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Deductive systems and logical frameworks

Deductive systems are plentiful computer science.

� Axioms and inference rules

� Examples: operational semantics, type system, logic, etc.
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Deductive systems and logical frameworks

Deductive systems are plentiful computer science.

� Axioms and inference rules

� Examples: operational semantics, type system, logic, etc.

Logical framework: meta-language for deductive systems

� High-level specifications (e.g. type system)

� Execution via logic programming interpretation (e.g. type
checker)

� Meta-reasoning via theorem prover combining induction and
logic programming search (e.g. type preservation)
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Declarative description of subtyping

types � :: = zero

�

pos

�

nat

�

bit

� ��� ��� �
� � �

Example:

� � � 	 	


and � 	 	
 �
nat
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Typing rules for Mini-ML

expressions � ::= � �
� 0

�
� 1

�

fun �� �
�

app � � � �

� � �� � � � � �

tp-sub� � �� �

�
�

�� �� � �����

� �

fun �� � � �� �� tp-fun
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Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.
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Implementation of subtyping
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nb: sub nat bit.
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<- sub R S.
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Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.

?- sub zero bit.

yes

Proof: (tr nb zn)
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Implementation of typing rules

tp sub: of E T

<- of E T’

<- sub T’ T.

tp fun: of (fun

�

x.E x) (T1 => T2)

<-( x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”
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Higher-order logic programming

� Higher-order data-types:
–

�

-abstraction
– dependent types

� Dynamic program clauses

� Explicit proof objects
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Higher-order logic programming

� Higher-order data-types:
–

�

-abstraction
– dependent types

� Dynamic program clauses

� Explicit proof objects

Different approaches:
�

Prolog, Isabelle, Twelf
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Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer 

Safety policy Safety policy 

� Foundational proof-carrying code : [Appel, Felty 00]

� Temporal-logic proof carrying code [Bernard,Lee02]

� Foundational typed assembly language : [Crary 03]

� Proof-carrying authentication: [Felten, Appel 99]
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Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer 

Safety policy Safety policy 

Large-scale applications

� Typical code size: 70,000 – 100,000 lines
includes data-type definitions and proofs

� Higher-order logic program: 5,000 lines

� Over 600 – 700 clauses
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Some limitations in practice

� Straightforward specifications are not executable.

� Redundancy severely hampers performance.

� Meta-reasoning capabilities limited in practice.

Overcome some of these limitations using
tabelling and other optimizations!
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This thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems
(interpreter using tabled search)

� automate the reasoning with and about them.
(meta-theorem prover using tabled search)

This is a significant step towards
applying logical frameworks in practice.
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Contributions

Tabled higher-order logic programming

� Characterization based on uniform proofs (ICLP’02)

� Implementation of a tabled interpreter

� Case studies (parsing, refinement types, rewriting)(LFM’02)

Efficient data-structures and algorithms

� Foundation for meta-variables (LFM’03)

� Optimizing higher-order unification (CADE’03)

� Higher-order term indexing (ICLP’03)

Meta-reasoning based on tabled search
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The idea

“...it is very common for the proofs to have
repeated sub-proofs that should be hoisted out and
proved only once ...” [Necula,Lee97]
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The idea

“...it is very common for the proofs to have
repeated sub-proofs that should be hoisted out and
proved only once ...” [Necula,Lee97]

Infinite computationRedundant computation
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Recall...subtyping

tp sub: of E T

<- of E T’

<- sub T’ T.

tp fun: of (fun

�

x.E x) (T1 => T2)

<-( x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”
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Proof tree

u: of x

T3T2

T2 T4( x u)

u: of x of x 

of x 

x. x)λof (fun T

1Tx. x)λof (fun

T2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

�

�

T = S

�

S
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Proof tree

Loop detection

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

�

�

T = S

�

S
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Proof tree

How can we detect loops? 
Loop detection

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

�

�

T = S

�

S
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Loops modulo strengthening

� Dependencies among terms
u:of x T � of x (T � x u)
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Loops modulo strengthening

� Dependencies among terms
u:of x T � of x (T � x u)

strengthen u:of x T � of x T �
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Loops modulo strengthening

� Dependencies among terms
u:of x T � of x (T � x u)

strengthen u:of x T � of x T �

� Dependencies among propositions
u:of x T � sub (T � x u) T �
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Loops modulo strengthening

� Dependencies among terms
u:of x T � of x (T � x u)

strengthen u:of x T � of x T �

� Dependencies among propositions
u:of x T � sub (T � x u) T �

strengthen: � sub T � T �
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Loops modulo strengthening

� Dependencies among terms
u:of x T � of x (T � x u)

strengthen u:of x T � of x T �

� Dependencies among propositions
u:of x T � sub (T � x u) T �

strengthen: � sub T � T �

� Subordination analysis [Virga99]
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Proof tree (cont.)

How can we detect loops? 
Loop detection

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

�

�

T = S

�

S
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Proof tree (cont.)

How can we detect loops? Subordination
Loop detection

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

T = S

�

S

�

�
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Proof tree (cont.)

