Tabled higher-order logic programming

Thesis Proposal

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Tabled higher-order logic programming - p.1/40

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Introduction

Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification

Introduction

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems

proofs about them

Introduction

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)
- Approaches: Elf, λ Prolog, Isabelle

- Implementing logical systems
- Executing them and generating certificate

•

•

- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate
- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation

Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation

Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation

Tabled evaluation for Prolog

- Eliminate infinite and redundant computation by memoization (Tamaki, Sato)
- Finds all possible answers to a query
- Terminates for programs in a finite domain
- Combines tabled and non-tabled execution
- Very successful: XSB system(Warren et.al.)

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems
 - automate reasoning with and about them.

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems (interpreter using tabled search)
 - automate reasoning with and about them.

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems (interpreter using tabled search)
 - automate reasoning with and about them. (theorem prover using tabled search)

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

• • • •

- refl : sub T T.
- ${\rm tr}: \qquad {\rm sub} \ T \ S$
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \; R \; S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

- refl : sub T T.
- tr : sub $T \; S$
- Compute all supertypes of zero :-? sub zero T.

- $\leftarrow \mathsf{sub} \ T \ R$
- $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

tr:

Compute all supertypes of zero

- : –? sub zero T.
- $\leftarrow \operatorname{sub} T R \qquad \operatorname{refl:} \quad T = \operatorname{zero}$ $\leftarrow \operatorname{sub} R S \qquad \qquad \operatorname{Success}$

- $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

Compute all supertypes of zero

sub zero R; sub R T.

tr: sub T S :-? sub zero T.

tr:

- $\leftarrow \mathsf{sub} \ T \ R$
- $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

tr:

- Compute all supertypes of zero
- : –? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \mathsf{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \ ; \ \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$
- zn : sub zero nat .

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

tr:

- Compute all supertypes of zero
- : –? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \ ; \ \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$
- zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl: T = zero

Redundant answer

refl: sub T T.

tr:

- Compute all supertypes of zero
- : –? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \ ; \ \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$

tr:

zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

sub zero $R \ ; \$ sub $R \ T.$

refl: sub T T.

tr:

- Compute all supertypes of zero
- :-? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \ ; \ \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$

tr:

zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

sub zero R; sub R T. Infinite path

Problem

- Redundant and infinite computation
- Non-termination instead of failure
- Sensitive to clause ordering
- Independent of the actual search strategy

- Logic programming Depth-first
- Object-level theorem proving Iterative deepening with bound
- Meta-level theorem proving: Induction + case analysis + iterative deepening

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound
- Meta-level theorem proving: Induction + case analysis + iterative deepening

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound program clauses + lemmas
- Meta-level theorem proving: Induction + case analysis + iterative deepening

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound program clauses + lemmas
- Meta-level theorem proving: Induction + case analysis + iterative deepening program clauses + lemmas + proof assumptions

Tabled logic programming

- Eliminate redundant and infinite paths from proof search using memoization
- Table:
 - 1. Store sub-goals
 - 2. Store solutions
 - 3. Retrieve solutions
- Depth-first multi-stage strategy

$\% tabled \; {\rm sub}$.

- refl : sub T T.
- ${\rm tr}: \qquad {\rm sub} \ T \ S$
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$

- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

: –? sub zero T.

EntryAnswersub zero T

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S ref
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- :-? sub zero T.
- refl: T = zeroSuccess!

EntryAnswersub zero T

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- refl: T = zero
 - Add answer to table

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S tr:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
 - sub zero $R \ ; \$ sub $R \ T.$
 - Variant of previous goal

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S tr:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
 - sub zero $R \ ; \$ sub $R \ T.$
 - Fail and suspend goal

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr: sub T S zn :
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- zn : T = natSuccess!

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- zn: T = nat
 - Add answer to table

EntryAnswersub zero T[zero /T], [nat /T]

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S zn:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
 - $T = \mathsf{nat}$
 - Add answer to table

EntryAnswersub zero T[zero /T], [nat /T]

First Stage completed!

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- resume sub zero R; sub R T.

EntryAnswersub zero T[zero /T], [nat /T]

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

 $\leftarrow \mathsf{sub}\ R\ S.$

Compute all supertypes of zero

```
: –? sub zero T.
```

resume sub zero R; sub R T.

