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Deductive systems and logical frameworks

Deductive systems are plentiful computer science.
* Axioms and inference rules

* Examples: operational semantics, type system, logic, etc.

Logical framework: meta-language for deductive systems
* High-level specifications (e.g. type system)

* Execution via logic programming interpretation (e.g. type
checker)

* Meta-reasoning via theorem prover combining induction and
logic programming search (e.g. type preservation)
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Declarative description of subtyping

types 7 1= zero |pos |nat |bit| T =T ...
Example: 6 = €110 and €110 € nat
Zn PN nb
zero = nat pos = nat nat = bit
TN T T 3T
refl tr
T=T 1 X T

/

ing — p.4/47



Typing rules for Mini-ML

expressions e = €|e0|el|funz.c|appe; es

F'Fe: 7 <71
I'Fe:T

tp-sub

I',x:m F18:
I'Ffunz.e: 7 = 7

tp-fun



Implementation of subtyping

Zn:
pn:
nb:
refl:
tr:

sub zero nat.

sub pos nat.

sub nat Dbit.
sub T T.

sub T S

<- sub T R

<- sub R S.
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Implementation of subtyping

Zn:
pn:
nb:
refl:
tr:

sub zero nat.

sub pos nat.

sub nat Dbit.
sub T T.

sub T S

<- sub T R

<- sub R S.

?- sub zero bit.
yes

Proof: (tr nb zn)
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Implementation of typing rules

tpsub: of ET
<- of ET
<- sub T" T.

tpfun: of (fun AX.E x) (Tl => T2)
<-(IIx:exp.of x Tl -> of (E x) T2).
“forall x: exp, assume of x T1
and show of (E x) T2"
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» Higher-order data-types:
— A-abstraction
— dependent types

» Dynamic program clauses
« Explicit proof objects



Higher-order logic programming

» Higher-order data-types:
— A-abstraction
— dependent types

» Dynamic program clauses
« Explicit proof objects

Different approaches: AProlog, Isabelle, Twelf



Application: certified code

Code Producer

Safety policy

Generate Certificate

T~
Program
T T~ A
Certificate |

N

/

proof

/\/

Code Consumer

Safety policy
Check Certificate

« Foundational proof-carrying code : [Appel, Felty 00]

« Temporal-logic proof carrying code [Bernard,Lee02]

» Foundational typed assembly language : [Crary 03]

* Proof-carrying authentication: [Felten, Appel 99]

Tabled higher-order logic programming — p.9/47



Application: certified code

Code Producer o Code Consumer
- ——| Program — :
Safety policy —~ \ Safety policy
Generate Certificate| |Certificate ﬁ/ Check Certificate
proof
L T~

Large-scale applications
 Typical code size: 70,000 — 100,000 lines

Includes data-type definitions and proofs
» Higher-order logic program: 5,000 lines
» Over 600 — 700 clauses



Some limitations In practice

« Straightforward specifications are not executable.
» Redundancy severely hampers performance.
» Meta-reasoning capabilities limited in practice.

Lt

Overcome some of these limitations using
tabelling and other optimizations!



This thesis

Tabled higher-order logic programming allows us to

- efficiently execute logical systems
(interpreter using tabled search)

» automate the reasoning with and about them.
(meta-theorem prover using tabled search)

it

This Is a significant step towards
applying logical frameworks in practice.



Contributions

Tabled higher-order logic programming

* Characterization based on uniform proofs (ICLP’02)
* Implementation of a tabled interpreter
* Case studies (parsing, refinement types, rewriting)(LFM’02)

Efficient data-structures and algorithms

* Foundation for meta-variables (LFM’03)
* Optimizing higher-order unification (CADE’03)
* Higher-order term indexing (ICLP’03)

Meta-reasoning based on tabled search
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“...It Is very common for the proofs to have
repeated sub-proofs that should be hoisted out and
proved only once ...” [Necula,Lee97]

Redundant computation

Infinite computation



Recall...subtyping

tpsub: of ET
<- of ET
<- sub T" T.

tpfun: of (fun AX.E x) (Tl => T2)
<-(IIx:exp.of x Tl -> of (E x) T2).
“forall x: exp, assume of x T1
and show of (E x) T2"



