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Abstract. We describe two checkers for verifying termination and reduction prop-
erties about higher-order logic programs. The reduction checker verifies that the
result of a program execution is structurally smaller (or equal) than the inputs to
the program. The termination checker guarantees that the inputs of the recursive
calls are structurally smaller than the inputs of the original call taking into account
reduction properties. At the heart of both checkers lies an inference system to reason
about structural properties which are described by higher-order subterm relations.
This approach provides a logical foundation for proving properties such as termina-
tion and reduction and factors the effort required for each one of them. Moreover,
it allows the study of proof-theoretical properties, soundness and completeness and
different optimizations. The termination and reduction checker are implemented as
part of the Twelf system and have been used on a wide variety of examples, including
proofs about typed assembly language and those in the area of proof-carrying code.

Keywords: Logical frameworks, termination

1. Introduction

Termination and reduction properties about programs and proofs are
crucial invariants and represent an important step towards verifying
correctness. Several automated methods to prove termination have
been developed for first-order functional and logic programs in the
past years (for example [3, 20, 9, 18, 31, 35]). One typical approach
is to transform the program into a term rewriting system (TRS) such
that the termination property is preserved. A set of inequalities is
generated and the TRS is terminating if there exists no infinite chain
of inequalities. This is usually done by synthesizing a suitable measure
for terms.

To show termination in higher-order simply-typed term rewriting
systems (HTRS) mainly two methods have been developed (for a survey
see [33]): the first approach relies on strict functionals by van de Pol [32],
and the second generalizes recursive path orderings to the higher-order
case by Jouannaud and Rubio [12].

However, there are several drawbacks to applying these approaches
to verify termination of higher-order logic programs. First, important
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structural information is lost during the translation of programs into
TRS. In particular, if the termination analysis fails for the TRS, it is
hard to provide feedback and re-use this failure information to point
to the program location where the error occurred. Second, synthesizing
a suitable measure to verify the TRS terminates may be expensive. In
addition, failure to synthesize a suitable measure does not imply that
the TRS is not terminating. In this paper, we develop a more direct
approach of checking termination and reduction properties of higher-
order logic programs and provide a logical foundation for verifying and
reasoning with structural properties in general.

We focus on the higher-order logic programming language Twelf,
a meta-language for specifying and implementing logical systems and
proofs about them [22]. Twelf extends first-order logic programming in
two principal ways: First, we allow the user to define her own higher-
order dependently typed data-types and support higher-order abstract
syntax [25]. Second, we not only have a static set of program clauses,
but clauses may be introduced dynamically and used within a certain
scope during execution.

This stands in sharp contrast to higher-order features supported
in many traditional programming languages (for example [5, 31]) and
higher-order term rewriting systems (see [12, 32]) where the use of
functions is unrestricted. In particular, we can encapsulate functions
within terms to later execute them. In contrast, functions in Twelf are
used solely to support the use of higher-order data-types and model
concisely many characteristics prevalent in logical systems, such as
renaming and scoping of bound variables and the discharge of assump-
tions. These features make Twelf an ideal meta-language for specifying
and implementing formal systems (such as type systems, operational
semantics, logics etc.) and the proofs about these formal systems (such
as type preservation, soundness, completeness etc.).

In this paper we describe reduction and termination checking for
higher-order logic programs in Twelf. The principal contributions of this
paper are three-fold: 1) We present a logical foundation for properties
such as termination and reduction. The logical perspective allows us to
draw on proof-theoretic methods to ensure soundness and completeness
of the reasoning system. It also provides insights into optimizations
and allows us to combine different structural orderings and reason
about them. 2) We describe a syntax-directed checker for reduction
properties which verifies that the output of program execution is struc-
turally smaller or equal than the input. More generally, the reduction
checker verifies relations between arguments of a well-moded predicate.
3) We present a syntax-directed checker for termination properties of
higher-order logic programs. To show termination, the checker may
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rely on reduction properties to infer that the inputs to recursive calls
are strictly smaller than the inputs to the original call. Both check-
ers analyze higher-order logic programs directly and provide precise
error messages. The paper extends an earlier version [27] and provides
a detailed account of the termination and reduction analysis in the
higher-order logic programming setting.

Both the termination and the reduction checker are implemented
as part of the Twelf system and have been used successfully on ex-
amples from compiler verification (soundness and completeness proofs
for stack semantics and continuation-based semantics), cut-elimination
and normalization proofs for intuitionistic and classical logic, soundness
and completeness proofs for the Kolmogorov translation of classical
into intuitionistic logic (and vice versa). The largest project so far
undertaken is Crary’s implementation of the typed-assembly language
(TALT) [7, 8]. TALT provides a foundational account of safety for
a fully expressive typed assembly language. The project, a form of
certified code, consists of about 30,000 lines of code and over 1,400
theorems which ultimately establish the soundness of the type-system
for TALT. The termination and reduction checker in combination with
the coverage checker [30] have been used to verify correctness of these
proofs. The wide range and scope of these examples demonstrate the
strength and success of this approach in practice.

The paper is organized as follows: In Section 2 we discuss an example
taken from the domain of verifying the correctness of abstract machine
translation. We review the background (see Section 3) and briefly dis-
cuss the implementation of the example in Twelf. Using this example
we illustrate the basic idea of the reduction and termination checker.
In Section 4 we outline the inference system for reasoning about orders
and prove consistency of the system. In Section 5, we describe in detail
the reduction and termination analysis of higher-order logic programs.
Finally, in Section 6 we discuss related work, summarize the results and
outline future work.

2. Motivating Example

In this section, we consider a typical example from verifying the correct-
ness of abstract machines[10]. To prove correctness, we need to show
the correspondence between the high-level language and the low-level
abstract machine. In other words, we can translate programs written
in the high-level language into programs which run on the abstract
machine. The proof is constructive and constitutes a program which
translates derivations in the source language into derivations of the
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target language and vice versa. In this example, we consider Mini-ML
as the source language, and the language of the machine instructions
as the target language.

Mini-ML Syntax
expressions e ::= x | vl v | z | s e | lam x.e | e1 e2

values v ::= x | z∗ | s∗ v | lam∗x.e

Abstract Machine Syntax
instructions I ::= ret v | ev e | app1 v e | app2 v1 v2

stack S ::= nil | S;λv.I

The Mini-ML language consists of numbers, constructed by z and
successor s, lambda-abstraction and application. Evaluation rules are
given via a big-step semantics. To evaluate an application e1 e2, we need
to evaluate e1 to some value lam∗x.e′, e2 to some value v2 and [v2/x]e′

to the final value of the application. Note, the order of evaluation of
these premises is left unspecified. The other rules are straightforward.

Big step Mini-ML semantics:

z ↪→ z∗ ev z e ↪→ v
s e ↪→ s∗ v

ev s
lam x.e ↪→ lam∗x.e

ev lam

vl v ↪→ v
ev vl

e1 ↪→ lam∗x.e′ e2 ↪→ v2 [v2/x]e′ ↪→ v
e1 e2 ↪→ v

ev app

The abstract machine has a more refined computation model which
is reflected in the instruction set. We not only have instructions operat-
ing on expressions and values, but also intermediate mixed instructions
such as app1 v1 e2 and app2 v1 v2. Computation in an abstract machine
can be represented as a sequence of states.

Small-step transition semantics (single step):

t z : S#(ev z) 7−→ S#(ret z∗)
t s : S#(ev (s e)) 7−→ (S;λv.ret (s∗ v))#(ev e)
t lam : S#(ev lam x.e) 7−→ S#(ret lam∗x.e)
t app : S#(ev e1 e2) 7−→ (S;λv1.app1 v1 e2)#(ev e1)
t app1 : S#(app1 v1 e2) 7−→ (S;λv2.app2 v1 v2)#(ev e2)
t app2 : S#(app2 (lam∗x.e′) v2) 7−→ S#(ev [v2/x]e′)
t vl : S#(ev (vl v)) 7−→ S#(ret v)
t ret : (S;λv.I)#(ret v1) 7−→ S#([v1/v]I)

Each state T is characterized by a stack S representing the contin-
uation and an instruction I and written as S#I. In contrast to the
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big-step semantics for Mini-ML, the small-step transition semantics
precisely specifies that an application is evaluated from left to right.

Multi-Step transition semantics:

T
∗7−→ T

id
T 7−→ T1 T1

∗7−→ T ′

T
∗7−→ T ′ @

Deductions of the judgment T
∗7−→ T ′ have a very simple form: They

all consist of a sequence of single steps terminated by an application of
the id rule. We will follow standard practice and use a linear notation
for sequences of steps:

T1 7−→ T2 7−→ T3 7−→ . . . 7−→ Tn

Similarly, we will mix multi-step and single-step transitions in sequences
with the obvious meaning. To illustrate computation of the abstract
machine, we give a sample computation sequence for computing the
value of the expression (lam x.vl x) (s z).