How can we still produce all answers?
How can we detect loops? Subordination
Loop detection

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

T = S

�

S

�

�
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Proof tree (cont.)

Resume

Resume
Multi−stage depth−first strategy
adapted from [Tamaki, Sato89]

Tof (fun λ x. x)

of (fun 1Tλ x. x) T3T2

T2 x u)T4(

of xu: of x

u: of x of xT2
T3

T1sub T

T3

tp_sub tp_fun

u tp_sub

 = S
 = S sub ( x u)T4

PSfrag replacements

T = S

�

S

�

�
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Memoization based proof search

� Proof search using a memo-table

� Store intermediate goals and re-use results

� May need to use subordination!

� Eliminate redundant computation

� Eliminate infinite paths

� More specifications are executable!
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Memo-table

� Table entry: (

�

� , )
-

�

: context of assumptions (i.e. u:of x T � )
- � : atomic goal (i.e. of (fun

�

x. x) T, of x T � )
- : list of answer substitutions for all existential

variables in

�

and �

Goal Answer
of (fun x.x) T T = S S

u:of x T of x T T = S, T = S
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Memo-table

� Table entry: (

�

� , )
-

�

: context of assumptions (i.e. u:of x T � )
- � : atomic goal (i.e. of (fun

�

x. x) T, of x T � )
- : list of answer substitutions for all existential

variables in

�

and �

Goal Answer

� of (fun

�

x.x) T T = S S

u:of x T � of x T � T � = S, T � = S
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Properties

� Selective memoization

� Finds all answers to a query

� Terminates for programs over a finite domain
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Theoretical foundation

Conservative extension of LF [Harper et. al. 93]
with meta-variables

� Foundation for proof search and for other
optimization (e.g. higher-order unification,
higher-order term indexing)

� Type-checking remains decidable.

� Canonical forms exist.

� Proofs follow [Harper,Pfenning03]
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Tabled proof search

Uniform proofs as a foundation for logic programming
[Miller et.al 91]

Soundness Any uniform proof with answer substitution
has a uniform proof.

Completeness Any uniform proof has a uniform proof
with answer substitution.

Soundness of tabled higher-order logic programming : Any
tabled uniform proof with an answer substitution
has a uniform proof with the same answer
substitution.

Tabled higher-order logic programming – p.23/47



Related work

� Related Work: XSB system [Warren et al. 99]
Very successful for first-order logic programming

� Applicable to other higher-order systems:
–

�

Prolog[Nadathur,Miller88]

– Linear logic programming [Hodas et al. 94][Cervesato96]
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Experiments

� Parsing of formulas (adapted from [Warren99])
– Left and right recursion

– Not executable with depth-first search

– Memoization vs iterative deepening

� Refinement type checking [Davies, Pfenning00]
– Decidable

– Memoization vs depth-first search
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Parser for formulas

#tok memo iterative deepening
20 0.13 sec 0.98 sec
58 2.61 sec

117 10.44 sec
235 75.57 sec

� = process does not terminate

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4
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Refinement type-checking

example memo depth-first
First answer sub 0.15 sec

mult 0.15 sec
square 0.16 sec

Not provable mult 13.50 sec
plus
square

All answers sub 5.59 sec
mult
square
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Refinement type-checking

example memo depth-first
First answer sub 3.19 sec 0.15 sec

mult 7.78 sec 0.15 sec
square 9.02 sec 0.16 sec

Not provable mult 2.38 sec 13.50 sec
plus 6.48 sec
square 9.29 sec

All answers sub 6.88 sec 5.59 sec
mult 9.06 sec
square 10.30 sec
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Evaluation

� Benefits:
– Superior to iterative deepening
– Meaningful failure: decision procedure
– Consistent performance
– Quick failure
– Small proof size

� Drawbacks:
– Overhead of storing and retrieving information
– Multi-stage strategy delays the reuse of answers
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
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information.” [Wos92]
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]

ideal performance

\ space

500

1000

time

conclusions (= proof steps)

number of
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Indexing

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

How can we efficiently store and retrieve data?

Share term structure

Share common operations
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Indexing

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

How can we efficiently store and retrieve data?

� Share term structure

� Share common operations
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Common sub-expression

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

� Factor out common sub-expressions!
pred (h (h a)) (g b) (f

�

x. E x)
pred (h (g a)) (g b) a

pred (h *1) (g b) *2
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Common sub-expression

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

� Factor out common sub-expressions!
pred (h (h a)) (g b) (f

�

x. E x)
pred (h (g a)) (g b) a

pred (h *1) (g b) *2

� In general the most specific common
generalization (msg) does not exist!
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MSG of higher-order patterns

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

� Most specific generalization exists for higher-order
patterns.

� Not all terms fall within this class.

� Is this efficient?
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Our approach

Set of terms

(3) pred (h (g a)) (g b) a
pred (h (h b)) (g b) a
Query:PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(1) pred (h (h b)) (g b) (f

�

x. E x)

� Further restrict higher-order patterns!
(Linear higher-order patterns)

– Every meta-variable occurs only once.
– Every meta-variable is fully applied.