- —of (fun AXx.x) T

- —of (fun A X.xX) Ty u:of x T, — of x Ty

sub T, T
J tp_sub

u:of x T, — of x (T4 X Uu)

T
TIg, sub (T4 xu) T,

S
S
S=S



- —of (fun A Xx.x) T

- —of (fun A x. x) Ty u.ofx T, — of x Tj

sub T, T
U tp_sub

u:of x T, — of x (T4 X u)
sub (T4 xu) T;

T,=3S5
T3=3S
T=S=3S

Loop detection



- —of (fun A Xx.x) T

- —of (fun A x. x) Ty u.ofx T, — of x Tj

sub T, T
U tp_sub

u:of x T, — of x (T4 X u)
sub (T4 xu) T;

T,=3S5
T3=3S
T=S=S

Loop detection
How can we detect loops?
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_oops modulo strengthening

- Dependencies among terms
u.of x T9 — of X (T4 X u)
strengthen u:of Xx To — of x Ty
- Dependencies among propositions
u.of x To — sub (T4 xu) T3
strengthen: - —>sub Ty T3

« Subordination analysis [Virga99]



Proof tree (cont.)

- —of (fun A Xx.x) T

- —of (fun A x. x) Ty u.ofx T, — of x Tj

sub T, T
U tp_sub

u:of x T, — of x (T4 X u)
sub (T4 xu) T;

T,=3S5
T3=3S
T=S=S

Loop detection
How can we detect loops?



Proof tree (cont.)

- —of (fun AXx.x) T

- —of (fun A x. xX) Ty u.ofx T, — of x Tj

sub T, T
U tp_sub

u:of x T, — of x (T4 X u)

T
TIg, sub (T4 xu) T,

S
S
S=S

Loop detection
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Proof tree (cont.)

- —of (fun AXx.x) T

- —of (fun A x. xX) Ty u.ofx T, — of x Tj

sub T, T
U tp_sub

u:of x T, — of x (T4 X u)
sub (T4 xu) T;

T,=3S5
T3=3S
T=S=S

Loop detection
How can we detect loops? Subordination

How can we still produce all answers?



Proof tree (cont.)

- —of (fun AXx.x) T
\@ w

- —of (fun A x. xX) Ty u.ofx T, — of x Tj
sub T; T
J tp_sub
Resume T,=S u:ofx T, — ofx (T4 x u)
T3:S sub (T4 XU) T3
T=S=395 ;

_ _ Resume
Multi—-stage depth—first strategy

adapted from [Tamaki, Sato89]



Memoization based proof search

» Proof search using a memo-table

« Store intermediate goals and re-use results
« May need to use subordination!

- Eliminate redundant computation

- Eliminate infinite paths

» More specifications are executable!



Memo-table

- Table entry: I" — a , A)
- I' : context of assumptions (i.e. u:of x Ts)
- a : atomic goal (i.e. of (fun Ax. x) T, of x T3)

- A : list of answer substitutions for all existential
variables in I" and «



Memo-table

- Table entry: I" — a , A)
- I' : context of assumptions (i.e. u:of x Ts)
- a : atomic goal (i.e. of (fun Ax. x) T, of x T3)

- A : list of answer substitutions for all existential
variables in I" and «

Goal Answer
— of fun AxX) T | T=S=S
uofxT9 — o0ofxTs T9=5,Tg=S




« Selective memoization

* Finds all answers to a query
« Terminates for programs over a finite domain



Theoretical foundation

Conservative extension of LF [Harper et. al. 93]
with meta-variables

» Foundation for proof search and for other
optimization (e.g. higher-order unification,
higher-order term indexing)

« Type-checking remains decidable.
» Canonical forms exist.
 Proofs follow [Harper,Pfenning03]



Tabled proof search

Uniform proofs as a foundation for logic programming
[Miller et.al 91]

Soundness Any uniform proof with answer substitution
has a uniform proof.

Completeness Any uniform proof has a uniform proof
with answer substitution.

Soundness of tabled higher-order logic programming : Any
tabled uniform proof with an answer substitution
has a uniform proof with the same answer
substitution.



