
executing the generated code.

As mentioned earlier, in the syntax of this paper, 2A would be written as [·]A.
Proof terms are also simple notational variants: box(M) would be box((·).M) and
let boxu = M in N end would be letbox(M,u.N), and variables u become clo(u, ·).

As a simple standard example, consider the exponentiation function exp n b,
which computes bn. We present the examples in a syntax reminiscent of Standard
ML, including integers, some integer operations, and recursion. We also do not
provide a formal operational semantics, but it is a straightforward call-by-value
functional language based on the reductions =⇒R from Section 4.4. In this setting
box is akin to a quotation operator and we do not evaluate in its scope.

(* val exp : int -> (int -> int) *)

fun exp 0 = fn b => 1

| exp n = fn b => b * exp (n-1) b

This function will always return a functional object (that is, a closure in the im-
plementation) after one step.

We can stage the computation in such a way that when given the exponent n it
generates a function to compute bn. Using modal types we can not only enforce
this staging as shown below, we can also implement it so that it returns a source
expression (or its corresponding generator) rather than just a closure.

(* val exp : int -> [](int -> int) *)

fun exp 0 = box (fn b => 1)

| exp n = let box u = exp (n-1) in box (fn b => b * u b) end
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We then have (using some variable renaming for readability)

exp 2 ==> box (fn b2 => b2 * (fn b1 => b1 * (fn b0 => 1) b1) b2)

If we carry out some variable-for-variable reductions, we can see that the output
represents a somewhat less direct version of

box (fn b2 => b2 * (b2 * 1))

which would avoid unnecessary function calls and is therefore the ultimately desired
residual expression.

The logical view of staged computation proposed above is simple, elegant, and
effective [Wickline et al. 1998]. When used as a mechanism for meta-programming,
however, it has the frequently cited drawback [Davies 1996; Taha and Sheard 1997]
that the expressions that are manipulated must be closed. The example of exp 2

shown above is one example where the residual code could be improved further if
one could manipulate expressions with free variables as in work by Davies [1996]
and recent research on MetaML [Calcagno et al. 2004] which are based on temporal
logic instead of the modal logic of validity. Moving to temporal logic, however,
comes at a price, because we still need to track closed expressions if we want to be
able to evaluate them explicitly, which accounts for a good deal of the complexity
of the MetaML type system.

Instead of using temporal type theory we can overcome these difficulties by gen-
eralizing from modal logic to contextual modal logic. Recall from Sections 2.4 and
4.1 that contextual modal logic is an extension of the modal logic proposed above
where 2A corresponds exactly to [·]A. We can now reformulate the function of
type int -> [](int -> int) into a function of type int -> [b:int]int, where
the output is closed except that it can mention one variable (named b in the type).

In the concrete syntax, the box operator now is itself a binding operator (instead
of taking a function as an argument), where we write box b1,...,bn => M for
box(b1, . . . , bn.M). We write a substitution as a tuple [M1,...,Mn]which is applied
to a meta-variable u by position, rather then by name in the form u[M1,...,Mn].
Below is the improved exponentiation function.

(* val exp : int -> [b:int]int) *)

fun exp 0 = box b => 1

| exp n = let box u = exp (n-1) in box b => b * u[b] end

When substituting an expression M for u in u b in the previous version, we gen-
erate a residual function application M b. Here we substitute [[(b2.M)/u]](u [b1/b2])
which directly applies the substitution [b1/b2] to M . In this manner, we directly
obtain the desired residual expression.

exp 2 ==> box (b => b * (b * 1))

Other approaches, such as Taha and Nielsen’s environment classifiers [Taha and
Nielsen 2003], may be more parsimonious on some examples and perhaps more
amenable to type inference (which we do not consider here), but they come at
a high price in syntactic and conceptual complexity. One of the consequences of
this complexity is that it is difficult to see how one might formally reason about
the correctness of staged programs. Our type-theoretic setting could provide an
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advantage in that respect since it is consistent with dependent types. A brief
discussion of this possibility can be found among the future work in Section 9.2.

We close this section with the observation that we can convert between the two
forms of abstraction.

(* val f : [](A -> B) -> [y:A]B *)

fun f x = let box u = x in box y => u[] y end

(* val g : [y:A]B -> [](A -> B) *)

fun g z = let box v = z in box (fn y => v[y]) end

The function to evaluate an expression still requires its argument to be closed,
when the language is pure.

(* val eval : []A -> A *)

fun eval x = let box u = x in u[] end

However, when the language has non-termination, exceptions, or other expression
of arbitrary type, we can write, for example,

(* val eval’ : [y:B]A -> A *)

fun eval’ x = let box u = x in u[raise exn] end

Then eval’ (box y => M) raises the exception exn if the evaluation of M would
refer to y.

7. IMPLEMENTATION OF META-VARIABLES IN LOGICAL FRAMEWORKS

In this section, we sketch how dependent contextual modal type theory as presented
in Section 5 can be employed for the efficient implementation of meta-variables in a
logical framework. This is a different form of application than given in the previous
section, not only because we rely on canonical forms, but also because explicit
quantification over meta-variables is at present not available to the user, only in
the implementation. More details on this application in the context of the Twelf
system [Pfenning and Schürmann 1999] are given by Pientka [2003] and Pientka
and Pfenning [2003]. For the non-dependent case, similar observations (without
any logical foundations) have been made by Dowek et al. [1995; 1996] and later
generalized by Muñoz [2001].

An implementation of a logical framework must handle meta-variables, which are
used both during type reconstruction and during proof search. These meta-variables
are placeholders for terms in the language under consideration, to be determined
or constrained by unification, proof search, or perhaps even directly by the user.
Since dependent type theories reify proofs as objects, unsolved subgoals can also
be represented as meta-variables.

When the value of a meta-variable is determined we say that the meta-variable is
instantiated in order to distinguish this from the process of substitution of a term
for an ordinary variable. To avoid misunderstandings, we will refer to ordinary
variables as parameters. In contrast to meta-variables, these should be interpreted
universally, that is, they are not subject to instantiation.

There are four principal questions in the handling of meta-variables:
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(1) Which parameters (that is, bound or universally quantified variables) are al-
lowed to occur in a term that instantiates a meta-variable?

(2) What constraints does the type theory impose on occurrences of meta-variables
in the contexts or types of other meta-variables?

(3) How do we implement meta-variables and the instantiation operation?

(4) Which algorithm do we use for unification or constraint simplification?

The first three questions apply, regardless of whether the meta-variables stand
for open subgoals during proof search, or if they are placeholders for terms to be
determined by unification.

The last one is beyond the scope of this paper, although Dowek et al. [1995; 1996]
and Pientka [2003] provide answers that are consistent with our approach. For the
first three questions, dependent contextual modal type theory provides clean and
simple answers that have been experimentally validated in Twelf.

Parameter Occurrences. The question which parameters may occur in the term
that instantiates a meta-variable is answered quite directly by our type theory. A
meta-variable u::A[Ψ] can depend exactly on the parameters in Ψ. All occurrences
of u in a term have the form clo(u, σ) with the typing rule

∆, u::A[Ψ],∆′; Γ ` σ ⇐ Ψ

∆, u::A[Ψ],∆′; Γ ` clo(u, σ) ⇒ [σ]aΨ(A)
mvar

This means that σ is a mediating substitution, providing a translation from the
context Ψ to the ambient context Γ in effect where u occurs. Different occurrences
of u may be under different mediating substitutions σ, avoiding possible confu-
sions of variable names. While this means of achieving consistency may appear to
be somewhat heavy, it is in fact quite efficiently implementable by using explicit
substitutions as sketched below.

Meta-Variable Occurrences. Recall the rules to verify that modal contexts are
well-formed.

` · mctx

` ∆ mctx ∆ ` Ψ ctx ∆; Ψ ` A⇐ type

` (∆, u::A[Ψ]) mctx

This means that we must be able to present all meta-variables that appear in a given
term in a linear order so that the types and contexts of meta-variables further to
the right may mention meta-variables further to the left. Since the set of cur-
rently available meta-variables is usually not made explicit in an implementation,
we had missed this invariant in an earlier implementation of unification for the LF
logical framework. Fortunately, in the case of higher-order patterns in the sense of
Miller [1991], this restriction does not place any additional burden on the implemen-
tation since the steps of the algorithm implicitly maintain this invariant [Pientka
2003]. However, when constraints outside the pattern fragment are generated and
maintained, additional work during an occurs-check may be necessary to enforce
this invariant.

