
Bidirectional Elaboration of Dependently Typed Programs

Francisco Ferreira Brigitte Pientka
McGill University

{fferre8,bpientka}@cs.mcgill.ca

Abstract
Dependently typed programming languages allow programmers to
express a rich set of invariants and verify them statically via type
checking. To make programming with dependent types practical,
dependently typed systems provide a compact language for pro-
grammers where one can omit some arguments, called implicit,
which can be inferred. This source language is then usually elab-
orated into a core language where type checking and fundamen-
tal properties such as normalization are well understood. Unfor-
tunately, this elaboration is rarely specified and in general is ill-
understood. This makes it not only difficult for programmers to un-
derstand why a given program fails to type check, but also is one
of the reasons that implementing dependently typed programming
systems remains a black art known only to a few.

In this paper, we specify the design a source language for a
dependently typed programming language where we separate the
language of programs from the language of types and terms occur-
ring in types. We then give a bi-directional elaboration algorithm to
translate source terms where implicit arguments can be omitted to
a fully explicit core language and prove soundness of our elabora-
tion. Our framework provides post-hoc explanation for elaboration
found in the programming and proof environment, Beluga.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Dependently typed programming languages such as Agda (Norell
2007), Epigram (McBride and McKinna 2004) or Idris (Brady
2013) allow programmers to express a rich set of properties and
statically verify them via type checking. To make programming
with dependent types practical, all these systems allow program-
mers to omit (implicit) arguments which refine a given dependent
type and can be reasonably easy inferred, an idea going back to
(Pollack 1990). The objective is: the final code for dependently
typed programs should not be significantly more complicated than
their simply typed counter parts.

[Copyright notice will appear here once ’preprint’ option is removed.]

This is achieved by designing a source language where pro-
grammers can omit implicit argument, and elaborating it into a core
language where type checking and fundamental properties such
as normalization are well understood (Pollack 1990). However,
this elaboration is rarely specified formally for dependently typed
languages which support recursion and pattern matching and the
conditions under which such an elaboration succeeds and a given
source program is accepted are ill-understood. This makes it diffi-
cult for programmers to understand why a given program fails to
type check; it also we believe one of the reasons that implementing
depedently typed programming environments remains a black art
known only to a few.

In this paper, we investigate the design of source language
where we separate the language of programs from the language
of types and terms occurring in types similar to indexed type sys-
tems (see (Zenger 1997; Xi and Pfenning 1999)); however, unlike
these aforementioned systems, we allow pattern matching on index
objects. As a consequence, we cannot simply erase our implicit ar-
guments and obtain a program which is simply typed. Specifically,
our source language is inspired by the Beluga language (Pientka
2008; Pientka and Dunfield 2010; Cave and Pientka 2012) where
we specify formal systems in the logical framework LF (our in-
dex language) and write recursive programs about LF objects using
pattern matching (Harper et al. 1993).

Our main contribution is the description of a source language
for dependently typed programs where we omit implicit arguments
together with a bi-directional elaboration algorithm from the source
language to a fully explicit core language. Throughout our develop-
ment, we will keep the index language abstract and state abstractly
our requirements such as decidability of equality and typing. This
will allow us to concentrate on the key issues revolving around de-
pendent case-expressions and pattern matching; it will also make
our framework applicable to any language satisfying our stated re-
quirements.

A central question when elaborating dependently typed lan-
guages is what arguments may the programmer omit.

[Add what the recipe in Agda and Coq is. -bp]

We follow a simple, lightweight recipe which comes from the
implementation of the logical framework Elf (Pfenning 1989) and
its successor Twelf (Pfenning and Schürmann 1999): programmers
may leave some index variables free when declaring a constant of
a given type; elaboration of the type will abstract over these free
variables at the outside; when subsequently using this constant, the
user must omit passing arguments for those index variables which
were left free in the original declaration. Following this recipe,
elaboration of terms and types in the logical framework has been
described in (Pientka 2013). Here, we will consider a dependently
typed functional programming language which supports pattern
matching on index objects. Programmers may leave some index
variables free when declaring a constant, i.e. a constructor in a data-
type definition or a recursive program. As in the elaboration of LF

1 2014/2/27

types, these free variables will be abstracted over and quantified at
the outside. When using the constant subsequently, the programmer
may not pass arguments for those index variables which were free
when the constant was declared.