Related work

» Related Work: XSB system [Warren et al. 99]
Very successful for first-order logic programming

» Applicable to other higher-order systems:
— AProlog[Nadathur,Miller88]
— Linear logic programming [Hodas et al. 94][Cervesato96]
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» Parsing of formulas (adapted from [Warren99])
— Left and right recursion

— Not executable with depth-first search

— Memoization vs iterative deepening

» Refinement type checking [Davies, Pfenning00]
— Decidable
— Memoization vs depth-first search



Parser for formulas

#tok memo iterative deepening
20| 0.13 sec 0.98 sec
58 | 2.61 sec o'
117 | 10.44 sec o'
235 | 7/5.57 sec o'

oo = process does not terminate

Intel Pentium 1.6GHz, RAM 256 MB,
SML New Jersey 110, Twelf 1.4

. R ——



Refinement type-checking

example memo  depth-first

First answer sub 0.15 sec
mult 0.15 sec
square 0.16 sec

Not provable mult 13.50 sec
plus 00
sguare 00

All answers  sub 5.59 sec
mult 00
sguare 00

. R ———



Refinement type-checking

example memo  depth-first
First answer sub 3.19sec| 0.15sec
mult /.78 sec| 0.15sec
square 9.02sec| 0.16 sec
Not provable mult 2.38 sec | 13.50 sec
plus 6.48 sec 00
square 9.29 sec 00
All answers  sub 6.88 sec | 5.59 sec
mult 9.06 sec 00
square | 10.30 sec 00

Tabled higher-order logic programming — p.28/47



Evaluation

» Benefits:
— Superior to iterative deepening
— Meaningful failure: decision procedure
— Consistent performance
— Quick failure
— Small proof size

» Drawbacks:
— Overhead of storing and retrieving information
— Multi-stage strategy delays the reuse of answers
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an

Increase In the size of the database of retained
Information.” [Wos92]
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an

Increase In the size of the database of retained
Information.” [Wos92]

1000 -
number of

conclusions (= proof steps)
500

time \ space
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Efficiently accessing the memo-table

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
Increase In the size of the database of retained

Information.” [Wos92]

1000
number of

conclusions (= proof steps)
500

Ideal performance

time \ space

Tabled higher-order logic programming — p.31/47



Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x) Query:
(2) pred (h (h a)) (g b) (f Ax. Ex) pred (h (h b)) (g b) a
(3) pred (h (g &) (g b) a

How can we efficiently store and retrieve data?



Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x) Query:
(2) pred (h (h a)) (g b) (f Ax. Ex) pred (h (h b)) (g b) a
(3) pred (h (g &) (g b) a

How can we efficiently store and retrieve data?

« Share term structure
« Share common operations

. R ———



Common sub-expression

Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x) Query:
(2) pred (h (h a)) (g b) (f Ax. Ex) pred (h (h b)) (g b) a
(3) pred (h (g &) (g b) a

» Factor out common sub-expressions!
ored (h (h a)) (g b) (f A X. EX) - "
red (h (ga) (9b)  a pred (n71)(95) 72




Common sub-expression

Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x) Query:
(2) pred (h (h a)) (g b) (f Ax. Ex) pred (h (h b)) (g b) a
(3) pred (h (g &) (g b) a

» Factor out common sub-expressions!
ored (h (h a)) (g b) (f A X. EX) - "
red (h(ga) (@b)  a pred (1) (95) 72

 In general the most specific common
generalization (msg) does not exist!

. R ———



MSG of higher-order patterns

Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x) Query:
(2) pred (h (h a)) (g b) (f Ax. Ex) pred (h (h b)) (g b) a
(3) pred (h (g &) (g b) a

» Most specific generalization exists for higher-order
patterns.

* Not all terms fall within this class.
 |s this efficient?



Our approach

Set of terms
(1) pred (h (h b)) (g b) (f Ax. E x) Query:

(2) pred (h (h a)) (g b) (F Ax. E x) pred (h (h b)) (g b) a
(3) pred (h (g @) (g b) a

 Further restrict higher-order patterns!

(Linear higher-order patterns)

— Every meta-variable occurs only once.
— Every meta-variable is fully applied.