There is a related question: which occurrences of meta-variables in the substi-
tution term for another meta-variable are sound. In the first-order, non-dependent
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case this reduces to a simple occurs-check. In this situation, the question is most
easily answered by analyzing simultaneous substitution for meta-variables. This
can easily be done in the framework set out here. The details are beyond the scope
of this paper and can be found in Pientka’s Ph.D. thesis [2003].

Implementation Considerations. The type theory suggests certain implementa-
tion choices which we briefly discuss here. The first is dictated by the fact that
closures clo(u, σ) are part of the syntax of canonical forms. Consequently, the im-
plementation should support substitutions as explicit syntactic objects. In order to
avoid the excessive renaming inherent in the substitutions [[Ψ̂.M/u]]

∗
A[Ψ] we are led

to a representation using de Bruijn indices, since multiple renamings of a context Ψ
are identical. Moreover, the type-free context Ψ̂ in [[Ψ̂.M/u]] becomes unnecessary,
since it only records a bound on the de Bruijn index of variables free in M . But
these can be obtained from the type u::A[Ψ], so they do not need to be maintained
during substitution.

The next critical observation is that in the absence of abstraction over meta-
variables, the substitution operation (hereditary or otherwise) for a meta-variable
does not need to check any condition related to bound variables (please see the
electronic appendix). This would suggest to represent meta-variables directly by
pointers, and to instantiate meta-variables by updating these pointers, called graft-
ing by Dowek et al. [1995; 1996]. Clearly, since each variable occurs as part of a
closure clo(u, σ) with an appropriate mediating substitution σ, updating u in place
does not destroy any typing or variable naming invariant.

However, there is a catch: our system only treats canonical forms (the only terms
of interest in a logical framework), the result of replacing u by a term M would
no longer be canonical and not even be syntactically meaningful. The solution
is to adopt a notion of postponed hereditary substitution directly modeled after
the notion of explicit substitution [Abadi et al. 1990]. However, instead of giving
postponed hereditary substitutions first-class status and investigate properties such
as strong normalization or the Church-Rosser property, we view them only as an
implementation technique. That means we should never directly analyze terms
such as clo(M,σ) unless M is a meta-variable, and all operations should propagate
the substitution inwards. One can think of this as a lazy implementation of the
hereditary substitution operations detailed in Section 5. With this change, grafting
via pointer-update is a correct implementation of instantiation as given by [[Ψ̂.M/u]].

This notion of lazy hereditary substitution provides a clean and simple organiz-
ing principle for many operations on terms in the Twelf implementation. These
operations come in two forms: one operating on a weak head-normal form, and
one operating on a term with a possible postponed hereditary substitution which is
pushed downwards far enough to expose a term in weak head-normal form. As we
traverse the term, we therefore expose the canonical term layer by layer, carrying
out only as much of the hereditary substitution as necessary. A similar technique
has proved quite effective in λProlog, although both the formal basis and the imple-
mentation differs in some important aspects [Liang and Nadathur 2002]. A further
discussion is beyond the scope of this paper, but some additional material can be
found in a related paper [Pientka and Pfennning 2003].
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8. RELATED WORK

We roughly divide the related work into research on modal logic, functional pro-
gramming, and meta-variables in theorem proving.

8.1 Modal logics of context

The formal notion of context has been extensively researched for various applica-
tions in artificial intelligence. One of the early proposals is by Weyhrauch [1979],
motivated by Weyhrauch’s work in interactive theorem proving. Later, McCarthy
[1987; 1993], proposed a logic of context as a solution to the problem of generality
in common-sense reasoning. McCarthy’s premise is that logical axioms are usually
not general, but crucially depend on the context in which they are asserted. Thus,
a formalization of the notion of context is a necessary first step in formulating gen-
eral axioms for common-sense knowledge, because it facilitates a precise expression
of the different meanings that a logical statement can take in different contexts.
This line of research eventually led to the formulation of the propositional logic of
contexts (PLC) by Buvač et al. [1995], and an extension to first-order logic [Buvač
1996]. In these theories, contexts are first class objects (i.e., the theory provides
terms that denote contexts), and are modeled by sets of propositions. Each con-
text can make statements about the truth of formulas in other contexts, by using
the modal operator ist . For example, in a context c1 we can assert the formula
ist(c2, A), establishing that, when viewed from c1, the proposition A is true in the
context c2.

The work of Giunchiglia on contextual reasoning [Giunchiglia 1993] is motivated
by an observation that reasoning about a certain problem usually involves only a
small subset of the overall available knowledge. Thus, Giunchiglia proposes that
the knowledge be organized into contexts – modular, but related units, that for-
mulate local theories, which any particular reasoning agent may or may not em-
ploy. As a realization of this idea, we mention the work on multi-context systems
[Giunchiglia and Serafini 1994; Serafini and Giunchiglia 2002]. In multi-context
systems, contexts represent the propositions associated with the knowledge or be-
lief of a particular agent. Each context is therefore labeled by a unique identifier
of the agent it represents. The multi-context systems are multi-lingual, meaning
that facts from different contexts can be represented using different languages, and
there is an apparatus for specifying translations between the languages. Facts that
span multiple contexts are specified via so-called bridge rules, which are inference
rules whose premises and conclusions belong to different languages. Technically,
multi-context systems are founded in the multi-modal version of the modal logic
K. For a formal relationship between PLC and multi-context systems, we refer to
a paper by Serafini and Bouquet [2004].

Attardi and Simi [1995; 1994] propose the notion of a viewpoint as means of
expressing relativized truth. A viewpoint is a set of propositions representing as-
sumptions of a theory of interest. For example, the sentence in(′A′, vp) states that
the proposition A is true in the context of a viewpoint vp. The operator in for
entailment in a viewpoint does not modify the proposition A, but rather, expects
the syntactic representation of A (here denoted as ′A′). The syntactic nature of en-
tailment in a viewpoint is exploited in the representation of other modal operators
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like knowledge and belief, which are viewed as first-order predicates over syntac-
tic sentences, rather than as operators on propositions. The process of entering a
new viewpoint is called reification, and exporting a knowledge from one viewpoint
into another is called reflection. A proposition can be reified only if it is derived
in a restricted way, without using reflection. This restriction is motivated by the
inconsistency that arises in formal systems capable of both representing their own
syntax, and also reasoning by reflection [Montague 1963].

A type theoretic approach to the formulation of the logic of contexts has been
advocated by Thomason [1999; 2003]. In addition to the types of individuals, truth-
values, and functions, this type theory features the type w of possible worlds. There
are no constants or variables of type w, so there is no explicit lambda abstraction
over worlds. Instead, the type theory contains operators for forming intensions,
which are functions over possible worlds. For example, if e:A is an expression, then
ê is an intensional expression and has type w → A. Dually, if e is an intensional
expression of type w → A, then ě is its extension, and has type A. The type
theory further contains the type of indices, whose elements denote differently in
different contexts. Typical examples are the expression “I” and “here”, which,
obviously, have different meanings depending on the context of the person that
interprets them. Indices can be built into more complex types, like the type of
context-dependent propositions, or the type of context-dependent intensions.

Finally, we mention the work of de Paiva [2003], who studies the relationship
between several known propositional logics of contexts, like the PLC logic and
multi-context systems mentioned above, and proposes a constructive version of the
multi-modal K as the common foundation. The paper further discusses the proof
term assignment for this logic, and the corresponding Curry-Howard isomorphism,
along the lines of Alechina et al. [2001]. This proof term assignments is different
from ours in that it does not separate the ordinary from the meta-variables. As a
consequence, it has to employ explicit substitutions even when the modalities are
not indexed by contexts.