- $[\mathsf{nat}\ /R]$ sub nat T.
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

EntryAnswersub zero T[zero /T], [nat /T]

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$ $\leftarrow \mathsf{sub} \ R \ S.$

Compute all supertypes of zero

: –? sub zero T.

resume sub zero R; sub R T.

 $[\mathsf{nat}\ /R]$ sub nat T.

Add goal to table

- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Entry	Answer
sub zero T	[zero $/T$], [nat $/T$]
sub nat T	

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

- $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero : -? sub zero T_{-} resume sub zero R; sub R T. $|\mathsf{nat}|/R|$ sub nat Trefl T = nat**Success** Answer Entry sub zero T|zero /T|, |nat /T|sub nat T

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

- $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero : -? sub zero T_{-} resume sub zero R; sub R T. $|\mathsf{nat}|/R||$ sub nat Trefl T = natAdd answer to table Entry Answer [zero /T], [nat /T] sub zero $T \mid$ sub nat T|nat/T|

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- ${\rm tr}: \quad {\rm sub} \ T \ S$
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

O

: –? sub zero T.

Entry	Answer
sub zero T	[zero /T], [nat /T], [int /T]
sub nat T	$[\operatorname{nat}/T], [\operatorname{int}/T]$
sub int T	[int /T]

• When to suspend goals ?

- When to suspend goals ?
- When to retrieve answers ?

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?

- What is the retrieval condition ?
 - Variant
 - Subsumption

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?
- What is the retrieval condition ?
 - Variant
 - Subsumption

Multi-stage strategy:

only re-use answers from previous stages

Advantages

- Translating inference rules to logic program is straightforward.
- Programs have better complexities.
- Order of clauses is less important.
- Computation will terminate for finite domain.
- We find all answers to a query.
- We can dis-prove more conjectures.
- Table contains useful debugging information.

Trade-off

Price to pay :

- More complicated semantics
- Overhead caused by memoization

Trade-off

Price to pay :

- More complicated semantics
- Overhead caused by memoization

Solution:

- Combine tabled and non-tabled proof search
- Term indexing:
 - 1. Make table access efficient
 - 2. Make storage space small

First-order tabled logic programming

- Tabled logic programming
 - atomic subgoals
 - untyped first-order terms
- Procedural descriptions of tabling
 - SLD resolution with memoization (Tamaki, Sato)
 - SLG resolution (Warren, Chen)
- Term indexing (I.V.Ramakrishnan, Sekar, Voronkov) discrimination tries, substitution trees, path indexing

First-order tabled logic programming

- Tabled logic programming
 - atomic subgoals
 - untyped first-order terms
- Procedural descriptions of tabling
 - SLD resolution with memoization (Tamaki, Sato)
 - SLG resolution (Warren, Chen)
- Term indexing (I.V.Ramakrishnan, Sekar, Voronkov) discrimination tries, substitution trees, path indexing

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Tabled higher-order logic programming

- Extend tabling to higher-order
 - 1. Terms: dependently typed λ -calculus
 - 2. Clauses: implications, universal quantification
- Apply tabled search to
 - 1. higher-order logic programming
 - 2. object- and meta-level theorem proving

Typing rules

Mini ML e ::= $n(e) | z | s(e) | app e_1 e_2 |$ $lam x.e | letn u = e_1 in e_2$

$$\frac{\Gamma \vdash e : \tau' \qquad \tau' \preceq \tau}{\Gamma \vdash e : \tau} \text{ tp-sub} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{ Iam } x.e : \tau_1 \to \tau_2} \text{ tp-Iam}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash [e_1/u]e_2 : \tau}{\Gamma \vdash \text{letn } u = e_1 \text{ in } e_2 : \tau} \text{ tp-letn}$$

•

•

Type Checker in Elf

 $\begin{array}{ll} \text{tp-sub :of } E \ T & \text{tp-lam :of } (\text{lam } ([x] \ E \ x)) \ (T_1 \Rightarrow T_2) \\ \leftarrow \text{ of } E \ T' & \leftarrow (\{y\} \text{of } y \ T_1 \rightarrow \text{ of } (E \ y) \ T_2). \\ \leftarrow \text{ sub } T' \ T. \end{array}$

$\begin{aligned} \text{tp-letn :of (letn } E_1 \ ([u] \ E_2 \ u)) \ T \\ & \leftarrow \text{ of } E_1 \ T_1 \\ & \leftarrow \text{ of } (E_2 \ E_1) \ T. \end{aligned}$

Tabled computation (higher-order)

:-? of (lam ([x] x)) T

EntryAnswerof (lam ([x] x)) T

•
:-? of (lam ([x] x)) Ttp-sub: of (lam ([x] x)) R; sub R T.

