
Tabled higher-order logic
programming

Thesis Proposal

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Tabled higher-order logic programming – p.1/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.2/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.2/40



Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

Tabled higher-order logic programming – p.3/40



Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems

proofs about them

Tabled higher-order logic programming – p.3/40



Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them

Tabled higher-order logic programming – p.3/40



Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them (correctness, soundness etc.)

Tabled higher-order logic programming – p.3/40



Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them (correctness, soundness etc.)

� Approaches: Elf,
�

Prolog, Isabelle

Tabled higher-order logic programming – p.3/40



Generic framework for . . .

� Implementing logical systems

� Executing them and generating certificate

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Tabled higher-order logic programming – p.4/40



Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Tabled higher-order logic programming – p.4/40



Proof search tree

� Search Strategy
– Depth-first: incomplete, infinite paths
– Iterative deepening: complete, infinite paths

� Performance: redundant computation

Tabled higher-order logic programming – p.5/40



Proof search tree

� Search Strategy
– Depth-first: incomplete, infinite paths
– Iterative deepening: complete, infinite paths

� Performance: redundant computation

Tabled higher-order logic programming – p.5/40



Proof search tree

� Search Strategy
– Depth-first: incomplete, infinite paths
– Iterative deepening: complete, infinite paths

� Performance: redundant computation

Tabled higher-order logic programming – p.5/40



Tabled evaluation for Prolog

� Eliminate infinite and redundant computation by
memoization (Tamaki, Sato)

� Finds all possible answers to a query

� Terminates for programs in a finite domain

� Combines tabled and non-tabled execution

� Very successful: XSB system(Warren et.al.)

Tabled higher-order logic programming – p.6/40



This talk

1. Extend tabled logic programming to higher-order

2. Demonstrate the use of tabled search to

� efficiently execute logical systems

� automate reasoning with and about them.

Tabled higher-order logic programming – p.7/40



This talk

1. Extend tabled logic programming to higher-order

2. Demonstrate the use of tabled search to

� efficiently execute logical systems
(interpreter using tabled search)

� automate reasoning with and about them.

Tabled higher-order logic programming – p.7/40



This talk

1. Extend tabled logic programming to higher-order

2. Demonstrate the use of tabled search to

� efficiently execute logical systems
(interpreter using tabled search)

� automate reasoning with and about them.
(theorem prover using tabled search)

Tabled higher-order logic programming – p.7/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.8/40



Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

Tabled higher-order logic programming – p.9/40



Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat

Tabled higher-order logic programming – p.9/40



Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat
nati

nat

�

int
negi

neg

�

int

Tabled higher-order logic programming – p.9/40



Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat
nati

nat

�

int
negi

neg

�

int

refl� � �

� � � � � �
tr� � �

Tabled higher-order logic programming – p.9/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Success

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero � sub �

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero � sub �

refl: sub zero

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero � sub �

refl: sub zero

refl: � zero

Redundant answer

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero � sub �

refl: sub zero

tr: sub zero � sub �

Tabled higher-order logic programming – p.10/40



Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero � sub �

refl: sub zero

tr: sub zero � sub �

Infinite path

Tabled higher-order logic programming – p.10/40



Problem

� Redundant and infinite computation

� Non-termination instead of failure

� Sensitive to clause ordering

� Independent of the actual search strategy

Tabled higher-order logic programming – p.11/40



Proof search

� Logic programming
Depth-first

� Object-level theorem proving
Iterative deepening with bound

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.12/40



Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.12/40



Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound
program clauses + lemmas

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.12/40



Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound
program clauses + lemmas

� Meta-level theorem proving:
Induction + case analysis + iterative deepening
program clauses + lemmas + proof assumptions

Tabled higher-order logic programming – p.12/40



Tabled logic programming

� Eliminate redundant and infinite paths from
proof search using memoization

� Table:
1. Store sub-goals
2. Store solutions
3. Retrieve solutions

� Depth-first multi-stage strategy

Tabled higher-order logic programming – p.13/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Entry Answer
sub zero

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Success!