8.2 Context in functional programming

In functional programming, various formulations of context as a primitive program-
ming construct have been considered [Sato et al. 2001; Sato et al. 2002; Mason 1999;
Hashimoto and Ohori 2001], with applications in explaining binding structure and
dynamic binding [Dami 1998], and in incremental program construction [Lee and
Friedman 1996].

For example, the λκε-calculus of Sato et al. [2002], allows a simultaneous ab-
straction over a set of variables. The expression κ{Ψ}.M abstracts the variables
listed in Ψ from the expression M : A. The type of κ{Ψ}.M is AΨ, similar to our
type [Ψ]A. There are many distinctions, however, between λκε and the proof terms
for ICML, arising mostly because λκε is not based on modal logic. For example,
the context in λκε associates variables with types, but not with the context that
they depend on. This leads to a somewhat complicated formulation, where each
variable must be assigned an integer level, and the typing rules and the opera-
tion of substitution must perform arithmetic over levels. Another difference is that
λκε-calculus admits outside free variables to appear in the body of a context ab-
straction. This is prevented in ICML by the typing rules for [Ψ]A, and is essential
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for the modeling and implementation of meta-variables. As explained in Section 7,
substitutions for meta-variables do not need to check any side conditions regarding
bound variables, allowing meta-variables to be represented by pointers. Without
the modal restriction, this aspect of meta-variables would not have been captured.

The λε-calculus of Sato et al. [2001] is a precursor to λκε. The λε-calculus
provides explicit substitution of terms for variables, but a variable may be used
only if it is bound by the explicit substitution.

Mason [1999] extends the untyped λ-calculus with a primitive notion of context,
and the related operations for declaring and filling context holes. Holes are similar
to our meta-variables, in the sense that each hole is decorated with its corresponding
substitution. Mason considers operations of strong and weak application of variable
substitutions. Both operations propagate the substitution down to the holes, but
differ in their action at the holes. Strong application composes the substitution with
the hole’s substitutions (possibly changing the domain of the hole’s substitution),
while weak application only distributes over the terms of the hole’s substitution.
Mason’s operation of hole filling correspond to our modal substitution, in the sense
that the substitution decorating each hole is applied (weakly or strongly) over the
term being placed into the hole. The paper does not consider abstraction over
holes, nor is there a term constructor similar to our box that introduces a modal
distinction between terms.

Hashimoto and Ohori [2001] present a typed calculus which internalizes the no-
tion of computation in context via a type of functions from contexts to values. The
calculus distinguishes between ordinary variables and hole variables. Hole variables
correspond to our meta-variables; they are typed in a separate hole context ∆ which
associates with every hole variable u a type A, an interface Ψ (roughly correspond-
ing to our context), but also an explicit substitution σ that specifies the bindings of
the hole. Explicit substitutions only rename variables with other variables. Associ-
ating holes and substitutions in ∆ complicates the system significantly and reduces
its expressiveness. For example, each hole variable can only be associated with one
substitution, and the typing rules must non-trivially manipulate the hole context.
Even more severely, the hole context must be linear, that is, hole variables can only
be used once, and ordinary variables can be referenced only when the hole context
is empty.

The mentioned works are computationally motivated, and typically do not ex-
plore the logical aspects of contexts. A modal logic of contexts as a foundation for
functional programming with various kinds of effects has recently been proposed
by Nanevski [2003; 2004]. In that work, modal validity classifies computations
that are effectful in the sense that the computation results depend on the run-time
environment, but execution does not change the run-time environment itself. Ex-
amples include programs that read (but do not write) from memory, or programs
with control-flow effects. Computations that may change the run-time environment
(for example, a computation that writes into memory) are ascribed a type corre-
sponding to modal possibility. Modal types for effectful computations are indexed
by sets of names, where each name corresponds to a particular effect instance. In
this respect, sets of names are similar to context from the current paper. There
are significant differences between the two, however; the principal difference being
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that names have global identity. One and the same name can appear in the index
of many different modal operators. In contrast, a variable bound in a context has
local scope and is thus necessarily different from any other bound variable in the
program.

A modal λ-calculus has been proposed as a foundation for staged computation
and metaprogramming by Davies and Pfenning [2001], and was subsequently used
as a language for run-time code generation by Wickline et al. [1998; 1998]. In this
work, the modal constructor 2A is used to classify closed code of type A. Closed
code contains no free ordinary variables, and is thus executable at run time. The
applicability of closed code is sometimes restrictive, so alternative approaches for
typing open code were developed; most significantly, λ© [Davies 1996], and MetaML
[Taha and Sheard 1997]. Both of these calculi are based on a proof term system
for a variant of temporal logic with a modality expressing truth at the next time
moment. From the computational perspective, the modal type classifies open code,
but the code expressions cannot be evaluated at run time unless further guarantees
are provided. For some time, the focus of the work on staged computation and
metaprogramming has been in combining these two approaches. Taha and Nielsen
[2003] and Calcagno et al. [2004] achieve this by relying on environment classifiers,
which stand for an unnamed set of variables that a term may be open in. These
calculi contain the types of code open in a set of environment classifiers, but also the
operations of universal quantification over classifiers. Another approach to typing
open code is the ν2-calculus developed by Nanevski and Pfenning [2005], where
names stand for free variables, and there is also universal quantification over sets
of names. The ν2-calculus is similar to the calculus presented here, except that in
ν2 modalities are indexed by sets of names rather than by contexts.

8.3 Context in theorem proving

In general we can find two distinct motivations for context calculi in theorem prov-
ing. As discussed in the previous section, context calculi provide a foundation for
meta-variables which need to be instantiated during proof search via higher-order
unification. The concise description of higher-order unification requires a clear dis-
tinction between bound variables and meta-variables and efficient implementation
techniques rely on instantiation of meta-variables which allows capture. One of
the first approaches to allow first-order replacement and avoid the aforementioned
problems in the simply-typed setting was developed by Dowek et al. [1995; 1996].
It relies on de Bruijn indices and explicit substitutions and was later extended to
dependently typed theories by Muñoz [2001; 2000]. In this approach explicit substi-
tutions can be associated with any term, not only with meta-variables. First-order
replacement is achieved in two steps. First, terms are pre-cooked in such a way that
scoping constraints are preserved. The main idea is, if some meta-variableX occurs
under some λ-abstractions, then substituting M for X needs some processing called
lifting to avoid capture of bound variables in M . Second, we can use first-order in-
stantiation, called grafting. Although the use of de Bruijn indices leads to a simple
formal system and it is very useful in an implementation, nameless representation
of variables via de Bruijn indices are usually hard to read and critical principles are
obfuscated by the technical notation.

Independently, Strecker [1999] developed a calculus with meta-variables as first-
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class objects for a variant of the Extended Calculus of Construction. Similar to
our approach, meta-variables are associated with a substitution to eliminate the
need for raising and β-reduction during instantiation of meta-variables. However
there are several differences. First of all, there is no explicit context for the meta-
variables. As a consequence, it is difficult and it may be expensive to verify that
an instantiation is valid, since meta-variable dependencies need to be computed
afresh. Second, the substitutions attached to meta-variables are not simultaneous
substitutions. As a result, the decidability of the typing rules is not directly obvious.
Finally, the calculus lacks a logical foundation.

Context calculi not only play an important role in concisely describing meta-
variables during higher-order unification, they also are an integral part of a foun-
dation for interactive theorem proving where we need to reason about incomplete
proofs or proof with holes [Magnusson 1995; Geuvers and Jojgov 2002; Jojgov
2003; Bognar and de Vrijer 2001]. The status of holes in proofs which may be
filled later is essentially the same as meta-variables. Therefore, not surprisingly,
many approaches build directly or indirectly on the treatment of meta-variables in
higher-order unification and suffer the same problems and difficulties. For example,
in Geuvers and Jojgov [2002], open terms are represented via a kind of meta-level
Skolem function. However, in general reduction and instantiation of meta-variables
(or holes) do not commute. This problem also arises in Bognar and de Vrijer [2001].
Our work resolves many of these aforementioned problems, since reduction and in-
stantiation naturally commute and require no special treatment. Hence this work
may also be viewed as a foundation for treating incomplete proofs.