•

•

:-? of (lam ([x] x)) Ttp-sub: of (lam ([x] x)) R; sub R T. Variant of previous goal

:-? of (lam ([x] x)) Ttp-sub: of (lam ([x] x)) R; sub R T. Fail and suspend

:-? of (lam ([x] x)) Ttp-lam: u: of $x T_1 \vdash$ of $x T_2$

•

•

:-? of (lam ([x] x)) Ttp-lam: u : of $x T_1 \vdash$ of $x T_2$ Add goal to table

EntryAnswerof
$$(lam ([x] x)) T$$
 $u : of x T_1 \vdash of x T_2$

•

•

:-? of
$$(\text{lam } ([x] x)) T$$

tp-lam: u : of $x T_1 \vdash \text{ of } x T_2$
 u : $T_1 = P, T_2 = P, T = (P \Rightarrow P)$
Success

EntryAnswerof
$$(lam ([x] x)) T$$
 $u : of x T_1 \vdash of x T_2$

•

• • •

:-? of
$$(\text{lam } ([x] x)) T$$

tp-lam: u : of $x T_1 \vdash \text{ of } x T_2$
 u : $T_1 = P, T_2 = P, T = (P \Rightarrow P)$
Add answers to table

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

.

• • •

•

:-? of $(\operatorname{lam} ([x] x)) T$ tp-lam: u: of $x T_1 \vdash \operatorname{of} x T_2$ tp-sub: u: of $x T_1 \vdash \operatorname{of} x R$; sub $R T_2$

EntryAnswerof (lam ([x] x)) T $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

:-? of
$$(\text{lam } ([x] x)) T$$

tp-lam: u : of $x T_1 \vdash \text{ of } x T_2$
tp-sub: u : of $x T_1 \vdash \text{ of } x R$; sub $R T_2$
Variant of previous goal

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

• • •

:-? of
$$(\operatorname{lam} ([x] x)) T$$

tp-lam: u : of $x T_1 \vdash$ of $x T_2$
tp-sub: u : of $x T_1 \vdash$ of $x R$; sub $R T_2$
Suspend and fail

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

.

:-? of (lam ([x] x)) T

First stage is completed

EntryAnswerof (lam ([x] x)) T $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

Challenges

- Store goals together with context : $\Gamma \vdash a$
- Redesign table operations : goal $(\Gamma \vdash a) \in$ Table
- Context dependencies e.g. $u : \text{of } x \ T_1 \vdash \text{sub } R \ T_2,$ $\vdash \text{sub } S \ T$
- Type dependencies e.g. u : of x $T_1 \vdash$ of x (R x u), u : of x $T_1 \vdash$ of x R
- Indexing for higher-order terms

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Meta-level reasoning

- Prove theorems about a logical system (type preservation, soundness, correctness ...)
- Proofs by induction and case analysis
- Approaches:
 - λ Prolog(Felty,Miller), Isabelle(Paulson): based on tacitics
 - Twelf(Schürmann,Pfenning) : based on logic programming

Meta-level search

- Clauses: program, lemmas, proof assumptions
- Proof obligation (query): derive from clauses
- If we cannot derive the query from the clauses,
 - 1. Refine proof assumptions: case split (choice!)
 - 2. Generate induction hypothesis
 - 3. Try again

Meta-level search

- Clauses: program, lemmas, proof assumptions
- Proof obligation (query): derive from clauses
- If we cannot derive the query from the clauses,
 - 1. Refine proof assumptions: case split (choice!)
 - 2. Generate induction hypothesis
 - 3. Try again
- Without failure of logic programming search, no progress

Meta-level search

- Clauses: program, lemmas, proof assumptions
- Proof obligation (query): derive from clauses
- If we cannot derive the query from the clauses,
 - 1. Refine proof assumptions: case split (choice!)
 - 2. Generate induction hypothesis
 - 3. Try again
- Without failure of logic programming search, no progress fail quick and meaningful!

