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ABSTRACT
Instructors and students alike are often focused on the grade in
programming assignments as a key measure of how well a student
is mastering the material and whether a student is struggling. This
can be, however, misleading. Especially when students have access
to auto-graders, their grades may be heavily skewed.

In this paper, we analyze student assignment submission data
collected from a functional programming course taught at McGill
university incorporating a wide range of features. In addition to the
grade, we consider activity time data, time spent, and the number
of static errors. This allows us to identify four clusters of students:
"Quick-learning", "Hardworking", "Satisficing", and "Struggling"
through cluster algorithms. We then analyze how work habits,
working duration, the range of errors, and the ability to fix errors
impact different clusters of students. This structured analysis pro-
vides valuable insights for instructors to actively help different
types of students and emphasize different aspects of their overall
course design. It also provides insights for students themselves to
understand which aspects they still struggle with and allows them
to seek clarification and adjust their work habits.

CCS CONCEPTS
• Social and professional topics→ Student assessment.

KEYWORDS
online programming platform; computer science education; cluster
analysis

1 INTRODUCTION
Online programming environments, such as RoboProf [8] for C++,
DrScheme [13, 14] for Scheme or, more recently, Mumuki [4] , offer
immense potential to enhance the students’ educational experience
in large-scale programming-oriented courses. They not only lower
the entry barrier for beginners but often feature auto-grading facili-
ties that allow students to run and get feedback on their code while
they are developing their programs, giving them the opportunity
to fix bugs and address errors in their understanding right away.
While having access to immediate feedback on their code has been
recognized to significantly improve student learning outcomes and
engagement (see, e.g., [15, 26, 30]), instructors and students alike

are often too focused on the grade as a key measure of competency.
Especially when students have access to auto-graders, the students’
grades may be heavily skewed and misleading.

This paper develops a data-driven approach to better understand
students’ behavior when solving programming assignments in a
functional programming course. In addition to the grade, we pro-
pose to consider additional factors such as the number of static
errors and total time spent on solving programming assignments to
identify student clusters. Using this methodology, we analyze the
assignment submission data collected in a functional programming
course taught at McGill university which uses the Learn-OCaml
online programming platform [5, 6, 17]. This allows us to identify
four student clusters: "Quick-learning", "Hardworking", "Satisficing",
and "Struggling". While the first two clusters can be characterized
as maximizers, i.e. students strive to achieve the highest possible
grades and continue to improve their work, they still differ in the
amount of time and effort spent on completing a given homework.
In contrast, satisficing1 students accept a possibly non-optimal out-
come as ”good enough” allowing them to adequately achieve their
goals by saving time and effort. We further analyze these clusters
with respect to work habits and the number and kinds of errors
that are prevalent. This leads to four key insights:

• Leveraging the notion of chronotype - a circadian typology in
humans and animals, we confirm that a work pattern where
students tend to work in the morning is related to academic
success. In particular, quick learners tend to work more in
the morning, while other clusters of students rely more on
afternoons and evenings.

• In general, starting on the homework early is related to
higher grades. However, we also noticed that satisficing stu-
dents start relatively late but finish the earliest. This further
emphasizes that satisficing students aim for satisfactory re-
sults rather than the optimal one. At the same time, satisfic-
ing students have one of the lowest numbers of programming
errors suggesting that they struggle significantly less with
static errors than for example hardworking students.

• Our analysis of static errors shows that syntax and type
errors are prevalent among all students. Further, students

1The term “satisficing” was introduced by H. Simon [27] to describe a decision-making
process in which an individual makes a choice that is satisfactory rather than optimal.
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continue to struggle with these errors throughout the se-
mester. In addition, our analysis points to other common
mistakes such as non-exhaustive case analysis and the use
of unbound variables.

• Taking into account students’ ability to fix static errors, i.e.
how many tries a student needs to fix a particular error, we
notice that the failure/success ratio is particularly high for
hardworking students. This highlights both their desire and
drive to get the best possible grade, but also that their path
is full of small stumbling blocks.

We believe our proposed set of features and data-driven analysis
can provide instructors with a clearer and more detailed picture of
students’ behaviours and performance. This in turn may be used
to adjust how some concepts, such as how to avoid static errors,
are taught. It may also be used to design different strategies for
different students to enhance the students’ learning experience.
Furthermore, this data may be interesting to students themselves
to better understand how well they do in a class and identify areas
where they can actively make changes and seek help early.