� Translate terms into linear higher-order patterns
and residual equations (variable definitions)
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Higher-order substitution trees

b =   a =   

(h    ) = 

pred (h    ) (g b)   

a =   
(g a) =   *1 *1

*2 *2
*3

*3 *3

Compose
substitutions!

*1 *2

(1) (2)

(3)

Set of terms

(3) pred (h (g a)) (g b) a

PSfrag replacements

(2) pred (h (h a)) (g b) (f

�

x. E x)

(f

�

x. E x) =

(1) pred (h (h b)) (g b) (f

�

x. E x)

(f x. E x) = *2
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Parser for formulas

iterative memoization

#tok deepening noindex index speed-up

20 0.98 sec 0.13 sec 0.07 sec 85%

58 � 2.61 sec 1.25 sec 108%

117 � 10.44 sec 5.12 sec 103%

235 � 75.57 sec 26.08 sec 190%

� = process does not terminate

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.

Tabled higher-order logic programming – p.37/47



Refinement type-checking

example noindex index speed-up orig

First sub 3.19 sec 0.46 sec 593%

answer mult 7.78 sec 0.89 sec 774%

square 9.02 sec 0.98 sec 820%

Not mult 2.38 sec 0.38 sec 526%

provable plus 6.48 sec 0.85 sec 662%

square 9.29 sec 1.09 sec 752%

All sub 6.88 sec 0.71 sec 869%

answers mult 9.06 sec 0.98 sec 824%

square 10.30 sec 1.08 sec 854%
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Refinement type-checking

example noindex index speed-up orig

First sub 3.19 sec 0.46 sec 593% 0.15 sec

answer mult 7.78 sec 0.89 sec 774% 0.15 sec

square 9.02 sec 0.98 sec 820% 0.16 sec

Not mult 2.38 sec 0.38 sec 526% 13.50 sec

provable plus 6.48 sec 0.85 sec 662% �

square 9.29 sec 1.09 sec 752% �

All sub 6.88 sec 0.71 sec 869% 5.59 sec

answers mult 9.06 sec 0.98 sec 824% �

square 10.30 sec 1.08 sec 854% �
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Contribution and related work

� Contribution:

– Higher-order term indexing (key: linearization, �-longform)

– Indexing substantially improves performance
between 85% and 820%
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Contribution and related work

� Contribution:

– Higher-order term indexing (key: linearization, �-longform)

– Indexing substantially improves performance
between 85% and 820%

� Related Work:

– Substitution trees for first-order terms [Graf95]
– (Higher-order) automata-driven indexing

[Necula,Rahul01] imperfect filter, calls full
higher-order unification to check candidates
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Summary

This talk

� Tabled higher-order logic programming

� Higher-order indexing

In the thesis

� More theory

� Optimizing higher-order unification

� Meta-theorem proving based on tabled
higher-order logic programming
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Conclusion

� This opens many new opportunities
– to experiment and develop large-scale systems.

for example: proof-carrying code
– to explore the full potential of logical frameworks

new applications: authentication, security

� Efficient proof search techniques are critical
– to sustain performance.
– to reduce response time to the developer.
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Future work

� Narrowing the performance gap further
– Improving tabling (e.g. subsumption, different scheduling

strategies)

– Eliminating redundancy in the representation of clauses,
goals and proofs: approximate typing [Necula,Lee98]

– Mode, determinism, termination analysis
[Schrijvers et al. 02]

– Ordered resolution [Bachmair, Ganzinger 01]

– � � �

Tabled higher-order logic programming – p.44/47



Theory

� Foundation for meta-variables
– Abstract over meta-variables (

�� �� � ��� �
� )

– First-class variable definitions (

�� � � � � ��� �
)

– Representing and type-checking dag-style objects

� Meta-theorem proving
– Automating complete induction

– Further work on redundancy elimination
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Applications

Proof-carrying code

– How can we transmit small proofs?[Necula,Rahul 01],
(collaboration with Crary and Sarkar)

– How can we check them efficiently? [Stump, Dill 02]

– How can we automate some of the meta-proofs?
[Crary,Sarkar03]

Proof-carrying authorization [Bauer et al. 02]
Bob proves that he is authorized to access Alice’s web-page.

– How can we efficiently generate proofs?

– How can we cache and re-use proof attempts?
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Applications

Proof-carrying code

– How can we transmit small proofs?[Necula,Rahul 01],
(collaboration with Crary and Sarkar)

– How can we check them efficiently? [Stump, Dill 02]

– How can we automate some of the meta-proofs?
[Crary,Sarkar03]

Proof-carrying authorization [Bauer et al. 02]
Bob proves that he is authorized to access Alice’s web-page.

– How can we efficiently generate proofs?

– How can we cache and re-use proof attempts?
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Finally ...

The End.
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Finally ...

The End.

if you want to find out more:

http://www.cs.mcgill.ca/˜bpientka
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