Recently, Sato et al. [2003] proposed a calculus of meta-variables. Their approach
is fundamentally different from the one presented in this paper. Each variable is
given a level, which classifies the variables into bound variables (level 0), meta-
variables (level 1) and meta-meta-variables (level 2) etc. Then the authors define
a “textual” substitution which allows capture. There are two main obstacles with
using this approach. First, since textual substitutions are not capture-avoiding, we
will lose confluence. The second problem is that some reductions may get stuck. To
address these problems the authors suggest to define reductions in such a way that
it takes into account the different levels and keep track of arities of functions. This
leads to a carefully engineered system which is confluent and strongly normalizing,
although not very intuitive. Moreover, a formulation of algorithms such as higher-
order unification with this calculus seems cumbersome.

9. EXTENSIONS AND FUTURE WORK

We briefly sketch three main avenues of future work: adding contextual possibil-
ity, defining a dependent necessity for reasoning about staged computation, and
allowing explicit quantification over substitutions.

9.1 Contextual possibility

The contextual modal type theory can be extended to include a relativized ver-
sion of modal possibility, and we have already presented some preliminary steps
in that direction [Nanevski et al. 2003]. The idea is to introduce a new judgment
A poss〈Ψ〉 which expresses existential quantification over possible worlds. The judg-
ment A poss〈Ψ〉 holds if there exists a world in which Ψ and A are simultaneously
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true. This is dual to relativized validity A valid[Ψ] which holds if A is true in every
world in which Ψ is true. The judgment A poss〈Ψ〉 is internalized by means of a
type operator 〈Ψ〉A, which degenerates into the customary operator for possibility
3A when Ψ is the empty context, The typing rules for relativized possibility are
an indexed variant of the rules presented by Pfenning and Davies [2001]. We show
here only the simply typed variant of the rules.

∆; Γ ` σ : Ψ ∆; Γ `M : A true

∆; Γ ` 〈σ,M〉 : A poss〈Ψ〉
poss

∆; Γ ` E : A poss〈Ψ〉

∆; Γ ` dia(E) : 〈Ψ〉A true
3I

∆; Γ `M : 〈Ψ〉A true ∆; Ψ, x:A true ` E : B poss〈Θ〉

∆; Γ ` letdia(M, 〈Ψ, x〉. E) : B poss〈Θ〉
3E

∆; Γ `M : [Ψ]A true ∆, u::A valid[Ψ]; Γ ` E : B poss〈Θ〉

∆; Γ ` letbox(M,u.E) : B poss〈Θ〉
2Ep

The additional rule 2Ep is not related to possibility per se, but eliminates the
validity modality into the possibility judgment. It is needed so that the system sat-
isfies the subformula property [Pfenning and Davies 2001]. The rest of ICML can
easily be extended to the new judgment. For example, contextual substitution sim-
ply commutes with all the new constructors. Extending simultaneous substitutions
to the new cases is slightly more involved, as presented below.

[σ](dia(E)) = dia([σ]E)
[σ]〈τ,M〉 = 〈[σ]τ , [σ]M〉
[σ](letdia(M, 〈Ψ, x〉. E)) = letdia([σ]M, 〈Ψ, x〉. E)
[σ](letbox(M,u.E)) = letbox([σ]M,u. [σ]E)

Observe that in the letdia clause of the definition, the substitution σ is not applied
to E; the free variables of E are all bound by Ψ, x, and thus cannot be influenced
by σ.

Just as Pfenning and Davies [2001], we require a new substitution operation
〈〈F/〈Ψ, x〉〉〉E, where F and E are expressions witnessing relativized possibility. If
F : A poss〈Ψ〉 and Ψ, x:A true ` E : B poss〈Θ〉 then 〈〈F/〈Ψ, x〉〉〉E is a witness
of relativized possibility B poss〈Θ〉. The operation is defined by induction on the
structure of F :

〈〈〈σ,M〉/〈Ψ, x〉〉〉E = [σ/Ψ,M/x]E
〈〈letdia(M, 〈Γ, y〉. F ′)/〈Ψ, x〉〉〉E = letdia(M, 〈Γ, y〉. 〈〈F ′/〈Ψ, x〉〉〉E)

〈〈letbox(M,u. F ′)/〈Ψ, x〉〉〉E = letbox(M,u. 〈〈F ′/〈Ψ, x〉〉〉E)

where we assume Γ, y and Ψ, x are variable disjoint. The local reduction and
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expansion for contextual possibility can then be defined as:

letdia(dia(F ), 〈Ψ, x〉. E) =⇒R 〈〈F/〈Ψ, x〉〉〉E
letbox(box(Ψ.M), u. E) =⇒R [[Ψ.M/u]]E

M : 〈Ψ〉A =⇒E dia(letdia(M, 〈Ψ, x〉. 〈idΨ, x〉))

We currently do not have any convincing applications of contextual possibility,
although the relationship to monadic programming [Pfenning and Davies 2001], mo-
bile computation [Moody 2003], and, more generally, interactions of programs with
their environment [Nanevski 2004] provide some avenues for further investigation.

9.2 Dependent necessity

Another direction for exploration is the dependent typing for the modal operator
2 and its indexed variant. Currently, 2 is defined only for simple types. In the
dependent case we have a somewhat simplified operator Πu::A[Ψ].B, which inter-
nalizes the dependence on the meta-variable u, but does not internalize the validity
judgment itself. As we explained in Section 5, this preserves the existence and
properties of canonical forms of the underlying logical framework. However, if we
are not concerned with canonical forms, the dependently typed rules for 2 may be
formulated as follows.

∆; Ψ `M : A

∆; Γ ` box(Ψ.M) : [Ψ]A
2I

∆; Γ, x:[Ψ]A ` C(x) : type ∆; Γ `M : [Ψ]A

∆, u::A[Ψ]; Γ ` N : C(box(Ψ. clo(u, idΨ)))

∆; Γ ` letbox(M,u.N) : C(M)
2E

A complete dependent type theory with Π, Σ, equality and the full set of con-
textual modal operators is likely to be a suitable framework for reasoning about
staged programs. For example, in such a type theory we could declare a staged,
dependently typed version of the exponentiation function from Section 6 as follows,

exp : Πx:int. Σe:[b:int]int. Πn:int. letbox(e, u. clo(u, n/b)) = nx

Here, the scope of the Σ plays the role of a correctness proof for e. It should
be possible to eliminate this correctness proof with standard program extraction
techniques or proof irrelevance [Pfenning 2001] to obtain the function presented
earlier of type int -> [b:int]int.

9.3 Internalizing explicit substitutions

A further extension that we intend to pursue concerns internalizing simultaneous
substitutions and giving them a first class status. This would allow us to pass
substitutions as function arguments, and to quantify over substitution variables.
Such an extension may potentially have interesting applications, especially in the
modularity of encoding of object theories in a logical framework and perhaps in
capturing operations on contexts such as closure conversion for a functional lan-
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guage in a more immediate way than possible in LF. The proper setting for such
an extension might be the ∇-calculus [Schürmann et al. 2005].

10. CONCLUSION

In this paper we present an intuitionistic contextual modal logic and its type theory
(in both simple and dependently typed setting), as a suitable foundation for for-
malizing contexts in theorem proving and functional and logic programming. From
the logical standpoint, our system is a relativized version of an intuitionistic modal
logic S4. From the computational standpoint, it is a logically justified calculus of
explicit simultaneous substitutions, with very pleasing theoretical properties.

As we outlined in the section on related work, various contextual lambda calculi
have been proposed before, and various modal logics of contexts have been proposed
before. However, we believe that we are the first to unify the two disparate views
and application domains, and provide a type theoretic treatment for both.

We illustrate our logic and its type theory by applying it to two well-known
problems in the areas of staged computation and logical frameworks.

In functional staged computation, one of the challenges has been to design a
type system that can differentiate between code that is manipulated as data (object
code), and code that performs the manipulation (meta code). Such a type system
should satisfy two further requirements: (1) it should be possible to coerce object
code with no free variables into meta code and execute it when required, and (2)
it should be possible to compose object code with free variables into larger object
code, while imposing capture of free variables. The two requirements are difficult
to reconcile because the type system has to recognize when object code is closed
in order to provide for (1), but also when object code is not closed and what its
free variables are in order to provide for (2). Our type system provides for both by
using the modal type constructor [Ψ]A to classify object code with free variables Ψ;
when Ψ is empty, that object code can be converted into meta code and executed.