- Translate terms into linear higher-order patterns
and residual equations (variable definitions)

. R ———



Higher-order substitution trees

Set of terms

(1) pred (h (h b)) (g b) (f Ax. E x)
(2) pred (h (h a)) (g b) (f Ax. E x)

(3) pred (h (g a)) (g b) a p;‘j(h *%b) "2
(h*3) =1 (ga)= "1
Compose (f Ax. E x) =*2 a= *2
substitutions! / \ (3)
b=*3 a=7*3
(1) (2)



Parser for formulas

iterative memoization
#tok | deepening noindex iIndex || speed-up
20 0.98sec | 0.13sec | 0.07 sec 85%
58 oo | 2.61sec| 1.25sec 108%
117 oo | 10.44sec | 5.12 sec 103%
235 oo | 7/5.597 sec | 26.08 sec 190%

oo = process does not terminate

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.



Refinement type-checking

example noindex Index speed-up orig
First sub 3.19 sec | 0.46 sec 593%
answer  mult /.78 sec | 0.89 sec 174%
square | 9.02 sec | 0.98 sec 820%
Not mult 2.38 sec | 0.38 sec 526%
provable plus 6.48 sec | 0.85 sec 662%
square | 9.29 sec | 1.09 sec 7152%
All sub 6.88 sec | 0.71 sec 869%
answers mult 9.06 sec | 0.98 sec 824%
square | 10.30 sec | 1.08 sec 854%

Tabled higher-order logic programming — p.38/47



Refinement type-checking

example noindex Index speed-up orig

First sub 3.19 sec | 0.46 sec 593% | 0.15 sec
answer  mult /.78 sec | 0.89 sec 774% || 0.15 sec

square | 9.02 sec | 0.98 sec 820% || 0.16 sec
Not mult 2.38 sec | 0.38 sec 526% || 13.50 sec
provable plus 6.48 sec | 0.85 sec 662% || oo

square | 9.29 sec | 1.09 sec 152% || oo
All sub 6.88 sec | 0.71 sec 869% | 5.59 sec
answers mult 9.06 sec | 0.98 sec 824% || oo

square | 10.30 sec | 1.08 sec 854% || oo

Tabled higher-order logic programming — p.39/47
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Contribution and related work

« Contribution:

— Higher-order term indexing (key: linearization, n-longform)

— Indexing substantially improves performance
between 85% and 820%

* Related Work:

— Substitution trees for first-order terms [Graf95]

— (Higher-order) automata-driven indexing
Necula,Rahul01] imperfect filter, calls full
nigher-order unification to check candidates
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This talk
» Tabled higher-order logic programming

« Higher-order indexing

In the thesis
» More theory
» Optimizing higher-order unification

- Meta-theorem proving based on tabled
higher-order logic programming



Conclusion

» This opens many new opportunities

— to experiment and develop large-scale systems.
for example: proof-carrying code

— to explore the full potential of logical frameworks
new applications: authentication, security

- Efficient proof search techniques are critical
— to sustain performance.
— to reduce response time to the developer.



» Narrowing the performance gap further

— Improving tabling (e.g. subsumption, different scheduling
strategies)

— Eliminating redundancy Iin the representation of clauses,
goals and proofs: approximate typing [Necula,Lee98]

— Mode, determinism, termination analysis
[Schrijvers et al. 02]

— Ordered resolution [Bachmair, Ganzinger 01]



* Foundation for meta-variables
— Abstract over meta-variables (II°u::\Wr-A.)

— First-class variable definitions (I1°u = M::W+A)
- Representing and type-checking dag-style objects
» Meta-theorem proving

— Automating complete induction

— Further work on redundancy elimination



Applications

Proof-carrying code

— How can we transmit small proofs?[Necula,Rahul 01],
(collaboration with Crary and Sarkar)

-~ How can we check them efficiently? [Stump, Dill 02]

- How can we automate some of the meta-proofs?
[Crary,Sarkar03]



Applications

Proof-carrying code

— How can we transmit small proofs?[Necula,Rahul 01],
(collaboration with Crary and Sarkar)

-~ How can we check them efficiently? [Stump, Dill 02]

- How can we automate some of the meta-proofs?
[Crary,Sarkar03]

Proof-carrying authorization [Bauer et al. 02]
Bob proves that he is authorized to access Alice’s web-page.

-~ How can we efficiently generate proofs?

- How can we cache and re-use proof attempts?



Finally ...

The End.



Finally ...

The End.

If you want to find out more:

http://www.cs.mcgill.ca/"bpientka
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