2 RELATEDWORK
Analyzing student data in programming courses is a central topic
in learning analytics, and it is gaining increasing attention with
the recent advances in storing and processing data. One of the core
aims of analyzing student data is to understand student behaviours,
and in turn, improve student learning experience [21].

Over the past decade, there have been several studies that focus
on identifying groups of students using cluster analysis. For exam-
ple, Emerson et al. [12] use cluster algorithms to identify student
misconceptions in a block-based programming environment for
non-CS major students based on program structures. Wiggins et
al. [29] finds five major clusters of hint requests in a block-based
programming system equipped with an intelligent tutor. Hossein
et al. [20] leverages clustering analysis to further investigate the
correlation between students’ programming speed and program-
ming behaviours by collecting programming snapshots whenever
an action occurs. They then divide students into two clusters by
comparing a student’s programming speed to the median speed.
Lahtinen et al. [23] uses different levels of Bloom’s Taxonomy as fea-
tures to identify six distinct student groups that instructor should
be aware of when teaching introductory programming courses.

In contrast to these existing works, our work considers multi-
categorical features involving the grade, total time spent on the
assignment, and the number of static errors encountered to identify
clusters of students.

Based on the identified clusters, we follow existingwork in under-
standing the work/rest patterns of students. In particular, Claes et al.
[7] study programmers’ working patterns using clustering analysis
on time stamps of committed activities of 86 large open-source
software projects. Zavgorodniaia et al. [31] study the chronotypes
of students through cluster algorithms using keystroke data. In our
study, we use activity data (such as whether a student compiled or
graded their homework) to study the work/rest patterns of students.
It is the first study in the context of typed functional programming.

We further analyze static errors in typed functional programming
assignments and their impact on different student clusters. This

is the first such study in this setting. Previous studies focus on
compilation events in object-oriented programs written in Java.
For example, Ahmadzadeh et al. [1] investigates compiler error
frequencies of student programs and debugging activity patterns
in Java. They suggest debugging skills should be emphasized in the
teaching of programming. Altadmri et al. [2] collect a large dataset
comprising compilation events of 250,000 students, which provides
a robust analysis of error patterns and time for fixing different
errors. Denny et al. [9] also study various syntax error frequencies
and how long students spend fixing common syntax errors. They
also found that certain types of errors remain challenging even for
higher-ability students. Edwards et al. [11] analyze 10 million static
analysis errors found in over 500 thousand program submissions
made by students over a five-semester period. The experimental
results suggest error frequencies made by CS major and non-major
students are consistent.

Our analysis is one of the first that investigates in more depth
the frequency of various static errors in the typed functional pro-
gramming assignments. Here, static errors go beyond syntax and
simple type errors and include for example detection of missing
branches in a program.

3 STUDY DESIGN
This research aims to gain a deeper understanding of how students
develop typed functional programs (TFP). We assume that the grade
alone is not a good indicator of how well a student masters basic
concepts and achieves competency. Instead, we propose that taking
into account the time spent as well as the number of errors a student
encounters can provide a more nuanced picture. Hence, the main
question that we tackle in this paper is how can we best identify
different clusters of students taking into account grades, time spent,
and the number of errors. We then analyze our clusters with respect
to five hypotheses:

H1: Even students with a high grade in programming assign-
ments may significantly struggle with a range of static errors.

H2: Despite a lower grade, students who spend less time and
have a low number of static errors do in fact well overall.

H3: Work/rest patterns of students as well as the time a student
spends on homework play a role in students achieving a high
grade. It highlights how driven a student is.

H4: Static errors in TFP range from syntax and type errors
to detecting unbound variables and missing branches in
programs. This wide range of static errors provides a fine-
grained picture of concepts students find challenging.

H5: Error fix ratio, i.e. how many tries a student needs to fix
a static error, indicates how well students understand basic
ideas in TFP and this is correlated to their understanding
and performance.

3.1 Course Context
Our study concerns students in a second-year undergraduate com-
puter science course at McGill university. The course introduces
concepts about functional programming and programming paradigms.
It is offered every semester with more than 300 registered under-
graduate students. In this study, all data is collected in the Fall 2021



programming topics #tasks
HW1 basic expressions, recursion 7
HW2 data types and pattern matching 6
HW3 higher-order functions 11
HW4 references, state, memorization 5
HW5 exception, continuations 5
HW6 lazy programming, toy language 5

Table 1: Overview of six programming assignments.