S#(ev (lam x.vl x) (s z))

D1

{ 7−→ (S;λv1.app1 v1 (s z))#ev (lam x.vl x)
7−→ (S;λv1.app1 v1 (s z))#ret (lam∗x.vl x)

D2

{ 7−→ S#app1 (lam∗x.vl x) (s z) 7−→ (S;λv2.app2 (lam∗x.vl x) v2)#ev (s z)
. . .

7−→ (S;λv2.app2 (lam∗x.vl x) v2)#ret (s∗ z∗)

D3

{ 7−→ S#app2 (lam∗x.vl x) (s∗ z∗)
7−→ S#(ev (vl (s∗ z∗)) 7−→ S#ret (s∗ z∗)

We can translate a computation sequence (7−→) into an evaluation
derivation (↪→) by recursively translating each sub-sequence. In the
above example, the computation sequence can be split into several con-
secutive sub-sequences D1, D2, D3 where each of these sub-sequences
corresponds to evaluation derivation P1, P2 and P3 in the following
derivation:

P1

lam x.vl x ↪→ lam∗x.vl x
P2

(s z) ↪→ (s∗ z∗)
P3

vl (s∗ z∗) ↪→ (s∗ z∗)
(lam x.vl x) (s z) ↪→ (s∗ z∗)

ev app

To show that the abstract machine works correctly, we prove that all
computation sequences can be translated into evaluation derivations.
To be more precise, we need to show that for all computation sequences
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on the abstract machine starting with the empty stack which evalu-
ate some expression e to some value w in multiple steps, there exists
an evaluation in the Mini-ML operational semantics s.t. expression e
evaluates to value w.

THEOREM 1 (Soundness).
If D:nil #(ev e) ∗7−→ nil #(ret w) then P:e ↪→ w.

This guarantees that the translation is sound. For correctness, we
also need to prove that every evaluation derivation (↪→) can be trans-
lated into a computation sequence (7−→). We will concentrate on the
soundness of the translation. Note that the stack grows during the
computation on the abstract machine which will prevent the applica-
tion of the induction hypothesis in the proof. Therefore we will prove
the following generalized statement: if we start in an arbitrary state
S#(ev e) with a computation S#(ev e) ∗7−→ nil #(ret w) then there
exists an intermediate state S#(ret v) such that e ↪→ v in the Mini-
ML semantics and S#(ret v) ∗7−→ nil #(ret w). The lemma states that
a complete computation with an appropriate initial state can be trans-
lated into an evaluation followed by another complete computation. For
a more detailed discussion of this example we refer to [24].

LEMMA 2. If D : S#(ev e) ∗7−→ nil #(ret w) then P : e ↪→ v and
D′ : S#(ret v) ∗7−→ nil #(ret w) and D′ is smaller than D, i.e. D′ is a
sub-sequence of D.

Proof: By course-of-value induction on D. We abbreviate the extra side
condition D′ is smaller than D by D′ ≺ D. We show the case where D begins
with t app.

D = S#(ev e1 e2) 7−→ (S;λv1.app1 v1 e2)#(ev e1)
∗7−→ nil #(ret w)︸ ︷︷ ︸

D1

By induction hypothesis on D1 there exists a value v1 and an evaluation
P1 : e1 ↪→ v1 and a subcomputation

D′ : (S;λv1.app1 v1 e2)#(ret v1)
∗7−→ nil #(ret w) s.t. D′ ≺ D1

By inversion on the subcomputation D′ we obtain the following computation
sequence:

D′ = (S;λv1.app1 v1 e2)#(ret v1) 7−→ S#(app1 v1 e2) 7−→
(S;λv2.app2 (v1 v2))#(ev e2)

∗7−→ nil #(ret w)︸ ︷︷ ︸
D2

By induction hypothesis on D2 there exists a value v2 and an evaluation
P2 : e2 ↪→ v2 and a subcomputation D′′ : (S;λv2.app2 v1 v2)#(ret v2)

∗7−→
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nil #(ret w) s.t. D′′ ≺ D2. By inversion on the subcomputation D′′, v1 must
be of the form lam∗x.e′ and we obtain the following computation sequence:

D′′ = (S;λv2.app2 (lam∗x.e′) v2)#(ret v2) 7−→ S#(app2 (lam∗x.e′) v2) 7−→
S#(ev [v2/x]e′) ∗7−→ nil #(ret w)︸ ︷︷ ︸

D3

By induction hypothesis on D3 there exists a value v and an evaluation P3 :
([v2/x]e′) ↪→ v and a subcomputation D′′′ : S#(ret v) ∗7−→ nil #(ret w) s.t.
D′′′ ≺ D3. Recall, we needed to show the following two facts:

P : e1 e2 ↪→ v and D′′′ : S#(ret v) ∗7−→ nil #(ret w) and D′′′ ≺ D.

We showed that we can derive D′′′ after several inversion steps and three
applications of the induction hypothesis. We can construct P by using ev app
rule and P1,P2,P3 as premises.

To justify each of the IH applications we need to verify 1) if we apply
the IH to D1 (D2,D3 resp.), the resulting sequence D′ (D′′, D′′′ resp.) is
shorter (reduction property) and 2) if we apply the IH to D1 (D2,D3 resp.),
then D1 (D2,D3 resp.) is smaller than the original computation sequence D
(termination property). To establish reduction and termination we need to
apply transitivity reasoning. 2

Designing a correct translation of computation in a low-level lan-
guage into evaluation of a high-level language is a non-trivial example
illustrating course-of-value recursion. We recursively unfold the compu-
tation sequence of the low-level language and translate sub-sequences
into evaluations. This is reflected in the soundness proof, where we
needed to apply the induction hypothesis to the outcome of the previous
IH application. Note that we formulated the reduction property that
the output is size-decreasing explicitly in the theorem, to emphasize
the necessary steps in justifying each induction hypothesis application.

In the next section, we explain basic notation and give an imple-
mentation of the proof in Twelf using higher-order logic programming.

3. Background

3.1. Basic Notation

Higher-order logic programming extends first-order logic programming
in two ways: 1) Terms can be constructed using higher-order depen-
dently typed data-types and are subject to higher-order unification
during execution. 2) Clauses may contain implication and universal
quantification. Hence clauses may be introduced dynamically during
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execution and used within a certain scope. Several higher-order logic
programming languages exist, such as λProlog [17] or Isabelle [21] and
we expect in general that this work is also applicable to their systems
with minor modifications. We focus here on the higher-order logic pro-
gramming language Twelf which is based on the logical framework LF
[11].

Kinds K ::= type | Πx:A.K
Types A ::= a M1 . . .Mn | A1 → A2 | Πx:A1.A2

Terms M ::= c | x | λx:A.M |M1 M2

Context Γ ::= · | Γ, x:A
Signature Σ ::= · | Σ, a:K | Σ, c:A

We will use c for term constants, a for type family constants and
x for variables. Sometimes we also just use a to refer to an atomic
type. Πx:A1.A2 denotes the dependent function type: the type A2 may
depend on term x of type A1. Whenever x does not occur free in A2

we may abbreviate Πx:A1.A2 as A1 → A2. Types can be interpreted
as formulas, such that the function arrow A1 → A2 represents an
implication and Πx:A1.A2 denotes universal quantification. Using the
types-as-formulas paradigm, we can assign types a logic programming
interpretation [22]. Below we assume a fixed signature where the types
of term constants c are specified. The free variables in a term M are
provided by a context Γ. The equivalence between terms is equality
modulo βη-conversion. We will rely on the fact that canonical (i.e. long
βη-normal) forms of terms are computable and that equivalent terms
have the same canonical form up to α-conversion. We assume that
constants and variables are declared at most once in a signature and
context, respectively. As usual we apply tacit renaming of bound vari-
ables to maintain this assumption and to guarantee capture-avoiding
substitutions.