Redundant computation

Meta-level proof tree

- Object-level search
- Across branches

Redundant computation

Meta-Search

1. iteration

- Object-level search
- Across branches
- Across failed attempts

3. iteration

Redundant computation

Meta-Search

1. iteration

2. iteration

- Object-level search
- Across branches
- Across failed attempts
- Across parallel proof attempts

3. iteration

Benefits of tabled meta-level search

- Redundancy elimination during object-level search
- Preservation of partial results across cases and iterations
- Detection of unprovable branches
- Faster failure
- Proving different case split in parallel
- Detection of redundant case splits (e.g. split a and then split b split b and then split a)

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Tabled higher-order logic programming allows us to

- efficiently execute logical systems
- automate reasoning with and about them.

Tabled higher-order logic programming allows us to

- efficiently execute logical systems (interpreter using tabled search)
- automate reasoning with and about them.

Tabled higher-order logic programming allows us to

- efficiently execute logical systems (interpreter using tabled search)
- automate reasoning with and about them. (theorem prover using tabled search)

Overview of Thesis

- Proof-theoretical characterization: Soundness of interpreter
- Design of efficient implementation techniques
 - 1. Higher-order terms indexing
 - 2. Context handling
- Implementation and Validation
 - 1. Logic programming
 - 2. Object and meta-level theorem proving

Examples: interpreter - 1

Warning: table everything; no indexing Elf variant subsumption

subtyping1				
zsuper	$\infty $	\checkmark		
casez1	∞ $$	\checkmark		
disprove				
zerop	$\infty $	\checkmark		
casez2	∞ $$	\checkmark		
subtyping				
tid	$\infty $			
sarrow	∞ $$.	• √• •	• • • • • • • • • • • • • • • • • • •	• 33/40

Examples: interpreter - 2

Warning: table everything; no indexing Elf variant subsumption

refinement types:

shiftl		na	—
inc		na	—
plus		na	\equiv
plus'	\checkmark	na	+

term rewriting λ calculus:

rsym5	no		na
comb	no	\checkmark	na

Object-level reasoning - 3

Warning: table everything; no indexing					
	Spass	Twelf	variant	subsumption	
conversions λ calculus:					
rsym5		no	\checkmark	na	
comb		no	\checkmark	na	
Cartesian closed categories:					
l1	no	no	?	?	
12	no	no	?	?	
13	no	no	?	?	

•

•

Other examples

Logical systems :

- Natural deduction calculi (NK, NJ)
- Decision procedures (e.g. congruence closure algorithms)
- Parsing grammars

Examples for meta-reasoning:

- Soundness of Kolmogoroff translation between NK and NJ
- Translation betwen CCC and $\lambda calculus$

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Contributions

- Extension of tabling to higher-order setting
 - 1. Terms: dependently typed λ -calculus
 - 2. Table: store goals with a context
- Application of tabled search to
 - 1. higher-order logic programming
 - 2. object- and meta-level theorem proving
- Proof-theoretical characterization of tabled search
- Implementation of a prototype

Contributions

- Extension of tabling to higher-order setting
 - 1. Terms: dependently typed λ -calculus
 - 2. Table: store goals with a context
- Application of tabled search to
 - 1. higher-order logic programming
 - 2. object- and meta-level theorem proving
- Proof-theoretical characterization of tabled search
- Implementation of a prototype

Contributions

- Extension of tabling to higher-order setting
 - 1. Terms: dependently typed λ -calculus
 - 2. Table: store goals with a context
- Application of tabled search to
 - 1. higher-order logic programming
 - 2. object- and meta-level theorem proving
- Proof-theoretical characterization of tabled search
- Implementation of a prototype

Near Future

- Soundness of the interpreter
- Indexing for higher-order terms
- Redesign of the meta-theorem prover

Related Work

Proof-theoretical characterization

- Uniform proofs (Miller, Nadathur, Pfenning, Scedrov)
- Proof Irrelevance (Pfenning)

Certificates:

- Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)
- Bit-strings: variant of PCC (Necula, Rahul)
- Proof terms: *Elf, Twelf*(Schürmann, Pfenning)