Entry Answer
sub zero

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Add answer to table

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr : sub zero � sub �

Variant of previous goal

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr : sub zero � sub �

Fail and suspend goal

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn : � nat

Success!

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn : � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn: � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

First Stage completed!

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero � sub �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero � sub �

�

nat

� �

sub nat �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero � sub �

�

nat

� �

sub nat .
Add goal to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero � sub �

�

nat

� �

sub nat

refl � nat

Success

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero � sub �

�

nat

� �

sub nat

refl � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

�

nat

� �

Tabled higher-order logic programming – p.14/40



Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �
�

�

int

� �

sub nat

�

nat

� �
�

�

int

� �

sub int

�

int

� �

Tabled higher-order logic programming – p.14/40



Strategy

� When to suspend goals ?

Tabled higher-order logic programming – p.15/40



Strategy

� When to suspend goals ?

� When to retrieve answers ?

Tabled higher-order logic programming – p.15/40



Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

Tabled higher-order logic programming – p.15/40



Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

� What is the retrieval condition ?
– Variant
– Subsumption

Tabled higher-order logic programming – p.15/40



Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

� What is the retrieval condition ?
– Variant
– Subsumption

Multi-stage strategy:

only re-use answers from previous stages

Tabled higher-order logic programming – p.15/40



Advantages

� Translating inference rules to logic program is
straightforward.

� Programs have better complexities.

� Order of clauses is less important.

� Computation will terminate for finite domain.

� We find all answers to a query.

� We can dis-prove more conjectures.

� Table contains useful debugging information.

Tabled higher-order logic programming – p.16/40



Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization

Tabled higher-order logic programming – p.17/40



Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization

Solution:

� Combine tabled and non-tabled proof search

� Term indexing:
1. Make table access efficient
2. Make storage space small

Tabled higher-order logic programming – p.17/40



First-order tabled logic programming

� Tabled logic programming
– atomic subgoals
– untyped first-order terms

� Procedural descriptions of tabling
– SLD resolution with memoization (Tamaki, Sato)
– SLG resolution (Warren, Chen)

� Term indexing (I.V.Ramakrishnan, Sekar,
Voronkov)
discrimination tries, substitution trees, path
indexing

Tabled higher-order logic programming – p.18/40



First-order tabled logic programming

� Tabled logic programming
– atomic subgoals
– untyped first-order terms

� Procedural descriptions of tabling
– SLD resolution with memoization (Tamaki, Sato)
– SLG resolution (Warren, Chen)

� Term indexing (I.V.Ramakrishnan, Sekar,
Voronkov)
discrimination tries, substitution trees, path
indexing

Tabled higher-order logic programming – p.18/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.19/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.19/40



Tabled higher-order logic programming

� Extend tabling to higher-order
1. Terms: dependently typed

�

-calculus
2. Clauses: implications, universal quantification

� Apply tabled search to
1. higher-order logic programming
2. object- and meta-level theorem proving

Tabled higher-order logic programming – p.20/40



Typing rules

Mini ML e ::= n

�
�

� �

z

�

s

�
�

� �

app � � � �
�

lam �
�

�
�

letn � � � � in � �

� �

� � 	



	



	

tp-sub� �

� � 	

�
�

� � 	 �

�

� � 	 �

tp-lam� �
lam �

�
� � 	 � 	 �

� �

� � � 	 �

� � �
� �

�

�
�

� � � 	

tp-letn� �

letn � � � � in � � � 	

Tabled higher-order logic programming – p.21/40



Type Checker in Elf

tp-sub � of tp-lam � of

�

lam

� �

�
�

�
� � �

� �
�

of


 � �
�

�

of � � of
�

�
�

�
�

�

sub




�

tp-letn � of

�

letn �

� �

�
�

� �
� �

of � �

of

�

� �
�

�

Tabled higher-order logic programming – p.22/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-sub: of