Figure 1: Data collection pipeline. Grade and Compile and Eval
events are handled by different servers, all submission data are
stored in aMongoDB database. The components highlighted in light
green are original components in the Learn-OCaml platform, while
the components highlighted in light blue are newly introduced by
us.

semester when students could attend online Zoom or in-person
sessions.

The course had six bi-weekly programming assignments each
worth 5% of the final grade. Each homework consists of several pro-
gramming tasks to implement functions and test cases. Homework
information is summarized in Table 1. All homework assignments
were hosted on Learn-OCaml [6], an online programming platform
for OCaml which allows students to edit, compile, test, and debug
code all in one place. We used a modified version of Learn-OCaml
by Hameer and Pientka [18] with additional features such as style
checking and evaluation of test cases written by students.

3.2 Data Collection
Our data collection pipeline is built on top of the Learn-OCaml
platform and it can automatically log students’ actions. Specifically,
we send local programming events like compile and evaluation (for
testing and debugging) with asynchronous logging requests to our
backend server. Figure 1 illustrates the process of collecting the
data from the online environment Learn-OCaml.

Around 52.81% (i.e., 169 out of 320) students gave us consent
to access their data. We collect more than 270,000 programming
events, and each event stores a snapshot of the code as well as
feedback information (e.g., time-stamp, static errors, grades, etc.).

3.3 Feature
For each homework, we collect a sequence of programming activity
events. The activity events include grade, compile, and evaluation
events. This allows us to create an activity density vector for each
student. It is a four-element vector that represents the percentage

of the student’s activity events that occurs in different ranges of
hours [0-6, 6-12, 12-18, 18-0], which is the same choice of ranges
suggested in [31].

In addition, we design the following features based on the activity
event sequence:

• Start time. The day when a student starts actively working
on an assignment based on the activity events collected.

• End time. The day when a student finishes an assignment,
which is the last Grade event.

• Working session. Defined as the time window where ac-
tivity events occur. If there is no activity event within 30min,
then the working session is assumed to have ended.

• Total time spent. Sum over the length of all working ses-
sions.

• Number of errors. The number of static errors that a stu-
dent made while completing an assignment.

• Grade. The final grade a student receives for an assignment.

3.4 Feature Engineering
There are two challenges to applying clustering algorithms and sta-
tistical tests to our study. The first one is skewed data . For instance,
the grade is highly skewed as students can always improve their
grades through interacting with the auto-grader. The second one
is the difference between feature scales, which renders the clus-
tering results incoherent. We use two approaches to address these
challenges. First, we use non-parametric tests including Spearman
correlations and Kruskal-Wallis H-Tests. Second, we apply the rank
transformation on features to facilitate clustering algorithms.

4 IDENTIFYING STUDENT CLUSTERS
To identify student clusters, we run the K-means[19] clustering al-
gorithm on the aggregation (mean) of three most important features
(i.e., grade, number of errors and time spent) over six homework. We
use the elbow method to determine the optimal k (the number of
clusters) to be 4. After determining the optimal k, we re-run the
K-means algorithm and report the results in Table 2. We give the
time in hours and note that all clusters have a similar size in terms
of number of students (#𝑆𝑡𝑑).

To determine whether the resulting four clusters are different, we
run a Kruskal-Wallis H-Test, which is a nonparametric equivalent
of an ANOVA, on the three features (time spent, #errors, and grade)
of each cluster. The results are statistically significant with the
statistics of 113.26, 100.87, and 123.02 respectively, and all p-values
< 0.0001. This suggests the four clusters are statistically different.

Students in cluster A have the highest average grade (95.24)
while spending less than the expected 6h on solving the homework.
This suggests that they achieve their goal with relative ease. In fact,

Clusters #Std Time (Hours) # Error Grade
A - Quick learning 46 5.30 (± 0.94) 66.11 (± 26.95) 95.24 (± 3.25)
B - Hardworking 46 8.24 (± 1.52) 148.67 (± 63.26) 94.25 (± 3.90)
C - Satisficing 31 4.47 (± 1.01) 52.26 (± 21.89) 74.43 (± 11.31)
D - Struggling 46 6.49 (± 0.94) 118.14 (± 35.32) 72.81 (± 11.03)

Table 2: Student clusters



students in this cluster outperform students in other clusters by a
large margin. We characterize this cluster as quick learning.