The key challenge is the elaboration of recursive programs
which support case-analysis and pattern matching. In the depen-
dently typed setting, pattern matching refines index arguments and
hence refines types.

within this tradition; we keep the index domain abstract and as-
sume that we have some elaboration for index terms. We prove
soundness of our elaboration, i.e. if elaboration succeeds our re-
sulting program type checks in our core language. Our framework
provides post-hoc explanation for elaboration found in the pro-
gramming and proof environment, Beluga (Pientka 2008; Cave and
Pientka 2012), where we use as the index domain terms specified
in the logical framework LF (Harper et al. 1993).

[We also show completeness: given a well-typed program
in our core language, we show that there exists a source
program which can be elaborated to that program.
F Talk about related work...]

The paper is organized as follows: We first give the grammar
of our source language. Showing two example programs, we ex-
plain informally what elaboration does. We then revisit our core
language, describe the elaboration algorithm formally and prove
soundness. We conclude with a discussion of related and future
work.

2. Source Language
We consider here a dependently typed language where types are in-
dexed by terms from an index domain. Our language is similar to
Beluga, a dependently typed programming environment where we
specify formal systems in the logical framework LF and we can em-
bed LF objects into computation-level types and computation-level
programs which analyze and pattern match LF objects. However,
in our description, as in for example (Cave and Pientka 2012), we
will keep the index domain abstract, but only assume that equality
in the index domain is decidable and unification algorithms exist.
This will allow us to focus on the essential challenges when elab-
orating a dependently typed language in the presence of pattern
matching.

We begin by describing the source language that allows pro-
grammers to omit some arguments which we can infer in Fig. 1.
As a convention we will use lowercase c to refer to index level
objects, lowercase u for index level types, and upper case let-
ters X,Y for index-variables. Index objects can be embedded into
computation expressions by writing [c]. Our language supports re-
cursion (rec f :t = e), functions (fnx⇒e), dependent functions
(λX⇒e), function application (e1 e2), dependent function appli-
cation (e1 [c]), and case-expressions. We may write type annota-
tions anywhere in the program (e:t and in patterns pat:t); type an-
notations are particularly useful to make explicit the type of a sub-
expression and name index variables occurring in the type. This
allows us to resurrect index variables which are kept implicit. In
patterns, type annotations are useful since they provide hints to type
reconstruction regarding the type of pattern variables.

We also support writing underscore (); although our grammar
allows programmers to write underscores everywhere, they can in
fact only stand for inded objects, but not arbitrary expressions.

One may think of our source language as the language obtained
after parsing; in other words, we may support more syntactic sugar,
in particular, we may want to support let-expressions which can be
modelled as a case-expression with one branch.

Kinds k ::= ctype | {X:u}K
Atomic Types p ::= a

−→
[c]

Types t ::= p | [u] | {X:u} t | t1 → t2
Declarations d ::= rec f :t = e
Expressions e ::= fnx⇒e | λX⇒e |

e1 e2 | e1 [c] | [c] | case e of~b |
x | e:t | c |

Branches ~b ::= b | (b | ~b)
Branch b ::= pat 7→ e

Pattern pat ::= x | [c] | c−→pat | pat:t
Signatures Σ ::= · | Σ, a:k | Σ, c:t | Σ, rec f :t = e

Figure 1. Grammar of Source Language

Types for computations include non-dependent function types
(t1 → t2) and dependent function types (X:ut); we can also embed
index types into computation types via [u] and index computation-
level types by an index domain written as a

−→
[c]. We also include

the grammar for computation-level kinds which emphasize that
computation-level types can only be indexed by terms from an
index domain u.

We note that we do only support one form of dependent func-
tion type X:ut; the source language does not provide any means
for programmers to mark a given dependently typed variable as
implicit as for example in Agda. Instead, we will follow the reciple
advocated in the Elf language (Pfenning 1989) and subsequently
implemented also in Twelf (Pfenning and Schürmann 1999): we
allow programmers to leave some index variables occurring in
computation-level types free; elaboration will then infer their types
and abstract over them explicitly at the outside. The programmer
must subsequently omit providing instantiation for those “free”
variables. We will explain this idea more concretely below.

2.1 Well-formed source expressions
Before elaborating source expressions we need to make our syntax
more precise and make sure that our expression’s variables are
correctly scoped. In figure 2 we define the well formed judgement
and its inference rules.