To illustrate the use of basic notation, we consider the representation
of Mini-ML which was introduced in the last section. The applications
and lambda-abstractions can be represented as canonical terms of type
exp. We use higher-order abstract syntax [25] to represent expressions
lam x.e and e1 e2. The expression lam x.e of the Mini-ML language is
represented by lam λx.E x. Similarly the value lam∗x.e′ is modeled as
lam* λx.E′ x. The key idea is to represent the scope of the variable x in
lam x.e (and by lam∗x.e′) by λ-abstraction. Substitution is modeled via
β-reduction. To improve readability we write lam E or lam* E’ where
we assume that E (or E’ resp.) can be η-expanded. To represent the
[v2/x]e′ in Mini-ML, we use meta-level LF application (E’ V2) where
E’ stands for the η-expanded expression λx.e′ x and (E’ V2) will
be in ηβ-normal form. Values, continuations, instructions and states
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are defined in a similar fashion. The evaluation judgment e ↪→ v is
represented by the type family eval : exp -> val -> type in Twelf.
Similarly, we can encode the one-step transition relation and the multi-
step transition relation as judgments in Twelf.

exp: type. eval: exp -> val -> type.

lam: (val -> exp) -> exp. ev lam : eval (lam E) (lam* E).

app: exp -> exp -> exp. ev app : eval (app E1 E2) V

<- eval E1 (lam* E’)

val: type. <- eval E2 V2

lam*:(val -> exp) -> val. <- eval (E’ V2) V.

In this example we reversed the function arrows, writing A2 ← A1,
instead of A1 → A2 following logic programming notation. Since → is
right associative,← is left associative. Note that the head of the clause
lies to the right when using→ notation. The capitalized identifiers that
occur free in each declaration are implicitly Π-quantified. The appro-
priate type is deduced from the context during type reconstruction.
The explicit form of the second declaration is:

ev app:ΠE1:val -> exp.ΠE2:exp.ΠV:val.ΠE’:val -> exp.ΠV2:val.

eval (E’ V2) V -> eval E2 V2 -> eval E1 (lam* E’)

-> eval (app E1 E2) V.

3.2. Soundness proof as higher-order logic program

Twelf allows elegant encodings of source and target language and the
translation of computation from one language to another. In the fol-
lowing, we develop the representation of the translation of computation
sequences to evaluations in Mini-ML in Twelf. In the translation, we
consider each computation sequence D in the small step semantics
and translate it into an evaluation tree P in the Mini-ML seman-
tics and some tail computation D′ which is smaller than the original
computation D. A computation sequence

S#(ev e1 e2)
t app7−→ (S;λv.app1 v e2)#(ev e1)

∗7−→ nil #(ret w)

is represented in Twelf as (t app @ D1) where t app represents the
first step of computation S#(ev e1e2)

t app7−→ (S;λv.app1 v e2)#(ev e1)
while D1 stands for (S;λv.app1 v e2)#(ev e1)

∗7−→ nil #(ret w), the
tail of the computation. In other words, (t app @ D1) means, we first
apply the rule t app followed by the tail computation sequence D1. @
represents the application of the multi-step transition rule and is used
as an infix operator. An evaluation tree in the big step semantics
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P1

e1 ↪→ lam∗x.e′
P2

e2 ↪→ v2

P3

[v2/x]e′ ↪→ v
e1 e2 ↪→ v

ev app

is implemented as (ev app P1 P2 P3). The leaves of the evaluation
tree are formed by applications of the ev lam axiom which is imple-
mented as a constant ev lam in Twelf.

In Section 2, we proved the critical lemma which is needed for es-
tablishing soundness of the compiler: if we start in an arbitrary state
S#(ev e) with a computation S#(ev e) ∗7−→ nil #(ret w) then there
exists an intermediate state S#(ret v) such that e ↪→ v in the Mini-ML
semantics and S#(ret v) ∗7−→ nil #(ret w). The translation of compu-
tation sequences to evaluation trees and tail computation sequences
can be described by a meta-predicate trans which takes a computation
sequence as input and returns an evaluation tree and a tail computation
sequence.

As a computation sequence can either start with t lam or t app
transition, we need to consider two cases. If the computation sequence
starts with a t lam transition (t lam @ D) then there exists an evalu-
ation of lam x.e to lam∗x.e by the ev lam rule and a tail computation
D. The interesting case is when the computation sequence starts with
an t app transition (t app @ D1).

S#(ev e1 e2)
t app7−→ (S;λv.app1 v e2)#(ev e1)

∗7−→ nil #(ret w)︸ ︷︷ ︸
D1

We recursively apply the translation to D1 and obtain P1 which repre-
sents the evaluation starting in e1 ↪→ v1 and the following tail compu-
tation sequence (ret @ t app1 @ D2):

(S;λv.app1 v e2)#(ret v1)
ret7−→ S#(app1 v1 e2)

t app17−→
(S;λv.app2 v1 v)#(ev e2)

∗7−→ nil #(ret w)︸ ︷︷ ︸
D2

By applying the translation again to D2, we obtain an evaluation
tree for e2 ↪→ v2 described by P2 and some sequence D’’. By inversion
on D’’ we obtain some sequence (ret @ t app2 @ D3) and know that
v1 is lam∗x.e′.

(S;λv.app2 (lam∗x.e′) v)#(ret v2)
ret7−→ S#(app2 (lam∗x.e′) v2)

t app27−→
S#(ev (lam∗x.e′) v2)

∗7−→ nil #(ret w)︸ ︷︷ ︸
D3

Now we apply the translation for a final time to D3 and obtain an
evaluation tree P3 starting in [v2/x]e′ ↪→ v and some tail computation
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D’’’. The final results of translating a computation sequence (t app @
D1) are the following: The first result is an evaluation tree for e1 e2 ↪→ v
which can be constructed by using the ev app rule and e1 ↪→ (lam∗x.e′),
e2 ↪→ v2 and [v2/x]e′ ↪→ v as premises. This step is represented in
Twelf by (ev app P1 P2 P3). As a second result, we return a tail
computation sequence. This is just the sequence D’’’.

The following Twelf program implements the described translation.
Throughout this example, we reverse the function arrows writing A2

<- A1, instead of A1 -> A2 following logic programming notation. For
a more detailed discussion of this example we refer to [24].

trans : S # (ev E) =>* nil # (ret W) ->

eval E V -> S # (ret V) =>* nil # (ret W) -> type.

%mode trans +CS -E -CS’.

s lam : trans (t lam @ D ) ev lam D.

s app : trans (t app @ D1) (ev app P1 P2 P3) D’’’

<- trans D1 P1 (ret @ t app1 @ D2)

<- trans D2 P2 (ret @ t app2 @ D3)

<- trans D3 P3 D’’’.

First the type of the meta-predicate trans is defined. It has three
arguments: the computation S#(ev E) ∗7−→ nil #(ret W ) which is de-
scribed as S # (ev E) =>* nil # (ret W), the evaluation e ↪→ v
which is represented as eval E V and the tail computation sequence
S#(ret E) ∗7−→ nil #(ret W ) which is defined as S # (ret V) =>*
nil # (ret W).

The mode declaration %mode trans +CS -E -CS’ specifies input
and output relations of the defined predicate. When executed this pro-
gram translates computations on the abstract machine into Mini-ML
evaluations. Dependent types underlying this implementation guaran-
tee that only valid computation sequences and evaluations are gener-
ated. The mode checker [29] verifies that all inputs are known when the
predicate is called and all output arguments are known after success-
ful execution of the predicate. To check that this program actually
constitutes a proof, meta-theoretic properties such as coverage and
termination need to be established. Coverage ensures that all cases
in the proof have been considered [30]. Termination guarantees that
the input of each recursive call (induction hypothesis) is smaller than
the input of the original call (induction conclusion). For termination
checking the program needs to be well-moded. In addition, the user
specifies which input arguments to consider and in which order they
diminish. This is not a limitation in our setting, as the user usually
knows why a particular program or proof should terminate, if imple-
mented correctly. In the given example, we specify that the predicate
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trans terminates in the first argument by %terminates D (trans D
P D’). This captures the statement in the proof of the lemma where
we specify the induction order by saying “By course-of-value induction
on D”. For reduction checking we specify an explicit order relation
between input and output elements. In the example we say %reduces
D’ < D (trans D P D’). This captures the statement “D′ is smaller
than D, i.e. D′ is a sub-sequence of D” which is part of the lemma. In
general, we allow atomic, lexicographic ({Arg1, Arg2}) or simultaneous
([Arg1, Arg2]) subterm orderings. To show that the previous predicate
trans terminates, we show the following:

Reduction: %reduces D’ < D (trans D P D’)

if D’’’ ≺ D3, (t ret @ t app2 @ D3) ≺ D2 and

(t ret @ t app1 @ D2) ≺ D1 then D’’’ ≺ (t app @ D1).