�

lam

� �

�
�

�
� �

� sub �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-sub: of

�

lam

� �

�
�

�
� �

� sub �

Variant of previous goal

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-sub: of

�

lam

� �

�
�

�
� �

� sub �

Fail and suspend

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

Add goal to table

Entry Answer

of

�

lam

� �

�
�

�
� �

� � of � �

�

of � �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

�: � �

�

� �

�

�
� �

Success

Entry Answer

of

�

lam

� �

�
�

�
� �

� � of � �

�

of � �

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

�: � �

�

� �

�

�
� �

Add answers to table

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

tp-sub: � � of � �

�

of � � sub �

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

tp-sub: � � of � �

�

of � � sub �

Variant of previous goal

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp-lam: � � of � �

�

of � �

tp-sub: � � of � �

�

of � � sub �

Suspend and fail

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.23/40



Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

First stage is completed

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.23/40



Challenges

� Store goals together with context :

� �

�

� Redesign table operations : goal

� � �

�
� � Table

� Context dependencies
e.g. �� of � ��

�

�

sub

� ��
� ,

�

sub

� �

� Type dependencies
e.g. �� of � ��

�

�

of �
� � � �
	

,

�� of � �
�

�

of � �

� Indexing for higher-order terms

Tabled higher-order logic programming – p.24/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.25/40



Meta-level reasoning

� Prove theorems about a logical system
(type preservation, soundness, correctness ...)

� Proofs by induction and case analysis

� Approaches:
–

�

Prolog(Felty,Miller), Isabelle(Paulson):
based on tacitics

– Twelf(Schürmann,Pfenning) :
based on logic programming

Tabled higher-order logic programming – p.26/40



Meta-level search

� Clauses: program, lemmas, proof assumptions

� Proof obligation (query): derive from clauses

� If we cannot derive the query from the clauses,
1. Refine proof assumptions: case split (choice!)
2. Generate induction hypothesis
3. Try again

Tabled higher-order logic programming – p.27/40



Meta-level search

� Clauses: program, lemmas, proof assumptions

� Proof obligation (query): derive from clauses

� If we cannot derive the query from the clauses,
1. Refine proof assumptions: case split (choice!)
2. Generate induction hypothesis
3. Try again

� Without failure of logic programming search,
no progress

Tabled higher-order logic programming – p.27/40



Meta-level search

� Clauses: program, lemmas, proof assumptions

� Proof obligation (query): derive from clauses

� If we cannot derive the query from the clauses,
1. Refine proof assumptions: case split (choice!)
2. Generate induction hypothesis
3. Try again

� Without failure of logic programming search,
no progress
fail quick and meaningful!

Tabled higher-order logic programming – p.27/40



Redundant computation

Meta-level proof tree

� �� �� ��� �� �� � � �� �� ��� �� �� �� �� �� ��� �� �� � � �� �� ��� �� �� �

� Object-level search

� Across branches

Tabled higher-order logic programming – p.28/40



Redundant computation

Meta-Search

� �� �� ��� �� �� � � �� �� ��� �� �� � � �� �� ��� �� �� �� �� �� ��� �� �� �
	 		 		 	�
 

 

 


1. iteration

2. iteration

3. iteration

� Object-level search

� Across branches

� Across failed attempts

Tabled higher-order logic programming – p.28/40



Redundant computation

Meta-Search

� �� �� ��� �� �� � � �� �� ��� �� �� � � �� �� ��� �� �� �� �� �� ��� �� �� �
	 		 		 	�
 

 

 


1. iteration

2. iteration

3. iteration

� Object-level search

� Across branches

� Across failed attempts

� Across parallel proof at-
tempts

Tabled higher-order logic programming – p.28/40



Benefits of tabled meta-level search

� Redundancy elimination during object-level search

� Preservation of partial results across cases and
iterations

� Detection of unprovable branches

� Faster failure

� Proving different case split in parallel

� Detection of redundant case splits
(e.g. split a and then split b
split b and then split a)

Tabled higher-order logic programming – p.29/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Conclusion

Tabled higher-order logic programming – p.30/40



Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems

� automate reasoning with and about them.

Tabled higher-order logic programming – p.31/40



Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems
(interpreter using tabled search)

� automate reasoning with and about them.