[
• The judgment for δ ` t wf isn’t quite satisfying because

it doesn’t distinguish when variables in t can be free and
when they cannot. -bp

]

2.2 Example: Elaboration of untyped terms into intrinsically
typed terms

We consider here the elaboration of a simple language with num-
bers, booleans and some primitive operations to its typed counter-
part. We first define the untyped version of our language using a
recursive datatype. ctype defines the new type UTm.

datatype UTm : ctype =
| UNum : Nat→UTm
| UPlus : UTm→UTm→UTm
| UTrue : UTm
| UFalse : UTm
| UNot : UTm→UTm
| UIf : UTm→UTm→UTm→UTm;

Terms in this language can be of type nat for numbers or bool
for booleans. Notice how tp is declared as having the kind type
which implies that this type lives at the index level and that we will
be able to use it as an index for computation-level type families.

2 2014/2/27

δ; γ ` d wf Declaration d is well-formed in context δ and γ

δ; γ, f ` e wf · `d t wf
δ; γ ` rec f :t = e wf

wf-rec

δ; γ ` e wf Expression e is well-formed in context δ and γ

δ; γ, x ` e wf
δ; γ ` fnx⇒e wf

wf-fn
δ,X; γ ` e wf

δ; γ ` λX⇒e wf
wf-mlam

δ; γ ` e1 wf δ; γ ` e2 wf
δ; γ ` e1 e2 wf

wf-app

δ; γ ` e1 wf
δ; γ ` e1 wf

wf-apph
δ ` c wf

δ; γ ` [c] wf
wf-box

δ; γ ` e wf for all bn in~b . δ; γ ` bn wf

δ; γ ` case e of~b wf
wf-case

x ∈ γ
δ; γ ` x wf

wf-var
δ; γ ` e wf δ ` t wf

δ; γ ` e:t wf
wf-ann

δ; γ ` pat 7→ e wf Branch is well-formed in δ and γ

δ′; γ′ ` pat wf δ, δ′; γ, γ′ ` e wf
δ; γ ` pat 7→ e wf

wf-branch

δ; γ ` pat wf Pattern pat is well-formed synthesizing a context δ for index variables and a context γ for pattern variables

δ;x ` x wf
wf-p-var

δ ` c wf
δ; · ` [c] wf

wf-p-i
for all pi in

−−→
Pat. δ; γi ` pi wf

δ; γ1, . . . , γn ` c
−−→
Pat wf

wf-p-con δ; γ ` pat wf δ ` t wf
δ; γ ` pat:t wf

wf-p-ann

Figure 2. Well-formed source expressions

datatype tp : type =
| nat : tp
| bool : tp
;

Using indexed families we can now define the type Tm that
specifies only type correct terms of the language, by indexing terms
by their type using the index level type tp.

datatype Tm : [tp]→ctype =
| Num : Nat →Tm [nat]
| Plus : Tm [nat] →Tm [nat]→Tm [nat]
| True : Tm [bool]
| False : Tm [bool]
| Not : Tm [bool] →Tm [bool]
| If : Tm [bool] →Tm [T]→Tm [T]→Tm [T];

When the Tm family is elaborated, the free variable T in the If
constructor will be abstracted over by an implicit Π-type, as in the
Twelf (Pfenning and Schürmann 1999) tradition. Because T was
left free by the programmer, the elaboration will add an implicit
quantifier; when we use the constant If, we now must omit passing
an instantiation for T and elaboration will infer it. One might ask
how we can provide the type explicitly - this is possible indirectly
by providing type annotations. For example, when we write If
e e1 e2 one might wonder how we can fix the type of e1 to be
Tm [nat]. This can be for example accomplished by writing If
e (e1:TM[nat])e2, i.e. providing a type annotation on e1.

We want to type-check UTm terms by writing a function that
takes terms in the untyped representation into the typed represen-
tation. Because this operation might fail for ill-typed UTm terms we
need an option type to reflect the possibility of failure.

datatype TmOpt : ctype =
| None : TmOpt

| Some : {T : tp}Tm [T] → TmOpt;

A value of type TmOpt will either be empty (i.e. None) or some
term of type T. We chose to make T explicit here by quantifying
over it explicitly using the curly braces. When returning a Tm term,
the program must now provide the instantiation of T in addition to
the actual term.