Termination: %terminates D (trans D P D’)

1. D1 ≺ (app @ D1)

2. if (t ret @ app1 @ D2) ≺ D1 then D2 ≺ (app @ D1)

3. if (t ret @ app2 @ D3) ≺ D2 and (t ret @ app1 @ D2) ≺ D1

then D3 ≺ (app @ D1).

≺ denotes the subterm order relation. In general, we proceed for
each clause in two stages to show that a given program satisfies a given
reduction property pattern. First we extract a set ∆ of reduction prop-
erties from the recursive calls which can be assumed and the reduction
property P of the whole clause which needs to be satisfied. Second,
we prove that the set ∆ implies the reduction property P . For proving
termination of a given program, we also proceed in two stages: For
each clause, and for each recursive call we first extract a set ∆ of re-
duction properties which are valid and a termination property P which
characterizes the relation between the recursive call and the original
call. Second, we prove that the set ∆ implies the termination property
P . In general we might have nested clauses which need to be checked
recursively. Moreover, we generate parametric reduction properties for
parametric sub-clauses. Note, while the first phase of analyzing higher-
order logic programs and extracting a set of assumptions ∆ together
with the relation P may differ, the inference system to reason and infer
P is implied by ∆ is the same.

In Section 6 we give several other example for checking termination
and reduction which illustrates the idea. In the remainder of the paper,
we present a formal system which analyzes higher-order logic pro-
grams and develop a deductive system for reasoning about structural
orderings.

final.tex; 25/02/2005; 18:33; p.12



Verifying termination and reduction properties 13

4. A logical foundation for verifying structural properties

To describe structural properties of programs, we use higher-order sub-
term orderings. An order relation is either the ≺ subterm relation, the
� subterm relation or structural equivalence relation ≡. In addition,
we allow compound orderings such as lexicographic and simultaneous
orderings. We use [O1 O2] to denote simultaneous ordering and {O1 O2}
for lexicographic ordering. A context ∆ is either empty or contains valid
order relations.

Context ∆ ::= · | ∆, P
Order relation P ::= O1 ≺ O2 | O1 � O2 | O1 ≡ O2 | Πx:A.P
Order O ::= M | {O1, O2} | [O1, O2]

Since higher-order logic programming admits nested clauses, which may
include universal quantifiers, we also include universally quantified or-
der relations. Order relations may therefore refer to logic variables and
parameters where parameters denote variables bound by λ-abstraction
or Π-quantifier. In the higher-order setting, it is crucial to be able to
distinguish between parameters and logic variables. In this presenta-
tion, we use mixed-prefix context to model dependencies between logic
and bound variables [16]. Logic variables are modeled as existentials,
parameters as universals and subgoals are marked with ∃!. We can think
of the mixed-prefix context as a stack of logic variables, parameters
and subgoals. It models dependencies among variables, as well as the
sequence of subgoals in a clause. Our notion of a mixed-prefix context
slightly generalizes Miller’s notion of a mixed prefix context since we
also keep track of subgoals. This simplifies the conversion of a mixed
prefix context into a well-typed ordinary LF context. An ordinary well-
typed LF context can simply be obtained by dropping the quantifiers
∀, ∃ and ∃!.

Mixed-prefix Context Ψ ::= · | Ψ,∀x:A | Ψ,∃x:A | ∃!u:A

The substitution θ relates two mixed-prefix contexts as follows:

Ψ ` θ : Ψ′ Γ`M : θA

Ψ ` (θ,∃M/x) : (Ψ′,∃x : A)
Ψ ` θ : Ψ′

Ψ,∀x : θA ` (θ,∀x/x) : (Ψ′,∀x : A)

Ψ ` θ : Ψ′
Ψ ` θ : (Ψ′,∃!u : A) Ψ ` · : ·

In this section we develop a formal inference system to check whether
a set of valid order relations implies an order relation.
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14 Brigitte Pientka

4.1. First-order subterm orderings

We start by considering only first-order subterm reasoning. An order
is either the ≺ subterm relation, the � subterm relation or structural
equivalence relation ≡. A context ∆ is either empty or contains valid
order relation. We use a formulation based on the sequent calculus with
right and left rules for each operation on order relations. � is defined
in terms of ≺ and ≡. The main judgment is defined as follows:

Ψ;∆→ P ∆ implies order relation P in the context Ψ

The mixed-prefix context Ψ ensures that any order relation in ∆ and
the order relation P are closed in Ψ. We start by giving straightforward
inference rules for identity, reflexivity, and symmetry. For transitivity,
we give a more algorithmic version than the more usual transitivity
rule which states: if Ψ; ∆ −→ M ≺ N ′ and Ψ; ∆ −→ N ′ ≺ N then
Ψ;∆ −→ M ≺ N (and similar for ≡ and �). However, we can show
that the given set of transitivity rules already suffices to show that
general versions of transitivity are admissible.

Ψ;∆, P −→ P
id Ψ;∆ −→M ≡M

ref
Ψ;∆,M ′ ≡M −→ P

Ψ;∆,M ≡M ′ −→ P
sym

Ψ;∆,M2 ≺M3 −→M1 ≺M2

Ψ;∆,M2 ≺M3 −→M1 ≺M3
t≺

Ψ;∆,M2 ≡M3 −→M1 ≺M2

Ψ;∆,M2 ≡M3 −→M1 ≺M3
t≺≡

Ψ;∆,M2 ≺M3 −→M1 ≡M2

Ψ;∆,M2 ≺M3 −→M1 ≺M3
t≡≺

Ψ;∆,M3 ≡M2 −→M1 ≡M3

Ψ;∆,M3 ≡M2 −→M1 ≡M2
t≡≡

Next, we give the remaining rules.

M � N :
Ψ;∆ −→M ≺ N

Ψ;∆ −→M � N
R�1

Ψ;∆ −→M ≡ N

Ψ;∆ −→M � N
R�2

Ψ;∆,M ≺ N −→ P Ψ;∆,M ≡ N −→ P

Ψ;∆,M � N −→ P
L�

M ≺ N :
Ψ;∆ −→M � Ni

Ψ;∆ −→M ≺ h N1 . . . Nn
R≺i

Ψ;∆,M � N1 −→ P . . . Ψ;∆,M � Nn −→ P

Ψ;∆,M ≺ h N1 . . . Nn −→ P
L≺
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M ≡ N :
Ψ;∆ −→M1 ≡ N1 . . . Ψ;∆ −→Mn ≡ Nn

Ψ;∆ −→ h M1 . . .Mn ≡ h N1 . . . Nn
R≡

Ψ;∆,M1 ≡ N1, . . . ,Mn ≡Mn −→ P

Ψ;∆, h M1 . . .Mn ≡ h N1 . . . Nn −→ P
L≡1

h1 6= h2

Ψ;∆, h1 M1 . . .Mn ≡ h2 N1 . . . Nk −→ P
L≡2

We write here h for the head of a term which is either a constant c or
a variable (or parameter) y which is declared as universal in the mixed-
prefix context Ψ(y) = ∀y:A. If the rule L ≺ has no premises, i.e., N
is a constant c with no arguments, the hypothesis is contradictory and
the conclusion Ψ;∆,M ≺ h −→ P is trivially true. Reasoning about
structural orderings is inherently different from the usual reasoning
with equality and inequality. Usually when reasoning about equali-
ties/inequalities, we reason about the value of a term. For example,
the value of h1 M1 . . .Mn can be equal to the value of h2 N1 . . . Nk

where h1 and h2 denote different constants. When reasoning about
subterms, we are only interested in the syntactic structure of a term.
Therefore, a term h1 M1 . . .Mn can never be structurally equivalent to
h2 N1 . . . Nk, if h2 6= h1. If h1 M1 . . .Mn ≡ h2 N1 . . . Nk occurs in our
assumptions, we can infer anything (L≡2).

This system is already expressive enough to prove termination of the
translation of small-step semantics into big-step Mini-ML semantics
which is implemented by the trans predicate (see p. 10). One of the
claims we need to prove during termination checking is the following:

(t ret @ app1 @ D2) ≺ D1 −→ D2 ≺ (app @ D1)
We omit here the mixed-prefix context to denote that D1, D2 are

logic variables. The proof written in a bottom-up linear notation.