Students in cluster B have the second-highest average grade
(94.25). However, they also have the highest average number of
errors (148.67) and with 8.24h spend significantly more time on
homework than any other group. In particular, they spend signifi-
cantly more time than expected. This suggests that they face many
difficulties which they manage to overcome by spending a signif-
icant amount of time. These students are driven to improve their
work and to achieve the highest possible grade. Hence, we charac-
terize them as hardworking. This data supports our hypothesis
H1.

Cluster C has the lowest average number of errors (52.26) and
spent the least amount of time (4.47h) on the homework. With an
average grade of 74.43, they still achieve a “good enough” result.
These students achieve their goals by saving time and effort. At the
same time, these students reach a satisfying level of competency as
evidenced by their low number of average errors. We describe these
students as satisficing students. This supports our hypothesis H2.

Students in Cluster D are in fact closely related to students in
cluster B, which shows a similarly high average number of errors
(118.14) and a significant amount of time (6.49h). However, com-
pared to students in cluster B, they fail to overcome the difficulties
along their path. These students are struggling.

5 UNDERSTANDING STUDENT CLUSTERS
5.1 How do work habits vary for different

student clusters?
To investigate our hypothesisH3, we consider when students are ac-
tive based on our activity data. Prior research suggests that chrono-
type, a person’s preference in carrying out activity at certain periods
in a day, is governed by the circadian cycle which is controlled by
clock genes [10, 25]. In this section, we are interested in investigat-
ing the chronotypes, or in other words, the work habits of students.
In particular, it has been observed that “morningness” is positively
correlated with academic achievement [24, 31].

To identify potential chronotypes, we run the K-means cluster-
ing algorithm on the feature space spanned by activity density
vectors. The elbow method yields 𝑘 = 3, suggesting three possible
chronotypes, which is different from four chronotypes reported in
[31]. We report centroids of each chronotype cluster in Table 3.

Chrono clusters 0 - 6 6 - 12 12 - 18 18 - 0 Chronotype
Cluster 1 8% 14% 26% 52% Evening (Eve)
Cluster 2 4% 26% 20% 50% Morning (Mor)
Cluster 3 2% 19% 37% 42% Afternoon (Aft)

Table 3: Centroids of each chronotype.

As we can see, most activities occur from 18:00 - 00:00 for all
three clusters. This is not surprising as most students may have
classes during the day. Based on this observation, we aim to define
chronotypes by considering secondary activity peaks as well. We
notice that Cluster 2 has its secondary activity peak (26%) in 6:00 -
12:00 whereas Cluster 3 has the secondary activity peak (37%) in
12:00 - 18:00. Thus, we define Cluster 2 and 3 as themorning (Mor)

and afternoon (Aft) type. Cluster 1 has only one activity peak in
18:00 - 00:00, thus we define it as evening (Eve) type.

Figure 2: Chronotype distribution in each student cluster.

As Figure 2 suggests, quick-learning students usually tend to
work in the morning and afternoon whereas satisficing students
worked on their homework in the evening. This suggests quick-
learning students were driven, motivated, and had possibly better
time management skills. In general, satisficing students were the
only group to have a strong incline to work in the evening. This
could point to other commitments that students have or a high
course load. The afternoon type occurs most frequently in strug-
gling and hardworking clusters. This may be because they were
seeking help during office hours that were offered during the day
or they simply required more time in general. Overall, our results
confirm previous findings that certain chronotypes are related to
academic achievement[24, 31].

Figure 3: Clustering result of different types of students The
start of a time interval stands for the average start time whereas
the end represents the average end time.

5.2 How long do different clusters of students
work on their homework?

To further investigate hypothesisH3, we investigate when students
in a given cluster start and finish their homework. We report the
average start time and end time for each cluster in Figure 3. In addi-
tion, the Kruskal-Wallis H-Test suggests start date was statistically
significantly different (stat = 22.59, p-value < 0.0001) whereas the
end date was not (stat = 3.12, p-value = 0.37). Despite that, we can
still observe some interesting patterns.