So far we have declared types and constructors for our language,
these declarations will be available in a global signature. The next
step is to declare a function that will take untyped terms into typed
terms if possible. Notice that for the function to be type correct it
has to respect the specification provided in the declaration of the
type Tm. We only show a few interesting cases below.

rec tc : UTm → TmOpt = fn e ⇒ case e of ...
| UNum n ⇒ Some [nat] (Num n)
| UNot e ⇒ (case tc e of
| Some [bool] x ⇒ Some [bool] (Not x)
| other ⇒ None)

| UIf c e1 e2 ⇒ (case tc c of
| Some [bool] c’ ⇒ (case (tc e1 , tc e2) of

| (Some [T] e1’ , Some [T] e2’) ⇒
Some [T] (If c’ e1’ e2’)

| other ⇒ None)
| other ⇒ None)

;

In the tc function the first four cases are completely straight-
forward. The case for negation (i.e. constructor UNot) is important
because we need to pattern match on the result of type-checking the
sub-expression e to refine it to type bool otherwise we cannot con-
struct the intrinsically typed term, i.e. the constructor Not requires
a boolean term. Additionally the case for UIf is also interesting
because not only we need a boolean condition but we also need to

3 2014/2/27

have both branches of the UIf term to be of the same type. Again
we use pattern matching on the indices to verify that the condition
is of type bool but notable we use non-linear pattern matching to
ensure that the type of the branches coincides (and to refine the
types so we are able to construct a typed term with the constructor
If that requires both branches to be of the same type).

In the definition of type TmOpt we chose an explicit quantifica-
tion over T, however another option would have been to leave it im-
plicit. In tc we pattern match over the type quantified in the Some
constructor, because in our language the programmer cannot sup-
ply values for implicit parameters, we would need to provide type
annotations to constrain the types for if-expressions. In particular,
if we had implicitly quantified over T in the Some constructor, we
would have to provide type annotations in various places in order
to constrain types. For example, the case for UIf would be:

| UIf c e1 e2 ⇒ (case tc c of
| Some (c’:Tm [bool]) ⇒ (case (tc e1, tc e2) of
| (Some (e1’:Tm [T]), Some (e2’:Tm [T])) ⇒

Some (If c’ e1’ e2’)
| other ⇒ None)

| other ⇒ None)

By including type annotations for c’, e1’ and e2’ we can
constrain them to be of the required types.

2.3 Example 2: Type-preserving evaluation
We may also want to evaluate our now type correct programs to
values of the same type. Because we need to preserve the type
information, we index the values by their types in the following
manner:

datatype Val : [tp] → ctype =
| VNum : Nat → Val [nat]
| VTrue : Val [bool]
| VFalse : Val [bool]
;

We can define a type preserving evaluator using our typed val-
ues below; again, we only show some interesting cases.

rec eval : Tm [T] → Val [T] = fn e ⇒ case e of ...
| Num n ⇒ VNum n
| Plus e1 e2 ⇒ (case (eval e1 , eval e2) of

| (VNum x , VNum y) ⇒ VNum (add x y))
| Not e ⇒ (case eval e of

| VTrue ⇒ VFalse
| VFalse ⇒ VTrue)

| If e e1 e2 ⇒ (case eval e of
| VTrue ⇒ eval e1
| VFalse ⇒ eval e2)

;

First, we specify the type of the evaluation function as Tm [T]
→Val [T] where T remains free. As a consequence, elaboration

will infer its type and abstract over T at the outside. We now elabo-
rate the body of the function against {T:tp} Tm [T] →Val [T].
Elaboration will need to translate the given program into a program
in our core language which has type {T:tp} Tm [T] →Val [T].
It will first need to introduce the appropriate dependent function
in the program before we introduce the non-dependent function
fnx⇒e. Moreover, we need to infer omitted arguments in the pat-
tern in addition to inferring the type of pattern variables. Finally,
we need to keep track of refinements the pattern match induces:
our scrutinee has type Tm [T]; pattern matching against Plus e1
e1 which has type Tm [nat] refines T to nat.