In logical frameworks, meta-variables are place-holders for as yet unknown terms,
to be instantiated via unification or via proof search. Each meta-variable admits
terms that may depend only on a particular subset of parameters, and a poten-
tial unifier that does not respect this restriction has to be rejected. Tracking the
correspondence between the meta-variables and their respective sets of admissible
parameters is obviously very important for the soundness of the logical framework
and can also have significant consequences for the framework efficiency.

Our proposal for meta-variables centers on the dependently typed version of in-
tuitionistic contextual modal logic, where meta-variables correspond to hypotheses
of contextual validity. For example, the meta-variable u::A valid[Ψ] admits only
terms of type A that depend on the parameters listed in the local context Ψ. The
modal formulation explains and justifies the optimization strategies like grafting,
lowering and raising, that have previously been employed in implementations of
logical frameworks and theorem provers, but have only been justified algorithmi-
cally, rather than logically. We also believe that ICML and its type theory is the
first proposal that uncovers the modal nature of explicit substitutions in logical
frameworks.
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The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
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A. TYPE SYSTEM OF THE DEPENDENT CMTT

Judgments.

` Σ sig Σ is a valid signature.
`Σ ∆ mctx ∆ is a valid modal context.
∆ `Σ Γ ctx Γ is a valid context.
∆; Γ `Σ K ⇐ kind K is a valid kind.
∆; Γ `Σ P ⇒ K atomic family P infers kind K.
∆; Γ `Σ A⇐ type A is a valid normal type.
∆; Γ `Σ R⇒ A atomic object R infers type A.
∆; Γ `Σ M ⇐ A normal object M checks against type A.
∆; Γ `Σ σ ⇐ Ψ substitution σ checks against context Ψ.

Presuppositions. In all judgments but the validity of signatures (` Σ sig), we
assume that the signature Σ is valid. In all judgments but the validity of modal
contexts (`Σ ∆ mctx) we assume the modal context ∆ is valid. In all judgments
but the validity of contexts (∆ `Σ Γ ctx) we assume the context Γ is valid in the
modal context to its left. In the checking judgments M ⇐ A and σ ⇐ Ψ we
assume that A and Ψ are given as valid types and contexts, respectively. In the
synthesis judgments P ⇒ K and R ⇒ A we establish (rather than assuming) that
K and A are valid. These presuppositions will be satisfied if rules are read from
conclusion to premise, and the premises are read from left to right. We use explicit
equality checks where a given input has to be compared with the output of another
judgment.
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Signature formation.

` · sig

` Σ sig ·; · `Σ K ⇐ kind

` (Σ, a:K) sig

` Σ sig ·; · `Σ A ⇐ type

` (Σ, c:A) sig

In the subsequent rules, we omit the subscript Σ from the judgments since it is
the same in all premises and conclusion.

Modal context formation.

` · mctx

` ∆ mctx ∆ ` Ψ ctx ∆; Ψ ` A⇐ type

` (∆, u::A[Ψ]) mctx

Context formation.

∆ ` · ctx

∆ ` Γ ctx ∆; Γ ` A⇐ type

∆ ` (Γ, x:A) ctx

Kind formation.

∆; Γ ` type ⇐ kind

∆; Γ ` A⇐ type ∆; Γ, x:A ` K ⇐ kind

∆; Γ ` Πx:A.K ⇐ kind

∆ ` Ψ ctx ∆; Ψ ` A⇐ type ∆, u::A[Ψ]; Γ ` K ⇐ kind

∆; Γ ` Πu::A[Ψ].K ⇐ kind

Type formation.

a:K ∈ Σ

∆; Γ ` a⇒ K

∆; Γ ` P ⇒ Πx:A.K ∆; Γ ` N ⇐ A

∆; Γ ` app(P,N) ⇒ [N/x]kA(K)

∆; Γ ` P ⇒ Πu::A[Ψ].K ∆; Ψ ` N ⇐ A

∆; Γ ` mapp(P, Ψ̂.N) ⇒ [[Ψ̂.N/u]]kA[Ψ](K)

∆; Γ ` P ⇒ K K = type

∆; Γ ` P ⇐ type

∆; Γ ` A⇐ type ∆; Γ, x:A ` B ⇐ type

∆; Γ ` Πx:A.B ⇐ type

∆ ` Ψ ctx ∆; Ψ ` A⇐ type ∆, u::A[Ψ]; Γ ` B ⇐ type

∆; Γ ` Πu::A[Ψ]. B ⇐ type
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Objects.

c:A ∈ Σ

∆; Γ ` c⇒ A ∆; Γ, x:A,Γ′ ` x ⇒ A

∆, u::A[Ψ],∆′; Γ ` σ ⇐ Ψ

∆, u::A[Ψ],∆′; Γ ` clo(u, σ) ⇒ [σ]aΨ(A)

∆; Γ, x:A `M ⇐ B

∆; Γ ` lam(x.M) ⇐ Πx:A.B

∆; Γ ` R ⇒ Πx:A.B ∆; Γ `M ⇐ A

∆; Γ ` app(R,M) ⇒ [M/x]aA(B)

∆, u::A[Ψ]; Γ `M ⇐ B

∆; Γ ` mlam(u.M) ⇐ Πu::A[Ψ].B

∆; Γ ` R ⇒ Πu::A[Ψ].B ∆; Ψ `M ⇐ A

∆; Γ ` mapp(R, Ψ̂.M) ⇒ [[Ψ̂.M/u]]aA[Ψ](B)

∆; Γ ` R ⇒ P ′ P ′ = P

∆; Γ ` R ⇐ P

Substitutions.

∆; Γ ` (·) ⇐ (·)

∆; Γ ` σ ⇐ Ψ ∆; Γ `M ⇐ [σ]aΨ(A)

∆; Γ ` (σ,M/x) ⇐ (Ψ, x:A)

∆; Γ ` σ ⇐ Ψ ∆; Γ ` R⇒ A′ A′ = [σ]aΨ(A)

∆; Γ ` (σ,R//x) ⇐ (Ψ, x:A)
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B. DEFINITION OF HEREDITARY SUBSTITUTIONS

B.1 Input and Output of Hereditary Substitutions

[M/x]nα(N) = N ′

[M/x]rα(R) = R′ or M ′ : α′

[M/x]sα(τ ) = τ ′

[M/x]aα(B) = B′

[M/x]pα(P ) = P ′

[M/x]kα(K) = K′

[M/x]γα(Γ) = Γ′

[[Ψ̂.M/u]]nα[ψ](N) = N ′

[[Ψ̂.M/u]]rα[ψ](R) = R′ or M ′ : α′

[[Ψ̂.M/u]]sα[ψ](τ ) = τ ′

[[Ψ̂.M/u]]aα[ψ](B) = B′

[[Ψ̂.M/u]]p
α[ψ](P ) = P ′

[[Ψ̂.M/u]]kα[ψ](K) = K′

[[Ψ̂.M/u]]γ
α[ψ]

(Γ) = Γ′

[[Ψ̂.M/u]]δα[ψ](∆) = ∆′

[σ]nψ(N) = N ′

[σ]rψ(R) = R′ or M ′ : α′

[σ]sψ(τ ) = τ ′

[σ]aψ(B) = B′

[σ]pψ(P ) = P ′
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B.2 Hereditary Substitution for a Variable

[M/x]rα(x) = M : α
[M/x]rα(y) = y if y 6= x
[M/x]rα(app(R,N)) = app(R′, N ′) where R′ = [M/x]rα(R)

and N ′ = [M/x]nα(N)
[M/x]rα(app(R,N)) = M2 : α2 if [M/x]rα(R) = lam(y.M ′) : α1 → α2,

where α1 → α2 ≤ α and N ′ = [M/x]nα(N)
and M2 = [N ′/y]nα1

(M ′)
[M/x]rα(clo(v, τ )) = clo(v, τ ′) where τ ′ = [M/x]sα(τ )