(t ret @ t app1 @ D2) ≺ D1 −→ D2 ≡ D2 ref

(t ret @ t app1 @ D2) ≺ D1 −→ D2 � D2 R�2

(t ret @ t app1 @ D2) ≺ D1 −→ D2 ≺ (t app1 @ D2) R≺2

(t ret @ t app1 @ D2) ≺ D1 −→ D2 � (t app1 @ D2) R�1

(t ret @ t app1 @ D2) ≺ D1 −→ D2 ≺ (t ret @ t app1 @ D2) R≺2

(t ret @ t app1 @ D2) ≺ D1 −→ D2 ≺ D1 t≺
(t ret @ t app1 @ D2) ≺ D1 −→ D2 � D1 R�1

(t ret @ t app1 @ D2) ≺ D1 −→ D2 ≺ (t app @ D1) R≺2
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16 Brigitte Pientka

4.2. Lexicographic subterm orderings

We can extend the system with rules for lexicographic orderings by
defining left and right rules. O1 and O2 are considered to be lexico-
graphically smaller than O′

1 and O′
2 if either O1 is smaller than O′

1 or
O1 is structurally equivalent to O′

1 and O2 is smaller than O′
2. This

disjunctive choice is reflected in the two rules RLex ≺1 and RLex ≺2.
If we assume O1 and O2 to be lexicographically smaller than O′

1 and O′
2,

then we need to be able to prove some ordering P under the assumption
O1 is smaller than O′

1 and under the assumptions O1 is structurally
equivalent to O′

1 and O2 is smaller than O′
2 (see LLex ≺). The rules

for � and ≡ are straightforward.

Lexicographic ordering: ≺

Ψ;∆ −→ O1 ≺ O1
′

Ψ;∆ −→ {O1, O2} ≺ {O1
′, O2

′}
RLex≺1

Ψ;∆ −→ O1 ≡ O1
′ Ψ;∆ −→ O2 ≺ O2

′

Ψ;∆ −→ {O1, O2} ≺ {O1
′, O2

′}
RLex≺2

Ψ;∆, O1 ≺ O1
′ −→ P Ψ;∆, O1 ≡ O1

′, O2 ≺ O2
′ −→ P

Ψ;∆, {O1, O2} ≺ {O1
′, O2

′} −→ P
LLex≺

Lexicographic ordering: ≡

Ψ;∆ −→ O1 ≡ O1
′ Ψ;∆ −→ O2 ≡ O2

′

Ψ;∆ −→ {O1, O2} ≡ {O1
′, O2

′}
RLex≡

Ψ;∆, O1 ≡ O1
′, O2 ≡ O2

′ −→ P

Ψ;∆, {O1, O2} ≡ {O1
′, O2

′} −→ P
LLex≡

Lexicographic ordering: �

Ψ;∆ −→ {O1, O2} ≺ {O1
′, O2

′}
Ψ;∆ −→ {O1, O2} � {O1

′, O2
′}

RLex�1

Ψ;∆ −→ {O1, O2} ≡ {O1
′, O2

′}
Ψ;∆ −→ {O1, O2} � {O1

′, O2
′}

RLex�2

Ψ;∆, {O1, O2} ≺ {O1
′, O2

′} −→ P Ψ;∆, {O1, O2} ≡ {O1
′, O2

′} −→ P

Ψ;∆, {O1, O2} � {O1
′, O2

′} −→ P
LLex�

Similarly, we can define extensions for simultaneous orderings. Although
we do not pursue other more complex structural orderings for now,
in general this approach can be also applied to define extensions for
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simplification orderings, multi-set orderings or recursive path orderings.
In this paper, we focus on extending the system to higher-order subterm
relations.

4.3. Higher-order subterm ordering

In the setting of a dependently typed calculus, we face two challenges:
First, we need to reason about orders involving higher-order terms. Sec-
ond, we might synthesize parametric order relations due to universally
quantified subgoals. When considering higher-order terms, we need to
find an appropriate interpretation for lambda-terms. This problem is
illustrated by the following example. Assume the constructor lam is
defined as lam: (exp -> exp) -> exp. We want to show that E y
is a subterm of lam λx.E x where y is a parameter. In the informal
proof we might count the number of constructors and consider E y an
instance of λx.E x. Therefore we consider a term M a subterm of λx.N
if there exists a parameter instantiation y for x s.t. M is smaller than
[y/x]N . We will use the convention that y will represent a new param-
eter, while y stands for an already defined parameter which is used for
instantiation. To adopt a logical point of view, the λ-term on the left of
a subterm relation can be interpreted as universally quantified and the
λ-term on the right as existentially quantified. Furthermore, we assume
all terms are η-expanded.

Another example is taken from the representation of first-order logic
[23]. We can represent formulas by the type family o. Individuals are
described by the type family i. The constructor ∀ can be defined as
forall: (i -> o) -> o. We might want to show that A T (which rep-
resents [t/x]A) is smaller than forall λx.Ax (which represents ∀x.A).
Similarly, we might count the number of quantifiers and connectives
in the informal proof, noting that a term t in first-order logic cannot
contain any logical symbols. Thus we may consider A T a subterm of
forall λx.Ax as long as there is no way to construct an object of type
i from objects of type o.

To consider also mutual recursive type families, we define the notion
of subordination. Let hd(A) denote the head of a clause A. A type fam-
ily a is a subordinate to a type family a′ (a�∗a′) whenever a canonical
term M :A with hd(A) = a may be used in constructing a canonical
term N :B with hd(B) = a′. If additionally a′�∗a, we say that a, a′

are mutually recursive. We write a�∗a′ if a is a subordinate to a′, but
not mutually recursive. Subordination of type families is the transitive
closure of the immediate subordination relation (a�∗a′) which can be
directly read off the signature. If the type family a (hd(A)) is a strict
subordinate of the type family a′ (hd(A′)), then a canonical subterm
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of type A can never contain a subterm of type A′. Therefore, a term M
is considered smaller than a λ-term (λx:A.N) if there exists a arbitrary
instantiation T for x s.t. M is smaller than [T/x]N and the type of T
is a subordinate to N . An example of this strict subordination can be
found in the previous example of representing first-order logic, where
we have that the objects of type i, which denote the individuals, and
the objects of type o, which describe the propositions.

If the type family a (hd(A)) is not a strict subordinate of the type
family a′ (hd(A′)), then M is only considered smaller than λx.N if
there exists a parameter y such that [y/x]N is smaller than M . For a
more detailed development of subordination we refer to R. Virga’s PhD
thesis [34]. Next, we present the higher-order extensions.

λ-abstraction: introduce a new parameter y

Ψ,∀y:A;∆ −→ [y/x]M ≡ [y/x]N
Ψ;∆ −→ λx:A.M ≡ λx.N

R≡ λ
Ψ,∀y:A;∆ −→ [y/x]M ≺ N

Ψ;∆ −→ λx:A.M ≺ N
RL≺ λ

Ψ,∀y:A;∆, M ≺ [y/x]N −→ P

Ψ;∆,M ≺ λx:A.N −→ P
LR≺ λ

Ψ,∀y:A;∆ −→ [y/x]M � N

Ψ;∆ −→ λx:A.M � N
RL� λ

Ψ,∀y:A;∆, M � [y/x]N −→ P

Ψ;∆,M � λx:A.N −→ P
LR� λ

Ψ;∆, λx:A.M ≡ h N1 . . . Nn −→ P
L≡3

λ-abstraction: instantiate with parameter y such that Ψ(y) = ∀y:A

Ψ;∆, [y/x]M ≡ [y/x]N −→ P

Ψ;∆, λx:A.M ≡ λx.N −→ P
L≡ λ

Ψ;∆, [y/x]M ≺ N −→ P

Ψ;∆, λx:A.M ≺ N −→ P
LL≺ λ

Ψ;∆ −→M ≺ [y/x]N

Ψ;∆ −→M ≺ λx:A.N
RR≺ λ

Ψ;∆, [y/x]M � N −→ P

Ψ;∆, λx:A.M � N −→ P
LL� λ

Ψ;∆ −→M � [y/x]N

Ψ;∆ −→M � λx:A.N
RR� λ

Pi-Quantifier

Ψ,∀y:A;∆ −→ [y/x]P
Ψ;∆ −→ Πx:A.P

RΠ
Ψ;∆, [y/x]P −→ P ′ Ψ(y) = ∀y:A

Ψ;∆,Πx:A.P −→ P ′ LΠ

Reasoning about λ-terms cannot be solely based ≺ and ≡, as nei-
ther [y/x]M ≡ λx:A.M nor [y/x]M ≺ λx:A.M is true. Therefore, we
introduce a set of inference rules to reason about � which are similar
to the ≺ rules. As we potentially need different instantiations of the
relation λx:A.M ≺ N when reading the inference rules bottom-up, we
need to copy λx:A.M ≺ N in ∆ even after it has been instantiated.
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For simplicity, we assume all assumptions persist. Note that we only
show the case for mutual recursive type families, but the case where
type family a is a strict subordinate to the type family a′ can be added
in straightforward manner. For handling parametric order relations we
add two rules RΠ and LΠ. In the RΠ rule we replace x with a new
parameter y and add ∀y:A to the mixed-prefix context Ψ. In the rule
LΠ, we instantiate x with an existing parameter y where Ψ(y) = ∀y:A.
Similar to instantiations of λx:A.M ≺ N , we need to keep a copy of
Πx.P after it has been instantiated. The weakening and contraction
property hold for the given calculus.