Kinds K ::= ctype |
e

ΠX:U.K

Atomic Types P ::= a ~C
Types T ::= P | [U] |

e

ΠX:U. T |
i

ΠX:U. T | T1 → T2

Expressions E ::= rec f :T = E | fnx⇒E | λX⇒E
| E1 E2 | E1 [C] | [C] |
caseE of ~B | x | E:T | c

Branches ~B ::= B | (B | ~B)
Branch B ::= Π∆; Γ.Pat:θ 7→ E

Pattern Pat ::= x | [C] | c
−−→
Pat

Context Γ ::= · | Γ, x:T
Meta-Context ∆ ::= · | ∆, X:U
Meta-Substitution θ ::= · | θ, C/X | θ,X/X

Figure 3. Target Language

3. Target Language
The target language is similar to the computational language de-
scribed in (Cave and Pientka 2012) which has a well developed
meta-theory including descriptions of coverage (Dunfield and Pien-
tka 2009) and termination (Pientka et al. 2014). The target language
is indexed by elaborated fully explicit terms of the index level lan-
guage; we use C for fully explicit index level objects, and U for
elaborated types; index-variables occurring in the target language
will be represented by capital letters such as X,Y 1.

Our target language (Fig. 3) is very similar to our source lan-
guage. The main difference is in the description of branches. In
each branch, we make the type of the pattern variables (see context
Γ) and variables occurring in index objects (see context ∆) explicit.
Moreover, we associate each pattern with a refinement substitution
θ which specifies how the given pattern refines the type of the scru-
tinee. The typing rules for our core language are given in Fig. 4.

We use a bidirectional type system for the target language which
is similar to the one in (Cave and Pientka 2012) but we simplify the
presentation by omitting recursive types and instead we assume that
constructors together with their types are declared in a signature Σ.

The introductions, functions fnx⇒e and dependent functions
λx⇒e, check against their respective type. Their corresponding
eliminations, application E1 E2 and dependent application E [C],
synthesize their type. When we substitution C for X in T , we
assume that substitution is defined in such a way that normal forms
are preserved2. We also note that we only give the rules overload
the Pi-type

To type-check a case-expressions caseE of ~B against T , we
synthesize a type S for E and then check each branch against
S → T . A branch Π∆′; Γ′.Pat:θ 7→ E checks against S → T ,
if 1) θ is a refinement substitution mapping all index variables
declared in ∆ to a new context ∆′, 2) the pattern Pat is compatible
with the type S of the scrutinee, i.e.Pat has type [θ]S, and the body
E checks against [θ]T in the index context ∆′ and the program
context [θ]Γ,Γi. Note that the refinement substitution effectively
performs a context shift.

We present the typing rules for patterns in spine format which
will simplify our elaboration and inferring types for pattern vari-
ables. We start checking a pattern against a given type and check in-
dex objects and variables against the expected type. If we encounter
c
−−→
Pat we lookup the type T of the constant c in the signature and

1 [explain meta-substitutions. -bp]
2 In Beluga, this is achieved by relying hereditary substitutions(Cave and
Pientka 2012).

4 2014/2/27

∆; Γ ` E ⇒ T E synthesizes type T

∆; Γ ` E1 ⇒ S → T ∆; Γ ` E2 ⇐ S

∆; Γ ` E1 E2 ⇒ T
t-app

∆; Γ ` E ⇒
e

ΠX:U. T ∆ ` C ⇐ U

∆; Γ ` E [C]⇒ [C/X]T
t-app-index

Γ(x) = T

∆; Γ ` x⇒ T
t-var

∆; Γ ` E ⇐ T

∆; Γ ` E:T ⇒ T
t-ann

∆; Γ, f :T ` E ⇐ T

∆; Γ ` rec f :T = E ⇒ T
t-rec

∆; Γ ` E ⇐ T E type checks against type T

∆; Γ ` E ⇒ T

∆; Γ ` E ⇐ T
t-syn

∆; Γ, x:T1 ` E ⇐ T2

∆; Γ ` fnx⇒E ⇐ T1 → T2
t-fn

∆, X:U ; Γ ` E ⇐ T

∆; Γ ` λX⇒E ⇐
e

ΠX:U. T
t-mlam

∆; Γ ` E ⇒ S ∆; Γ `
−→
B ⇐ S → T

∆; Γ ` caseE of
−→
B ⇐ T

t-case

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ T Branch B = Π∆′; Γ′.Pat:θ 7→ E checks against type T