[M/x]rα(mapp(R, Γ̂.N)) = mapp(R′, Γ̂.N) where R′ = [M/x]rα(R)

[M/x]rα(mapp(R, Γ̂.N)) = M2 : α2 if [M/x]rα(R) = mlam(u.M ′) : α1[γ] ⇒ α2

and α1[γ] ⇒ α2 ≤ α and γ̂ = Γ̂ and M2 =
[[Γ̂.N/u]]nα1[γ](M

′)

[M/x]rα(R) fails otherwise

[M/x]nα(lam(y.N)) = lam(y.N ′) where N ′ = [M/x]nα(N)
choosing y 6∈ FV(M) and y 6= x

[M/x]nα(mlam(u.N)) = mlam(u.N ′) where N ′ = [M/x]nα(N)
choosing u 6∈ FMV(M)

[M/x]nα(R) = M ′ if [M/x]rα(R) = M ′ : α′

[M/x]nα(R) = R′ if [M/x]rα(R) = R′

[M/x]nα(N) fails otherwise

[M/x]sα(·) = ·

[M/x]sα(τ,N/y) = τ ′, N ′/y where τ ′ = [M/x]sα(τ )
and N ′ = [M/x]nα(N)

[M/x]sα(τ, R//y) = τ ′, R′//y if [M/x]rα(R) = R′ and τ ′ = [M/x]sα(τ )
[M/x]sα(τ, R//y) = τ ′,M ′/y if [M/x]rα(R) = M ′ : α′

and τ ′ = [M/x]sα(τ )
[M/x]sα(τ ) fails otherwise

[M/x]pα(a) = a
[M/x]pα(app(P,N)) = app(P ′, N ′) where P ′ = [M/x]pα(P )

and N ′ = [M/x]nα(N)

[M/x]pα(mapp(P, Γ̂.N)) = mapp(P ′, Γ̂.N) where P ′ = [M/x]pα(P )
[M/x]pα(P ) fails otherwise

[M/x]aα(P ) = P ′ where P ′ = [M/x]pα(P )
[M/x]aα(Πy:A.B) = Πy:A′. B′ if A′ = [M/x]aα(A) and B′ = [M/x]aα(B)

choosing y 6∈ FV(M) and y 6= x
[M/x]aα(Πu::A[Ψ]. B) = Πu::A[Ψ]. B′ if B′ = [M/x]aα(B)

choosing u 6∈ FMV(M)
[M/x]aα(A) fails otherwise
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[M/x]kα(type) = type

[M/x]kα(Πy:A.K) = Πy:A′. K′ if A′ = [M/x]aα(A)
and K′ = [M/x]kα(K)
choosing y 6∈ FV(M) and y 6= x

[M/x]kα(Πu::A[Ψ]. K) = Πu::A[Ψ]. K ′ if K′ = [M/x]aα(K)
choosing u 6∈ FMV(M)

[M/x]kα(K) fails otherwise

[M/x]γα(·) = ·

[M/x]γα(Γ, y:A) = Γ′, y:A′ if Γ′ = [M/x]γα(Γ)
and A′ = [M/x]aα(A)

[M/x]γα(Γ) fails otherwise

B.3 Hereditary Substitution for a Meta-Variable

[[Ψ̂.M/u]]rα[ψ](x) = x

[[Ψ̂.M/u]]rα[ψ](app(R,N)) = app(R′, N ′) if [[Ψ̂.M/u]]rα[ψ](R) = R′

with N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]rα[ψ](app(R,N)) = M2 : α2 if [[Ψ̂.M/u]]rα[ψ](R) = lam(y.M ′) :
α1 → α2 for α1 → α2 ≤ α[ψ]

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

and M2 = [N ′/y]nα1
(M ′)

[[Ψ̂.M/u]]rα[ψ](clo(u, τ )) = M ′ : α where τ ′ = [[Ψ̂.M/u]]sα[ψ](τ )

and M ′ = [τ ′]nψ(M)

[[Ψ̂.M/u]]rα[ψ](clo(v, τ )) = clo(v, τ ′) if v 6= u with τ ′ = [[Ψ̂.M/u]]sα[ψ](τ )

[[Ψ̂.M/u]]rα[ψ](mapp(R, Γ̂.N)) = mapp(R′, Γ̂.N ′) if [[Ψ̂.M/u]]rα[ψ](R) = R′

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]rα[ψ](mapp(R, Γ̂.N)) = M2 : α2 if [[Ψ̂.M/u]]rα[ψ](R) = mlam(v.M ′) :
α1[γ] ⇒ α2 where α1[γ] ⇒ α2 ≤ α[ψ]
and γ̂ = Γ̂

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

and M2 = [[Γ̂.N ′/v]]nα1[γ](M
′)

[[Ψ̂.M/u]]rα[ψ](R) fails otherwise

[[Ψ̂.M/u]]nα[ψ](lam(y.N)) = lam(y.N ′) where N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]nα[ψ](mlam(v.N)) = mlam(v.N ′) where N ′ = [[Ψ̂.M/u]]nα[ψ](N)

choosing v 6∈ FMV(M) and v 6= u

[[Ψ̂.M/u]]nα[ψ](R) = R′ if [[Ψ̂.M/u]]rα[ψ](R) = R′

[[Ψ̂.M/u]]nα[ψ](R) = M ′ if [[Ψ̂.M/u]]rα[ψ](R) = M ′ : α′

[[Ψ̂.M/u]]nα[ψ](N) fails otherwise
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[[Ψ̂.M/u]]sα[ψ](·) = ·

[[Ψ̂.M/u]]sα[ψ](τ,N/y) = τ ′, N ′/y where τ ′ = [[Ψ̂.M/u]]sα[ψ](τ )

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]sα[ψ](τ, R//y) = τ ′, R′//y if [[Ψ̂.M/u]]rα[ψ](R) = R′

with τ ′ = [[Ψ̂.M/u]]sα[ψ](τ )

[[Ψ̂.M/u]]sα[ψ](τ, R//y) = τ ′,M ′/y if [[Ψ̂.M/u]]rα[ψ](R) = M ′ : α′

with τ ′ = [[Ψ̂.M/u]]sα[ψ](τ )

[[Ψ̂.M/u]]sα[ψ](τ ) fails otherwise

[[Ψ̂.M/u]]p
α[ψ]

(a) = a

[[Ψ̂.M/u]]p
α[ψ](app(P,N)) = app(P ′, N ′) if P ′ = [[Ψ̂.M/u]]p

α[ψ](P )

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]p
α[ψ](mapp(P, Γ̂.N)) = mapp(P ′, Γ̂.N ′) if P ′ = [[Ψ̂.M/u]]p

α[ψ](P )

and N ′ = [[Ψ̂.M/u]]nα[ψ](N)

[[Ψ̂.M/u]]p
α[ψ](P ) fails otherwise

[[Ψ̂.M/u]]aα[ψ](P ) = P ′ where P ′ = [[Ψ̂.M/u]]p
α[ψ]

(P )

[[Ψ̂.M/u]]aα[ψ](Πx:A.B) = Πx:A′. B′ where A′ = [[Ψ̂.M/u]]aα[ψ](A)

and B′ = [[Ψ̂.M/u]]aα[ψ](B)

[[Ψ̂.M/u]]aα[ψ](Πv::A[Γ]. B) = Πv::A′[Γ′]. B′ where A′ = [[Ψ̂.M/u]]aα[ψ](A)

and Γ′ = [[Ψ̂.M/u]]γ
α[ψ](Γ)

and B′ = [[Ψ̂.M/u]]aα[ψ](B)

choosing v 6∈ FMV(M)
and v 6= u

[[Ψ̂.M/u]]aα[ψ](A) fails otherwise

[[Ψ̂.M/u]]kα[ψ](type) = type

[[Ψ̂.M/u]]kα[ψ](Πx:A.K) = Πx:A′. K′ where A′ = [[Ψ̂.M/u]]aα[ψ](A)

and K′ = [[Ψ̂.M/u]]kα[ψ](K)