Error Groups Error Categories HW1 HW2 HW2 HW4 HW5 HW6

A. General Static Errors 1. Type Error 38.12% 30.94% 40.93% 32.65% 36.90% 34.83%
2. Syntax Error 42.33% 21.54% 21.79% 32.68% 17.80% 25.66%
3. Unbound value 10.42% 7.19% 9.06% 13.42% 7.02% 7.27%

B. Imperative Thinking Errors
4. Missing else branch 1.92% 0.75% 0.43% 0.08% 1.03% 1.07%
5. Unused variable 0.74% 0.65% 0.63% 6.37% 21.34% 7.23%

C. Pattern Matching Errors 6. Pattern matching type error 0.84% 5.24% 2.13% 0.62% 1.37% 1.40%
7. Non-exhaustive pattern matching 1.02% 16.78% 15.74 % 2.47% 4.62% 11.92%

D. Function Applications Errors 8. Wrong number of arguments 1.67% 2.19% 3.38% 1.17% 2.09% 1.89%
9. Misuse of non-function values 2.50% 2.10% 2.07% 1.72% 1.50% 1.77%
10. Others 0.88% 12.6% 5.89% 8.83% 6.33% 6.96%
Total number of errors 7,850 27,519 14,331 19,859 22,467 26,681

Table 4: Error Groups and error categories together with their distribution of HWs

We note that both satisficing and struggling students start rela-
tively late on their homework, at 7.51 and 7.22 average days respec-
tively. However, satisficing students finish the earliest (10.78). This
underscores the fact that they accept a “good enough” result rather
than striving for better outcomes. Further, satisficing students had
the shortest working duration. This substantiates our claim that
these students achieve their goals by saving time and effort.

Struggling students experienced many difficulties as evidenced
by a high number of static errors that they encounter. These stu-
dents finish indeed last (finish time (11.41)). This indicates that
these students are struggling, although they do try their best until
the very end. However, they lack the skills or support to overcome
their difficulties.

Hardworking students have the longest time interval. While they
start the earliest (6.06), they finish the second latest (11.08). This
shows the commitment and dedication they bring to their work.

Quick-learning students tend to start quite earlier (6.38), al-
though not as early as hardworking students. This suggests that
these students have confidence in their abilities to finish the home-
work smoothly.

We ran Spearman correlations to examine the correlation be-
tween start time and homework grade, the statistically significant
result (correlation = -0.42, p-value < 0.0001) suggests procrastination
affects negatively on student learning outcomes, which has been
widely reported [3, 16, 22].

5.3 How do static errors affect students in
different clusters?

Compilers for typed functional programming languages such as
OCaml provide a wealth of errors and feedback to programmers. It
not only reports syntax and type errors but also reports, for example,
unused variables, and missing branches in case-statements and if-
expressions. This provides a basis for a better understanding of
what basic concepts students struggle with the most.

5.3.1 Overview of static errors. To investigate our hypothesis H4,
we analyze the types of errors of each failed compile event and
group errors into four main categories: general static errors (eg.
group A), errors due to imperative thinking (Group B), and errors
related to pattern matching and function (eg. groups C and D). We
also include how often particular errors occurred in assignment
submissions (see Table 4).

The first homework shows a significant spike (42.33%) in syntax
errors encountered. This is unsurprising, as it is the first time that
students attempt to write programs in a new language. However,
it may be surprising that 20% to 30% of the errors encountered
are related to syntax and type errors (Group A) throughout the
semester. In fact, these errors constitute around 60% of errors for
every homework assignment in Table 4. This may point to the fact
that type errors in TFP catch conceptual errors in the programmer’s
thinking early rather than later during testing. This may also sug-
gest instructors dedicating more time to demystifying type error
analysis.

For some key concepts from typed functional programming such
as pattern matching, our error analysis indicates that students do
improve and gain a better understanding of it. When pattern match-
ing is first introduced in HW2, pattern matching errors and non-
exhaustive pattern matching errors (Group C) consist 22% of total
static errors. After practicing HW2 and HW3, the proportion of
Error Group C drops greatly, which suggests that students gain a
deeper understanding with more programming practice.

One of the prerequisites of this course is taking an introduc-
tory CS course, which is taught in Java or Python at our univer-
sity. This implies that all of the participants had experience in
programming before and had to deal with conceptual transfer from
imperative/object-oriented programming (Python or Java) to func-
tional programming (OCaml). Students usually report transition-
ing smoothly between procedural language and object-oriented
language for concepts such as if-conditionals and functions and
scope[28]. From our observations, students strugglemorewhen tran-
sitioning to functional programming. In particular, they struggle
with the concept of bound or unbound variables, missing branches
in if-expressions, and function application errors. Although these
errors occur less frequently than syntax and type errors, we believe
it highlights that students struggle with thinking recursively and
considering all cases in such a recursive program (Error No.4,7).
Therefore, if-else expression without an else branch also often leads
to type errors in a language like OCaml.