Reasoning about higher-order subterm relations is complex due to
instantiating λ-terms and parametric orderings. Although soundness
and decidability of the first-order reasoning system might still be ob-
vious, this is non-trivial in the higher-order case. In this paper, we
concentrate on proving consistency of the higher-order reasoning sys-
tem. Consistency of the system implies soundness, i.e. any step in
proving an order relation from a set of assumptions is sound. The proof
also implies completeness i.e. anything which should be derivable from a
set of assumptions is derivable. Finally, it is an important step towards
achieving a practical implementation of the presented system.

4.4. Proof-theoretic properties

In general, the consistency of a logical system can be shown by cut-
admissibility.

Ψ;∆ −→ P Ψ;∆, P −→ P ′

cut
Ψ;∆ −→ P ′

∆ usually consists of elements which are assumed to be true. Any
P which can be derived from ∆ is true and can therefore be added to
∆ to prove P ′. In our setting ∆ consists of reduction properties which
have already been established. Hence, the reduction properties are true
independently from any other assumptions in ∆ and they are assumed
to be valid. The application of the cut-rule in the proof can therefore
only introduce valid orderings as additional assumptions in ∆.

THEOREM 3 (Cut-admissibility).

1. If D : Ψ; . =⇒M ≡M ′ and P : Ψ; ∆,M ≡M ′ =⇒ P ′

then F : Ψ; ∆ =⇒ P ′.

2. If D : Ψ,∀y1:A1, . . . ,∀yn:An; . =⇒ σM ≺M ′ and
P : Ψ; ∆, λxn:An, . . . , λx1:A1.M ≺M ′ =⇒ P ′

then F : Ψ; ∆ =⇒ P ′.
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3. If D : Ψ,∀y1:A1, . . . ,∀yn:An; . =⇒ σM �M ′ and
P : Ψ; ∆, λxn:An, . . . , λx1:A1.M �M ′ =⇒ P ′

then F : Ψ; ∆ =⇒ P ′.

The substitution σ maps free variables x1, . . . , xn to new parameters
y1, . . . , yn. σ ◦ [y/x] represents the extension of σ which the substitu-
tion [y/x] where y is a new parameter. In general, we allow the cut
between σM ≺ N and λxn:An, . . . , λx1:A1.M ≺ N , where M is the
suffix of λxn:An, . . . , λx1:A1.M and σ is a substitution which maps free
variables x1, . . . , xn in M to new parameters y1, . . . , yn. For example,
[y1/x1](λx2.x1Mx2) represents the (partial) instantiation of the term
λx1:A1λx2:A2.x1Mx2 with new parameters and λx2:A2.x1Mx2 is a
suffix of λx1:A1λx2:A2.x1Mx2.

The proof follows by induction on P and D. Let P be the cut-
predicate, i.e., either M ≺ M ′ or M � M ′ or Πx.P . Either the order
relation P gets smaller or P stays the same and one of the derivations
is strictly smaller while the other one stays the same. However, we will
not be able to show cut-admissibility directly in the given calculus due
to the non-deterministic choices introduced by the rules for λ-terms.
Consider, for example, the cut between

D =

D1

Ψ,∀y:A ; . −→ σ ◦ [y/x]M ≺ N

Ψ; . −→ σλx:A.M ≺ N
P =

P1

Ψ;∆, λx:A.M ≺ N −→ P

We would like to apply inversion on P therefore we need to consider
all possible cases of previous inference steps which lead to P. There
are four possible cases we need to consider: L≺, LR≺λ, LL≺λ and
transitivity. Unfortunately, it is not possible to appeal to the induction
hypothesis and finish the proof in the L≺ and LR≺λ case. This sit-
uation does not arise in the first order case, because all the inversion
steps were unique. In the higher-order case we have many choices and
we are manipulating the terms by instantiating variables in λ-terms.

The simplest remedy seems to restrict the calculus in such a way,
that we always first introduce all possible parameters, and then in-
stantiate them. This means, we push the instantiation with parameter
variables as high as possible in the proof tree. This way, we can avoid
the problematic case above, because we only instantiate a λ-term in
λx:A.M ≺ N , if N is of base type.

Therefore, we proceed as follows: First, we define an inference sys-
tem, in which we first introduce all new parameters. This means we
restrict the application of the R�1, R�2, R≺i, RR≺λ, RR�λ to only
apply if the left hand side of the principal order relation ≺ or � is
already atomic. Similarly, we restrict the application of L�, LL�λ,
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LL≺λ, i.e. the rule only applies if the right hand side of the principal
ordering relation is of base type. Second, we show this restricted system
is sound and complete with respect to the original inference system.
Third, we show that cut is admissible in the restricted calculus. This
implies that cut is also admissible in the original calculus. The proof
proceeds by nested induction on the structure of P , the derivation D
and P. More precisely, we appeal to the induction hypothesis either
with a strictly smaller order relation P or P stays the same and one of
the derivations is strictly smaller while the other one stays the same.
This way we can prove global completeness of our inference system.

Using the cut-admissibility theorem, cut-elimination elimination fol-
lows immediately. Therefore, our inference system is consistent. In other
words, not every termination order has a proof. The inference system
presented implicitly gives us a bottom-up search procedure to prove
that a given termination ordering assuming a set of reduction proper-
ties. The admissibility of cut, implies that anything which should be
derivable from our reduction properties in ∆, can be derived without
any need for additional lemmas. In other words, adding the cut-rule
does not yield a more powerful engine to prove termination and ev-
erything needed to prove termination of a clause should be contained
within this clause.

5. Termination and reduction checking

5.1. Analyzing reduction properties

In Section 3.2 we sketched the analysis of higher-order logic programs
for proving reduction. In this section, we develop a syntax-directed in-
ference system to extract conditions for reduction. Each program clause
is analyzed separately. As mentioned earlier, the reduction analysis is
complicated by the fact that higher-order logic programming allows
implications and universal quantifiers in subgoals. Therefore, we need
to recursively check implications which may occur as subgoals assuming
all valid reduction properties of the surrounding subgoals. In addition,
we need to distinguish between variables which can be instantiated, and
variables which introduce a new parameter, depending on where the Π-
quantifier occurs in the implication. This motivates the two different
procedures, one for checking that a reduction property is satisfied, and
another one for collecting valid reduction properties. Next, we give the
judgment for collecting valid reduction properties.

Ψ c=⇒ A/R
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Given a mixed prefix context Ψ, R is the valid reduction prop-
erty associated with the subgoal A. In the first-order setting where
all sub-goals are atomic, we can always directly analyze the sub-goal
and extract a reduction property. In the higher-order setting however,
subgoals may be more complex and can be of the form

Πx1:B1 . . .Πxn:Bn.Ak → . . .→ A1 → A.

The reduction property associated with this subgoal is in essence the
reduction property associated with A. However, we must ensure that
the reduction property does not extrude its scope. By invariant, the
valid reduction property R and the goal A are closed under the context
Ψ. Hence when synthesizing valid reduction properties of a universally
quantified subgoal Πx:A1.A2 (see sΠ), we return a reduction predicate
Πx:A1.R where all free occurrences of x:A1 are bound by a universal
quantifier Π.

Ψ,∀x:A1
c=⇒ A2/R

sΠ
Ψ c=⇒ Πx:A1.A2/Πx:A1.R

Ψ c=⇒ A2/R
s→

Ψ c=⇒ (A1 → A2)/R

satom
Ψ c=⇒ a M1 . . .Mn/redOrder(a M1 . . .Mn)

We use redOrder a M1 . . .Mn in the satom rule to describe the
retrieval of the actual ordering according to the reduction order spec-
ified by the user. In the example above the reduction order was spec-
ified by %reduces D > D’ (trans D E D’). redOrder (trans D1 P1
(t ret @ t app1 @ D2)) will then return the reduction ordering (t ret
@ t app1 @ D2)≺ D1.

Finally, we give the judgments for checking that a clause satisfies a
specified reduction property.