[[Ψ̂.M/u]]kα[ψ](Πv::A[Γ]. K) = Πv::A′[Γ′]. K′ where A′ = [[Ψ̂.M/u]]aα[ψ](A)

and Γ′ = [[Ψ̂.M/u]]γ
α[ψ](Γ)

and K′ = [[Ψ̂.M/u]]aα[ψ](K)

choosing v 6∈ FMV(M)
and v 6= u

[[Ψ̂.M/u]]kα[ψ](K) fails otherwise

[[Ψ̂.M/u]]γ
α[ψ](·) = ·

[[Ψ̂.M/u]]γ
α[ψ](Γ, x:A) = Γ′, x:A′ where Γ′ = [[Ψ̂.M/u]]γ

α[ψ](Γ)

and A′ = [[Ψ̂.M/u]]aα[ψ](A)

[[Ψ̂.M/u]]γ
α[ψ](Γ) fails otherwise
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[[Ψ̂.M/u]]δα[ψ](·) = ·

[[Ψ̂.M/u]]δα[ψ](∆, v::A[Γ]) = ∆′, v::A′[Γ′] where ∆′ = [[Ψ̂.M/y]]δα[ψ](∆)

and A′ = [[Ψ̂.M/y]]aα[ψ](A)

and Γ′ = [[Ψ̂.M/y]]γ
α[ψ]

(Γ)

choosing v 6= u

[[Ψ̂.M/u]]δα[ψ](∆) fails otherwise

B.4 Hereditary Simultaneous Substitution

[σ]rψ(x) = M : α if M/x ∈ σ/ψ and x:α ∈ ψ
[σ]rψ(x) = R if R//x ∈ σ/ψ

[σ]rψ(app(R,N)) = app(R′, N ′) where [σ]rψ(R) = R′ and [σ]nψ(N) = N ′

[σ]rψ(app(R,N)) = M2 : α2 if [σ]rψ(R) = lam(y.M ′) : α1 → α2 for α1 →

α2 ≤ ψ with N ′ = [σ]nψ(N)
and M2 = [N ′/y]nα1

(M ′)
[σ]rψ(clo(v, τ )) = clo(v, τ ′) where τ ′ = [σ]sψ(τ )

[σ]rψ(mapp(R, Γ̂.N)) = mapp(R′, Γ̂.N) if [σ]rψ(R) = R′

[σ]rψ(mapp(R, Γ̂.N)) = M2 : α2 if [σ]rψ(R) = mlam(u.M) : α1[γ] ⇒ α2 for

α1[γ] ⇒ α2 ≤ ψ and γ̂ = Γ̂ and M2 =
[[Γ̂.N/u]]nα1[γ](M)

[σ]rψ(R) fails otherwise

[σ]nψ(lam(y.N)) = lam(y.N ′) where N ′ = [σ, y//y]nψ,y: (N)
choosing y 6∈ FV(σ), dom(σ)

[σ]nψ(mlam(u.N)) = mlam(u.N ′) where N ′ = [σ]nψ(N), choosing u 6∈ FMV(σ)

[σ]nψ(R) = M ′ if [σ]rψ(R) = M ′ : α′

[σ]nψ(R) = R′ if [σ]rψ(R) = R′

[σ]nψ(N) fails otherwise

[σ]sψ(·) = ·

[σ]sψ(τ,N/y) = τ ′, N ′/y where τ ′ = [σ]sψ(τ ) and N ′ = [σ]nψ(N)
[σ]sψ(τ, R//y) = τ ′, R′//y if [σ]rψ(R) = R′ with τ ′ = [σ]sψ(τ )
[σ]sψ(τ, R//y) = τ ′,M ′/y if [σ]rψ(R) = M ′ : α′ with τ ′ = [σ]sψ(τ )
[σ]sψ(τ ) fails otherwise

[σ]pψ(a) = a

[σ]pψ(app(P,N)) = app(P ′, N ′) where P ′ = [σ]pψ(P ) and N ′ = [σ]nψ(N)

[σ]pψ(mapp(P, Γ̂.N)) = mapp(P ′, Γ̂.N) where P ′ = [σ]pψ(P )

[σ]pψ(P ) fails otherwise
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[σ]aψ(P ) = P ′ where P ′ = [σ]pψ(P )

[σ]aψ(Πx:A.B) = Πx:A′. B′ if A′ = [σ]aψ(A) and B′ = [σ, x//x]aψ,x: (B)
choosing x 6∈ FV(σ), dom(σ)

[σ]aψ(Πu::A[Γ]. B) = Πu::A[Γ]. B′ if B′ = [σ]aψ(B)
choosing u 6∈ FMV(σ)

[σ]aψ(A) fails otherwise

C. SUBSTITUTION PRINCIPLES

We begin by defining the head of an atomic term as the variable or meta-variable
at its beginning.

head(x) = x

head(clo(u, τ)) = u

head(app(R,M)) = head(R)

head(mapp(R,Ψ.M)) = head(R)

Whether the result of a hereditary substitution into an atomic term R is an
atomic term R′ or a normal term M ′ : α′ depends solely on the head variable of R.
This property is needed in several subsequent proofs, so we state it formally.

Lemma C.1 Hereditary Substitutions and Heads.

(1 ) If [M/x]rα(R) exists, then

(a) [M/x]rα(R) = R′ is atomic iff head(R) 6= x.

(b) [M/x]rα(R) = M ′ : α′ is normal iff head(R) = x

(2 ) If [[Ψ̂.M/u]]
r
α[ψ](R) exists, then

(a) [[Ψ̂.M/u]]
r
α[ψ](R) = R′ is atomic iff head(R) 6= u

(b) [[Ψ̂.M/u]]rα[ψ](R) = M ′ : α′ is normal iff head(R) = u

(3 ) If [σ]rψ(R) exists, then

(a) [σ]rψ(R) = R′ is atomic iff head(R) = x and R′′//x ∈ σ/ψ.

(b) [σ]rψ(R) = M ′ : α′ is normal iff head(R) = x and M ′′/x ∈ σ/ψ.

Proof. By straightforward induction on the structure of R.

Next we need to show that hereditary substitutions are defined and do not change
the term if a variable does not appear in the term we substitute into.

Lemma C.2 Trivial Hereditary Substitutions. Let T range over expres-
sions of any syntactic category (i.e., kinds, atomic types, normal types, atomic
terms, normal terms, substitutions, contexts and modal contexts), and let ∗ ∈
{k, p, a, r, n, s, γ, δ}, correspondingly.

(1 ) If x 6∈ FV(T ), then [M/x]∗α(T ) = T .

(2 ) If u 6∈ FMV(T ), then [[Ψ̂.M/u]]
∗
α[ψ](T ) = T .

(3 ) If x 6∈ FV(T ), then [σ,R//x]∗ψ,x: (T ) = [σ,M/x]∗ψ,x:α(T ) = [σ]∗ψ(T ).

Proof. By straightforward induction on the structure of T .
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When investigating properties of ordinary substitution, we usually have to verify
that [M/x]([N/y]O) = ([M/x]N/y)([M/x]O), assuming that y is not in the free
variables of M . Similar principles apply to hereditary substitutions, although the
fact that hereditary substitutions are partial operations on ill-typed terms makes
their formulation more tedious.

Lemma C.3 Composition of Hereditary Substitutions. Suppose that T
ranges over expressions of any syntactic category (i.e., kinds, atomic types, normal
types, atomic terms, normal terms, substitutions, contexts and modal contexts), and
let ∗ ∈ {k, p, a, r, n, s, γ, δ}, correspondingly.

(1 ) If y 6∈ FV(M0), and [M0/x]
∗
α(T ) = T0, [M1/y]

∗
β(T ) = T1 and [M0/x]

n
α(M1)

exist, then [M0/x]
∗
α(T1) = [[M0/x]

n
α(M1)/y]

∗
β(T0).

(2 ) If v 6∈ FMV(M0), and [M0/x]
∗
α(T ) = T0, [[Ψ̂1.M1/v]]

∗
β[ψ1]

(T ) = T1, then

[M0/x]
∗
α(T1) = [[Ψ̂1.M1/v]]

∗
β[ψ1]

(T0).

(3 ) If [σ1]
∗
ψ1

(T ) = T1 and [M0/x]
s
α(σ1) exists, then

[M0/x]
∗
α(T1) = [[M0/x]

s
α(σ1)]

∗
ψ1

(T ).