Moreover, imperative programming supports variables declared
in the local or global state, while in functional languages, such
as OCaml, we distinguish between stateful variables that can be
updated and bound variables. While the concept of free variables
and bound variables and the difference between stateful variables



are discussed frequently in this course, students continue to en-
counter errors related to variables. In particular, the unbound value
error occurs throughout the semester. This seems to be a sign that
the concept of stateful variable declarations as used in imperative
programming is persisting in how students think about a given prob-
lem. The most essential concept of functional programming is that
functions are first-class citizens. Therefore, higher-order functions,
which take a function as an argument, or return a function, are
used frequently, especially in HW3 and subsequent assignments.
If functions are not used correctly, it would most frequently be
flagged as a type error. However, OCaml also provides other error
reporting. In particular, it may report on the incorrect number of
arguments (Error NO.8) and use a function value instead of apply-
ing arguments on a non-function value (Error NO.9). These errors
form a non-negligible class indicating where students stumble.

5.3.2 How efficiently do students in each cluster fix errors? Lastly,
we investigate hypothesis H5 and aim to understand how students
in different clusters vary in their ability to fix errors quickly. Table 5
shows the average number of successful compile events and fail-
ure ones experienced by different student clusters throughout the
semester. The Failure/Success ratio x can be roughly interpreted
as debugging efficiency or error fix rate that it on average costs a
student x failure compile events to get a successful one.

Quick-learning Hardworking Satisficing Struggling
Success 37.9 60.4 28.1 40.7
Failure 85.7 162.3 66.9 118
F/S 2.26 2.67 2.38 2.90

Table 5: Average success, failure and failure/success ratio
(F/S) of compile events in each student cluster

Struggling students have the most difficulty in fixing static errors,
requiring 2.9 failure compilations to fix the error on average. By
contrast, quick-learning students have the best ability to debug with
only a 2.26 failure compilation to get a successful one. Furthermore,
the gap between their debugging efficiency is more significant, if we
look at their average failure and success. While the average success
for struggling students (40.7) and quick learners (37.9 ) are close,
their average failures have a substantial gap: a struggling student
has around 30 more failure compilations than quick learners.

Figure 4: Distribution of static errors in each student cluster.

The row of Failure in Table 5 can be further represented by the
average number of each group of static errors for four student clus-
ters in Figure 4. Type and syntax errors (Group A) dominate for all
clusters but there are noteworthy differences. Quick learners have
fewer errors in all groups, not only general static errors but also
errors specific to functional programming. Satisficing students have
the fewest errors in Group B, C, and D which may indicate that
they in fact achieve competency. Lastly, hardworking and strug-
gling students have significantly more errors in all error groups. In
particular, they struggle more with basic concepts such as bound or
unused variables, missing branches, and the proper use of functions.

6 CONCLUSION
In this study, we aim to understand how students develop func-

tional programming assignments based on data collected through
the Learn-OCaml programming platform. Our analysis considers
grade, total time spent, and the total number of static errors to
identify four student clusters: "Quick-learning", "Hardworking", "Sat-
isficing", and "Struggling". Using statistical tests we validate our
clustering results along with other analysis results. This provides
a nuanced picture of students’ behaviours and also exposes differ-
ent paths towards achieving academic success in the course. Our
analysis of chronotypes confirms that students who work in the
morning reach the highest grade most quickly and smoothly. The
total amount of time students spend on the homework also high-
lights the difference and similarities between the different student
clusters. Although this part of the analysis was done in the context
of a functional programming course, we expect our methodology
to be applicable to other programming courses and help identify
clusters of students who would benefit from additional support.

Our detailed analysis of static errors in typed functional pro-
gramming also highlights areas where instructors can adjust their
course content and possibly revisit topics. We believe our analysis
also provides insights for students themselves, in particular the
hardworking students, to understand which aspects they still strug-
gle with and to seek clarifications. This would possibly allow them
to become more efficient debuggers, spend less time on homework
assignments, and improve their conceptual understanding.
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