Ψ|∆ rc=⇒ A check clauses A

Ψ|∆ ri=⇒ (A2, A1) check subgoal A1 with respect to clause A2

Ψ|∆ rg
=⇒ A check goal A

Ψ|∆ rc=⇒ A means “assuming a set ∆ of valid reduction properties
and a clause A, we check that A satisfies some specified reduction
relation and ∆ and A are closed under Ψ”. If A is atomic, then we prove
that the assumptions in ∆ imply the reduction ordering corresponding
to A using the inference system given in Section 4. To show that the
clause A1 → A2 satisfies some reduction property in ∆ (see rule rc→),
we assume the reduction property corresponding to A1 and show that
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the clause A2 satisfies the reduction property in (∆, R). In addition, we
need to recursively check that all subgoals are in fact reducing (third
premise of the rule rc→).

Clause

Ψ;∆ −→ redOrder(aM1 . . .Mn)

Ψ|∆ rc=⇒ aM1 . . .Mn

rc atom
Ψ,∃x:A1|∆

rc=⇒ A2

Ψ|∆ rc=⇒ Πx:A1.A2

rcΠ

Ψ→ A1/R1 Ψ|∆, R1
rc=⇒ A2 Ψ|∆, R1

ri=⇒ (A2, A1)

Ψ|∆ rc=⇒ A1 → A2

rc→

Ψ|∆ ri=⇒ (A2, A1) means “assuming a set ∆ of valid reduction proper-
ties and additional valid reduction properties from the clause A2, we
check that the goal A1 satisfies some specified reduction property and
∆, A2 and A1 are closed under Ψ.” To check nested implications, we
are allowed to collect and then assume valid reduction properties of the
clause A2 (see rule ri→). Once A2 is atomic, we proceed to check that
A1 is reducing assuming all the valid reduction properties in ∆.

Implications

Ψ|∆ rg
=⇒ A

Ψ|∆ ri=⇒ (aM1 . . .Mn, A)
ri atom

Ψ,∃x:A1|∆
ri=⇒ (A2, A)

Ψ|∆ ri=⇒ (Πx:A1.A2, A)
riΠ

Ψ→ A1/R1 Ψ|∆, R1
ri=⇒ (A2, A)

Ψ|∆ ri=⇒ (A1 → A2, A)
ri→

Ψ|∆ rg
=⇒ A means “assuming a set ∆ of valid reduction properties and

a goal A, we check that A satisfies some specified reduction relation and
∆ and A are closed under Ψ”. Note that A may contain implications
which need to be checked recursively (see rule rg →). When the goal
A is atomic, checking a specified reduction property is trivially true.

Goals

Ψ|∆ rg
=⇒ aM1 . . .Mn

rg atom
Ψ,∀x:A1|∆

rg
=⇒ A2

Ψ|∆ rg
=⇒ Πx:A1.A2

rgΠ

Ψ|∆ rc=⇒ A1 Ψ|∆ rg
=⇒ A2

Ψ|∆ rg
=⇒ A1 → A2

rg →
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5.2. Analyzing termination properties

For verifying termination, we need to compare all recursive calls with
the original call, and ensure that inputs to the recursive call are smaller
than the original call. This termination analysis needs to take into
account the underlying operational semantics. Assume we have a clause
Πx:Bn . . .Πx:B1.Ak → . . . A1 → A. Recall that → is right-associative
and the head of the clause can be found in the innermost implication.
To show that subgoal Ai is smaller than the head A, we are only allowed
to use valid properties of subgoals Aj where j < i. Since subgoals may
contain implications, we need to recursively check the subgoals them-
selves for termination. This makes the termination analysis non-trivial.
For simplicity, we will concentrate here on the case where we have no
mutual recursion. A discussion of how to handle mutual recursion in
termination proofs can be found in [29] and can be applied also in
this setting. The rules of inference for termination analysis uses three
judgments:

(Ψ0;∆)|Ψ tc−→ A analyze clause A

Ψ|∆ ti−→ a M1 . . .Mn | Ψ′ compare head a M1 . . .Mn

with all subgoals in Ψ′

Ψ|∆ tg−→ a M1 . . .Mn � A1 compare head a M1 . . .Mn

with subgoal A1

(Ψ0;∆) | Ψ tc−→ A means assuming a set ∆ of valid orderings (re-
duction properties), we check that a clause A satisfies some specified
termination ordering with respect to Ψ. In addition ∆ and A are closed
under Ψ0,Ψ. Note that Ψ can be view as the stack of subgoals which
is built up during the tc−→ rules. Once we reach the head a of the
clause, we transition to ti−→ and compare each subgoal with the head
calling the judgment

tg−→. After checking termination of subgoal A, we
may collect valid reduction properties associated with A which may
be used to check termination of subsequent subgoal which are listed
in Ψ′. Ψ|∆ tg−→ a M1 . . .Mn � A1 means assuming a set ∆ of valid
orderings, we check that the subgoal A1 is smaller than the head a.
Since A1 may contain sub-clauses, we need to recursively check them
for termination (see tc →). Once A1 is atomic (see rule tg atom), we
show that the termination order associated with the subgoal is smaller
than the termination order associated with the clause head using the
inference system presented in Section 4.
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Build up stack of subgoals

(Ψ0,Ψ);∆ ti−→ a M1 . . .Mn | Ψ

(Ψ0;∆) | Ψ tc−→ a M1 . . .Mn

tc atom
(Ψ0;∆) | Ψ,∃x:A1

tc−→ A2

(Ψ0;∆) | Ψ tc−→ Πx:A1.A2

tcΠ

(Ψ0;∆) | Ψ,∃!u:A1
tc−→ A2

(Ψ0;∆) | Ψ tc−→ A1 → A2

tc→

Compare head a to all subgoals in Ψ′

Ψ;∆
tg−→ a M1 . . .Mn � A

Ψ c=⇒ A/R Ψ;∆, R
ti−→ a M1 . . .Mn | Ψ′

Ψ;∆ ti−→ a M1 . . .Mn | (Ψ′,∃!u:A)
ti sg

Ψ;∆ ti−→ a M1 . . .Mn | Ψ′

Ψ;∆ ti−→ a M1 . . .Mn | (Ψ′,∀x:A)
ti∀

Ψ;∆ ti−→ a M1 . . .Mn | ·
ti empty

Ψ;∆ ti−→ a M1 . . .Mn | Ψ′

Ψ;∆ ti−→ a M1 . . .Mn | (Ψ′,∃x:A)
ti∃

Compare head a with subgoal A

Ψ;∆ −→ termOrder(a N1 . . . Nn) ≺ termOrder(a M1 . . .Mn)

Ψ;∆
tg−→ a M1 . . .Mn � aN1 . . . Nn

tg atom

a′must be terminating

Ψ|∆ tg−→ a M1 . . .Mn � a′N1 . . . Nm

tg atom′

(Ψ,∀x:A1);∆
tg−→ a M1 . . .Mn � A2

Ψ;∆
tg−→ a M1 . . .Mn � Πx:A1.A2

tgΠ

(Ψ;∆) | · tc−→ A1 Ψ;∆
tg−→ a M1 . . .Mn � A2

Ψ;∆
tg−→ a M1 . . .Mn � (A1 → A2)

tg →

The function termOrder extracts the termination argument accord-
ing to the termination specification. In the example above, the ter-
mination order was given by %terminates D (trans D P D’). When
analyzing the recursive calls, termOrder will always extract the first
argument of the recursive calls. In rule tg atom′, we enforce that any
auxiliary predicate a′ which may be used in the body of the predicate
a, must also be terminating.
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6. Related work and discussion

Most work in automating termination proofs has focused on languages
with first-order data-types. The most general method for synthesizing
termination orders for a given term rewriting system is by Arts and
Giesl [3] and much recent work has built on this approach [20, 9, 18].
They first analyze the term rewriting system and construct depen-
dency pairs. A dependency pair consists of left-hand sides of a term
rewrite rule and subterms of the right-hand side that may possibly
start a new rewriting. To prove termination, we show that there is
not an infinite chain of dependency pairs. Dependency pairs restrict
the examination to subterms that can possibly reduced further. The
reduction properties in our approach play a similar role. They allow us
to trace input arguments throughout a clause and reason about input-
output flow within a predicate. One approach to proving termination
of logic programs is to translate it into a TRS and show termination
of the TRS instead. However this approach has several drawbacks. In
general, a lot of information is lost during the translation. In particular,
if termination analysis fails for the TRS, it is hard to provide feedback
and re-use this failure information to point to the error in the logic
program. Moreover, important structural information is lost during
the translation. As a result constructors and functions are indistin-
guishable. One of the consequences is that proving termination of the
TRS often requires more complicated orders. The first example is taken
from the arithmetic.