∆′ ` θ:∆ ∆′; Γ′ ` Pat⇐ [θ]S ∆′; [θ]Γ,Γ′ ` E ⇐ [θ]T

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ S → T
t-branch

∆; Γ ` Pat⇐ T Pattern Pat checks against T

∆ ` C ⇐ U
∆; Γ ` [C]⇐ [U]

t-pindex
Γ(x) = T

∆; Γ ` x⇐ T
t-pvar

Σ(c) = T ∆; Γ `
−−→
Pat⇐ T 〉 S

∆; Γ ` c
−−→
Pat⇐ S

t-pcon

∆; Γ `
−−→
Pat⇐ T 〉 S Pattern spine

−−→
Pat checks against T and has result type S

∆ ` C ⇐ U ∆; Γ `
−−→
Pat⇐ [C/X]T 〉 S

∆; Γ ` [C]
−−→
Pat⇐

e

ΠX:U. T 〉 S
t-spi

∆; Γ ` Pat⇐ T1 ∆; Γ `
−−→
Pat⇐ T2 〉 S

∆; Γ ` Pat
−−→
Pat⇐ T1 → T2 〉 S

t-sarr
∆; Γ ` · ⇐ S 〉 S t-snil

Figure 4. Typing of computational expressions

continue to check the spine
−−→
Pat against T with the expected return

type S. Pattern spine typing succeeds if all patterns in the spine−−→
Pat have the corresponding type in T and yields the return type S.

3.1 Elaborated examples
We show here the result of elaboration for the type-preserving
evaluator given in Section 2.3.
F Explain elaborated example below

rec eval: {T:tp}Tm [T]→Val [T] = λT ⇒ fn e ⇒
case e of ...
| . ; e1:Tm [nat], e2:Tm [nat] .

Plus e1 e2 : nat/T ⇒
case (eval [nat] e1 , eval [nat] e2) of
|. ;x:Tm [nat],y:Tm [nat]. (VNum x, VNum y) : .

⇒ VNum (add x y)

| T:tp ; e:Tm [bool], e1:Tm [T], e2:Tm [T].
If [T] e e1 e2 : T/T⇒

case eval [bool] e of
| T:tp ; . VTrue : T/T ⇒ eval [T] e1
| T:tp ; . VFalse : T/T ⇒ eval [T] e2

4. Description of Elaboration
Elaboration of our source-language to our core target language is
bi-directional and guided by the expected target type.
F Explain bidirectional reconstruction (reconstructing against

a type and reconstructing while synthesizing a type) and related it
to bidirectional type-checking. Cite for bidirectional type checking
Pierce and Turner 1998 and DML and ATS papers with bidirec-
tional reconstruction

Recall that the target type marks the argument which is im-

plicitly quantified (see
i

ΠX:U. T). If we check a source expression

against
i

ΠX:U. T we insert the appropriate λ⇒-abstraction in our

target. If we have synthesized the type
i

ΠX:U. T for an expression,
we insert hole variables for the omitted argument of type U . When
we switch between synthesizing a type S for a given expression and
checking an expression against an expected type T , we will rely on
unification to make them equal. A key challenge is how to elaborate
case-expressions where we pattern match on a dependently typed
expression and we might pattern in the branches might refine it. Our
elaboration is parametric in the index domain, hence we keep our
definitions of holes, instantiation of holes and unification abstract
and only state their definitions and properties.

5 2014/2/27

4.1 Holes
Elaboration relies on hole variables (?X) to denote missing index-
level terms that will be filled by elaboration. Following (Nanevski
et al. 2008), holes are associated with a substitution to express
which index-level-variables from the context ∆ they can refer to
(i.e. ?X[θ]). Contextual types, where we pair the type U together
with the context ∆ it is allowed to depend on, are a natural way to
describe the type of hole variables. As soon as we know what ?X
stands for C, we apply θ to C filling the hole. We define all hole
variables in a context Θ3.