(4 ) If [[Ψ̂0.M0/u]]
∗
α[ψ0]

(T ) = T0 and [M1/y]
∗
β(T ) = T1 and [[Ψ̂0.M0/u]]

n
α[ψ0]

(M1) =

M ′
1 exist, then [[Ψ̂0.M0/u]]

∗
α[ψ0]

(T1) = [M ′
1/y]

∗
β(T0).

(5 ) If v 6∈ FMV(M0), and [[Ψ̂0.M0/u]]
∗
α[ψ0]

(T ) = T0 and [[Ψ̂1.M1/v]]
∗
β[ψ1]

(T ) = T1

and [[Ψ̂0.M0/u]]
n
α[ψ0]

(M1) = M ′
1 exist,

then [[Ψ̂0.M0/u]]
∗
α[ψ0](T1) = [[Ψ̂1.M

′
1/v]]

∗
β[ψ1]

(T0).

(6 ) If [[Ψ̂0.M0/u]]
∗
α[ψ0]

(T ) = T0 and [σ1]
∗
ψ1

(T ) = T1 and [[Ψ̂0.M0/u]]
s
α[ψ0](σ1) = σ′

1

exist, then [[Ψ̂0.M0/u]]
∗
α[ψ0](T1) = [σ′

1]
∗
ψ1

(T0).

(7 ) If y 6∈ dom(σ0),FV(σ0), and [σ0, y//y]
∗
ψ0,y:

(T ) = T0 and [M1/y]
∗
β(T ) = T1, and

[σ0]
n
ψ0

(M) exists, then [σ0]
∗
ψ0

(T1) = [[σ0]
n
ψ0

(M1)/y]
∗
β(T0).

(8 ) If v 6∈ FMV(σ0), and [σ0]
∗
ψ0

(T ) = T0 and [[Ψ̂1.M1/v]]
∗
β[ψ1]

(T ) = T1, then

[σ0]
∗
ψ0

(T1) = [[Ψ̂1.M1/v]]
∗
β[ψ1]

(T0).

(9 ) If [τ1]
∗
ψ1

(T ) and [τ0]
s
ψ0

(τ1) exist, then [τ0]
∗
ψ0

([τ1]
∗
ψ1

(T )) = [[τ0]
s
ψ0

(τ1)]
∗
ψ1

(T ).

Proof. By nested induction, first on approximate types α, β and contexts ψ0,
ψ1, and then on the structure of the expression being substituted into.

Before we can state the hereditary substitution principles we have to overcome
one further technical obstacle. When applying a simultaneous hereditary substitu-
tion to an abstraction, we do not have a type or approximate type for the abstracted
variable available. For example,

[σ]nψ(lam(y.N)) = lam(y.N ′) where N ′ = [σ, y//y]nψ,y: (N)

where we choose y 6∈ FV(σ), dom(σ). That means that we can not maintain the
invariant that ψ = Ψ− whenever we apply [σ]ψ for σ ⇐ Ψ. We say that ψ underap-
proximates Ψ with respect to σ if ψ differs from Ψ− only in that some declarations
x:α may be replaced by x: if R//x is in σ. Fortunately, any underapproximation
is still sufficient to guarantee termination and the desired hereditary substitution
properties.
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Now we are prepared to state the hereditary substitution principles. We as-
sume that all contexts in given judgments are well-formed. We also exploit our
prior convention that all dependencies in an index to a hereditary substitution are
erased before the substitution is applied, writing, for example, [M/x]rA(R) instead
of [M/x]r

A−
(R).

Theorem C.4 Hereditary Substitution Principles.

Assume all contexts in the judgments given below are well-formed.

(1 ) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ1 ` R ⇒ C and the context Γ′
1 = [M/x]γA(Γ1)

exists and is well-formed (i.e., ∆ ` Γ,Γ′
1 ctx), then [M/x]rA(R) exists and the

type C ′ = [M/x]aA(C) exists and is well-formed (i.e., ∆; Γ,Γ′
1 ` C ′ ⇐ type) and

(a) if [M/x]rA(R) = R′ is atomic, then ∆; Γ,Γ′
1 ` R′ ⇒ C ′.

(b) if [M/x]rA(R) = M ′ : α′ is normal, then ∆; Γ,Γ′
1 `M ′ ⇐ C ′ and α′ = C−.

(2 ) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ1 ` N ⇐ C and the context Γ′
1 = [M/x]γA(Γ1)

and type C ′ = [M/x]aA(C) exist and are well-formed (i.e., ∆ ` Γ,Γ′
1 ctx and

∆; Γ,Γ′
1 ` C ′ ⇐ type), then ∆; Γ,Γ′

1 ` [M/x]nA(N) ⇐ C ′.

(3 ) If ∆; Ψ `M ⇐ A and ∆, u::A[Ψ],∆1; Γ ` R⇒ C, and the modal context ∆′
1 =

[[Ψ̂.M/u]]δA[Ψ](∆1) and the context Γ′ = [[Ψ̂.M/u]]γ
A[Ψ](Γ) exist and are well-

formed (i.e., ` ∆,∆′
1 mctx, and ∆,∆′

1 ` Γ′ ctx), then [[Ψ̂.M/u]]
r
A[Ψ](R) exists

and the type C ′ = [[Ψ̂.M/u]]
a
A[Ψ](C) exists and is well-formed (i.e. ∆,∆′; Γ′ `

C ′ ⇐ type) and
(a) if [[Ψ̂.M/u]]

r
A[Ψ](R) = R′ is atomic, then ∆,∆′

1; Γ
′ ` R′ ⇒ C ′

(b) if [[Ψ̂.M/u]]rA[Ψ](R) = M ′ : α′ is normal, then ∆,∆′
1; Γ

′ ` M ′ ⇐ C ′, and

α′ = C−.

(4 ) If ∆; Ψ `M ⇐ A and ∆, u::A[Ψ],∆1; Γ ` N ⇐ C, and the modal context ∆′
1 =

[[Ψ̂.M/u]]δA[Ψ](∆1) and the context Γ′ = [[Ψ̂.M/u]]γ
A[Ψ](Γ) and the type C ′ =

[[Ψ̂.M/u]]aA[Ψ](C) exist and are well-formed (i.e., ` ∆,∆′
1 mctx, and ∆,∆′

1 `

Γ′ ctx and ∆,∆′
1; Γ

′ ` C ′ ⇐ type), then ∆,∆′; Γ′ ` [[Ψ̂.M/u]]
n
A[Ψ](N) ⇐ C ′.

(5 ) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` R ⇒ C and ψ is any underapproximation of Ψ
with respect to σ, then [σ]rψ(R) exists and the type C ′ = [σ]aψ(C) exists and is
well-formed (i.e., ∆; Γ ` C ′ ⇐ type) and

(a) if [σ]rψ(R) = R′ is atomic, then ∆; Γ ` R′ ⇒ C ′

(b) if [σ]rψ(R) = M ′ : α′ is normal, then ∆; Γ `M ′ ⇐ C ′, and α′ = C−.

(6 ) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` N ⇐ C and ψ is any underapproximation of
Ψ with respect to σ such that the type C ′ = [σ]aψ(C) exists and is well-formed
(i.e., ∆; Γ ` C ′ ⇐ type), then ∆; Γ ` [σ]nψ(N) ⇐ C ′.

Proof. We generalize this property and then proceed by nested induction, first
on the structure of the approximation A− and underapproximation ψ to the index
type A and index context Ψ, and then on the structure of the second derivation
in each of the cases, using the lemmas on trivial hereditary substitutions and com-
position of hereditary substitutions (Lemmas C.2 and C.3). We also use that the
erasure of a type is invariant under substitution (for example, ([M/x]aA(B))

−
= B−)

without explicitly stating this as lemma.
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The generalization involves stating the similar principles for hereditary substi-
tutions into other syntactic categories, that is, kinds, atomic types, normal types,
contexts and modal contexts. We omit these cases here because hereditary substi-
tutions into the mentioned syntactic categories are mostly compositional, and their
substitution principles do not contribute any new insights.
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