%mode minus +X +Y -Z. %mode quot +X +Y -Z.

m z : minus X z X. q z : quot z (s Y) z.

m s : minus (s X) (s Y) Z q s : quot (s X) (s Y) (s Z)

← minus X Y Z. ← minus X Y X’

← quot X’ (s Y) Z.

%reduces Z <= X (minus X Y Z).

%terminates X (minus X Y Z). %terminates X (quot X Y Z).

Using logic programming we implement a straightforward version of
minus and the quotient predicate quot where z represents zero and s
the successor constructor. Proving termination of quot is straightfor-
ward with the presented method. We first prove termination of minus.
In addition we show that minus X Y Z satisfies the reduction relation
Z <= X. When we prove termination of quot, we can assume the re-
duction relation X ′ � X. As the reduction relation X ′ � X implies
X ′ ≺ (sX), we proved termination of quot. Note that only subterm
reasoning is required to prove termination of quot while other methods
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for proving the corresponding term rewrite system need recursive path
ordering.

The second example is an algorithm to compute the negation normal
form of a first-order logical formula and uses higher-order functions.

%mode nnf +A -A’ %mode nnf’ +A -A’

n1: nnf (not A) A’ n1’:nnf’ (not A) A’

<- nnf’ A A’. <- nnf A A’.

n2: nnf (A and B) (A’ and B’) n2’:nnf’ (A and B) (A’ or B’)

<- nnf A A’ <- nnf’ A A’

<- nnf B B’. <- nnf’ B B’.

n3: nnf (forall A) (forall A’) n3’:nnf’ (forall A) (exists A’)

<- {x:i} nnf (A x) (A’ x). <- {x:i} nnf’ (A x) (A’ x).

We can implement an algorithm for negation normal form using
two mutual recursive predicates. Termination of this algorithm can be
proved based on subterm ordering, while other formalizations which do
not exploit mutual recursion and verify a higher-order term rewriting
system require more complicated orders like recursive path orderings
(see for example [14]).

To show termination in higher-order simply-typed term rewriting
systems (HTRS) mainly two methods have been developed (for a survey
see [33]): the first approach relies on strict functionals by van de Pol
[32], and the second one is a generalization of recursive path orderings
to the higher order case by Jouannaud and Rubio [12].

Although some of the underlying ideas in higher-order term rewrite
systems (HTRS) are shared with the logical framework, there are mainly
two principal differences: First, all arguments of predicate are in canon-
ical form and therefore are terminating. This is only possible since we
restrict the use of λ-abstraction to higher-order data-type definitions.
This additional restriction simplifies reduction and termination analysis
in the logical framework. On the other hand, the higher-order logic
programming interpretation of the logical framework LF allows sub-
goals which may contain implications and universal quantifiers. This
makes termination and reduction analysis non-trivial. The translation
of clauses with nested implications and quantifiers seems difficult, since
they have in general no counterpart in HTRS.

One approach which analyzes logic programs directly has been de-
veloped by Plümer [28]. This approach has been refined during the last
decade and is for example being used in the typed logic programming
language Mercury [31, 19]. During the first phase, we produce and
solve a set of linear inequalities which characterize the size of the input
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and output arguments. This first phase, corresponds to our reduction
checking. Second, the solution is used to check that in every cycle in
the program’s call graph, the input arguments decrease in size. Al-
though this approach works well for Prolog programs, transferring this
approach to the higher-order setting is not straightforward. First, it is
not obvious how to handle and reason about higher-order data-types
and second, it is not obvious how to build and check a call graph
in the higher-order setting since we have parametric and hypothetical
subgoals. Hence, we found it important to clarify the higher-order is-
sues by developing a declarative logical foundation for termination and
reduction analysis.

Other termination methods in first-order logic programming have
relied on a semantic approach [4, 6], exploring the fact that first-order
logic programming has a simple model-theoretic or fixed-point seman-
tics and relying on the fact that first-order unification is decidable. In
higher-order logic programming no simple declarative semantics exist.
This is due to the fact that higher-order unification is undecidable in
general and we have to consider subgoals which may contain universal
quantifiers and nested implications. Hence transferring the semantic
approaches to termination to the higher-order setting is difficult.

Many research efforts in first-order logic programming have focused
on powerful engines which synthesize termination orders. The main
motivation behind this approach is that it may be too burdensome to
specify termination orders and the users implementing the program
may be different from the people verifying properties such as termi-
nation. However, it is important to keep in mind that the application
of Twelf lies in specifying and implementing formal systems and the
proofs about them. Other logical frameworks similar to Twelf are for
example λProlog [17] or Isabelle [21]. In this domain, the user typi-
cally has thought extensively about its formal system and has a clear
idea how a particular proof (such as type preservation, or soundness
and completeness of transformation) proceeds and what the underlying
induction ordering is. Moreover, the formal system will be developed
together with a proof about it. Hence, requiring the user to specify the
induction (termination) ordering is not a burden to the user but just
provides a means of expressing it and checking the intuition. Similar to
the approach by McAllester et. al [15], we impose a discipline on the
programmer. This forces the programmer sometimes to define restricted
versions of predicates which are always reducing its output. While the
approach of McAllester et. al synthesizes a valid termination ordering
based on subterm ordering, we require the user to specify a termination
order.
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Other recent approaches for checking termination properties have
pushed towards extending type-checking. Xi [36] uses dependent types
to express size information of terms for the language DML (dependently
typed ML). His approach is complementary to our analysis of structural
run-time properties and it would be interesting to combine both. Abel
and Altenkirch [1, 2] extend the type system for a small functional
language to also verify termination based on first-order subterm or-
derings. Although similar in spirit, our approach is more ambitious
and more general, since we are able to handle more complex orderings
such higher-order orderings and compound orderings like lexicographic
orderings.

Finally, we would like to mention the work by N. Jones and col-
laborators on the use of the size-change principle to prove termination
for first-order functional languages [13]. The approach on size-change
graphs seems flexible and powerful enough to handle permuting argu-
ments and more complex mutual recursions. Although it is possible
to build a size-change graph around any well-founded size measure, it
is not obvious how to incorporate reasoning about higher-order data-
types.

This paper builds on Rohwedder and Pfenning’s work on mode
and termination checking for higher-order logic programs [29]. Their
termination checker requires a direct relationship between inputs of
the recursive call and inputs of the original call without taking into
account input and output relations. The emphasis of their work has
been the correctness of the termination checker with respect to the
operational semantics of Twelf programs. They define first a measure
which characterizes higher-order subterm ordering. Then they define a
small step operational semantics using success continuations and show
that in each step the measure decreases. This approach extends to
reduction properties straightforwardly. The measure associated with
higher-order subterm ordering does not change. To handle reduction
properties during termination checking, we just need to pass valid re-
duction properties to the success continuations, so they can be used
when showing the measure decreases in each step. To present a full
account of the operational semantics, the mode analysis needed, the
measure associated with higher-order subterm ordering and the actual
correctness proof is beyond the scope of this paper.

7. Conclusion

In this paper, we give two checkers for proving reduction and termina-
tion properties about higher-order logic programs. Both checkers share
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a syntax-driven inference system for reasoning about structural prop-
erties, which can be characterized by higher-order subterm orderings.
Structural orderings have been very powerful in logical frameworks
where we have higher-order data-types. The support for mutual recur-
sive definitions allows elegant formalizations which expose structural
properties.

Our system is implemented as part of Twelf, and efficiently checks
programs and proofs. Over the past years, the system has been used on
a wide range of examples. We have used the termination and reduction
checker on examples from compiler verification (soundness and com-
pleteness proofs for stack semantics and continuation-based semantics),
cut-elimination and normalization proofs for intuitionistic and classical
logic, soundness and completeness proofs for the Kolmogorov transla-
tion of classical into intuitionistic logic (and vice versa)1. In particular,
the development of type-safety proofs for TALT in Twelf attests to
the strength of the presented approach in practice. Although many
examples can be handled solely by termination checking, reduction
properties have been crucial in several places to reason about the size of
the induction variables. Our users attest to the fact that the directives
for termination and reduction checking are simple to use and have been
useful to check the user’s intuition and catch bugs.

Currently multiplicity is restricted to one, i.e. we instantiate Π-
quantified orderings and λ-terms occurring on the left hand side of
a relation in the hypothesis just once. If a higher multiplicity might be
needed, an appropriate warning is returned. So far there has been one
example which had to be re-written to circumvent this restriction.

In the future, we plan to incorporate reasoning about the size of in-
duction variables into the Twelf’s induction theorem prover [26], where
currently Rohwedder and Pfenning’s termination checker is used. The
main problem we foresee in this setting is the increased search space.
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