Tabled higher-order logic programming – p.31/40



Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems
(interpreter using tabled search)

� automate reasoning with and about them.
(theorem prover using tabled search)

Tabled higher-order logic programming – p.31/40



Overview of Thesis

� Proof-theoretical characterization:
Soundness of interpreter

� Design of efficient implementation techniques

1. Higher-order terms indexing
2. Context handling

� Implementation and Validation
1. Logic programming
2. Object and meta-level theorem proving

Tabled higher-order logic programming – p.32/40



Examples: interpreter - 1

Warning: table everything; no indexing
Elf variant subsumption

subtyping1
zsuper
casez1
disprove
zerop
casez2
subtyping
tid
sarrow

Tabled higher-order logic programming – p.33/40



Examples: interpreter - 2

Warning: table everything; no indexing
Elf variant subsumption

refinement types:
shiftl na �

inc na �
plus na �

plus’ na
term rewriting

�

calculus:
rsym5 no na
comb no na

Tabled higher-order logic programming – p.34/40



Object-level reasoning - 3

Warning: table everything; no indexing
Spass Twelf variant subsumption

conversions

�

calculus:
rsym5 no na
comb no na
Cartesian closed categories:
l1 no no ? ?
l2 no no ? ?
l3 no no ? ?

Tabled higher-order logic programming – p.35/40



Other examples

Logical systems :

� Natural deduction calculi (NK, NJ)

� Decision procedures (e.g. congruence closure
algorithms)

� Parsing grammars

Examples for meta-reasoning:

� Soundness of Kolmogoroff translation between
NK and NJ

� Translation betwen CCC and

�

calculus

Tabled higher-order logic programming – p.36/40



Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
– Tabled logic programming interpreter
– Object- and meta-level theorem prover

� Thesis work

� Conclusion

Tabled higher-order logic programming – p.37/40



Contributions

� Extension of tabling to higher-order setting
1. Terms: dependently typed

�

-calculus
2. Table: store goals with a context

� Application of tabled search to
1. higher-order logic programming
2. object- and meta-level theorem proving

� Proof-theoretical characterization of tabled search

� Implementation of a prototype

Tabled higher-order logic programming – p.38/40



Contributions

� Extension of tabling to higher-order setting
1. Terms: dependently typed

�

-calculus
2. Table: store goals with a context

� Application of tabled search to
1. higher-order logic programming
2. object- and meta-level theorem proving

� Proof-theoretical characterization of tabled search

� Implementation of a prototype

Tabled higher-order logic programming – p.38/40



Contributions

� Extension of tabling to higher-order setting
1. Terms: dependently typed

�

-calculus
2. Table: store goals with a context

� Application of tabled search to
1. higher-order logic programming
2. object- and meta-level theorem proving

� Proof-theoretical characterization of tabled search

� Implementation of a prototype

Tabled higher-order logic programming – p.38/40



Near Future

� Soundness of the interpreter

� Indexing for higher-order terms

� Redesign of the meta-theorem prover

Tabled higher-order logic programming – p.39/40



Related Work

Proof-theoretical characterization

� Uniform proofs (Miller, Nadathur, Pfenning,
Scedrov)

� Proof Irrelevance (Pfenning)

Certificates:

� Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)

� Bit-strings: variant of PCC (Necula,Rahul)

� Proof terms: Elf, Twelf(Schürmann,Pfenning)

Tabled higher-order logic programming – p.40/40


	Outline
	Introduction
	Generic framework for . . .
	Proof search tree
	Tabled evaluation for Prolog
	This talk
	Outline
	Illustrating example: subtyping
	Subtyping relation in Elf
	Problem
	Proof search
	Tabled logic programming
	Tabled computation
	Strategy
	Advantages
	Trade-off
	First-order tabled logic programming
	Outline
	Tabled higher-order logic programming
	Typing rules
	Type Checker in Elf
	Tabled computation (higher-order)
	Challenges
	Outline
	Meta-level reasoning
	Meta-level search
	Redundant computation
	Benefits of tabled meta-level search
	Outline
	Thesis
	Overview of Thesis
	Examples: interpreter - 1
	Examples: interpreter - 2 
	Object-level reasoning - 3
	Other examples
	Outline
	Contributions
	Near Future
	Related Work