Hole vars ::= ?X[θ]
Hole types ::= [∆.U]
Hole Contexts Θ ::= · | Θ, ?X:[∆.U]
Hole Inst. ρ ::= · | ρ,∆.C/?X

Hole variables occur only in index terms; they do not denote
computation-level expressions. When we insert hole variables for
omitted arguments in a given context ∆, we rely on the abstract
function genHole (?Y : ∆.U) which returns an index term con-
taining a new hole variable.

genHole (?Y : ∆.U) =?Y [id(∆)]

4.2 Unification
The notion of unification that reconstruction needs depends on the
index level language. As we mentioned, we require that equality on
our index domain is decidable; for elaboration, we also require that
there is a decidable unification algorithm which makes two terms
equal. For, Beluga which allows index term to be drawn from the
logical framework LF, we rely on higher-order pattern unification
(Miller 1991; Dowek et al. 1996). We characterize here abstractly
the unification judgement for computation-level types, which in
turn will rely on unifying index-level terms:

Unification of index-level terms

Θ; ∆ ` C1
.
= C2/Θ

′; ρ where: Θ′ ` ρ:Θ

Unification of computation-level types

Θ; ∆ ` T1
.
= T2/Θ

′; ρ where: Θ′ ` ρ:Θ

If unification succeeds, then we have JρKC1 = JρKC2 and
JρKT1 = JρKT2.

4.3 Elaboration
4.4 Elaboration of index terms
Our elaboration of programs assumes that we know how to elab-
orate index terms; in the case of Beluga, we follow elaboration as
described in (Pientka 2013) for terms in the logical framework LF4.
Here, we again simply state our requirement on the index domain.

Θ; ∆ ` Hu ; θI U/Θ′; ρ
Θ; ∆ ` Hc ; θI : U C/Θ′; ρ

These judgements reconstruct an index level term or type in
a closure where the substitution θ represents the refinements that
occur during pattern matching and that we lazily apply during
reconstruction. Given a hole context Θ and a index variable context
∆, we elaborate an index term c against a given type U . The result
is three fold: a context ∆′ which in addition to all the declarations
in ∆ also contains index variables together with their types for all

3 [Is there an order on them? -bp]
4 [This needs to be slightly adopted. -bp]

index variables which were free in c; a context Θ′ of holes is related
to the original hole context Θ via the hole instantiation ρ.

4.5 Elaborating source expressions
As mentioned earlier, we elaborate expressions in a bi-directional
way; expressions such as recursion, non-dependent functions, and
dependent functions are elaborated by checking the expression
against a given type; expressions such as application and depen-
dent application are elaborated to a corresponding target expres-
sion and at the same time synthesize the corresponding type. Be-
cause of pattern matching, index variables in ∆ may get refined to
concrete index terms and we need to take into account these refine-
ments when elaborating branches. We therefore elaborate a source
expression together with a refinement substitution ρ; we note that ρ
technically maps source index variables to their corresponding tar-
get refinement. We give the rules for elaborating source expressions
in checking mode in Fig. 5 and in syntesis mode in Fig. 6.

Synthesizing: Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ
Checking: Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ

Here Θ describes all the holes we have introduced so far; ∆
describes variables from our index domain occurring in e; Γ de-
scribes program variables occurring in e. The result of elaboration
in checking mode is described by E together with a new context of
holes Θ′ and a hole instantiation ρ, s.t. JρKE has type JρKT where
Θ′ ` ρ : Θ5.

The result of elaboration in synthesis mode is similar; we return
the target expression E together its type T , a new context of holes
Θ′ and a hole instantiation ρ, s.t. Θ′ ` ρ : Θ. The result is well-
typed, i.e. JρKE has type JρKT .

To elaborate a function (see rule el-fn) we simple elaborate the
body extending the context Γ. To elaborate a dependent function
(see rule el-mlam), we elaborate the body extending the context
∆. When switching to syntesis mode, we elaborate He ; θI and
obtain the corresponding target expression E and type T ′ together
with an instantiation ρ for holes in Θ. We then unify the synthesized
type T ′ and the expected type T obtaining an instantiation ρ′ and
return the composition of the instantiation ρ and ρ′.

The key cases are the case-expressions. In the rule el-case,
we elaborate the scrutinee synthesizing a type S; we then elaborate
the branches. Note that we verify that S is a closed type, i.e. it
is not allowed to refer to holes. To put it differently, the type
of the scrutinee must be fully known. This is done to keep a
type refinement in the branches from influencing the type of the
scrutinee. For a similar reason, we enforce that the type T , the
overall type of the case-expression, is closed; were we to allow
holes in T , we would need to reconcile the different instantiations
found in different branches.

[Explain the rules. -bp]

We now consider the elaboration rules in synthesis mode give
in Fig. 6.

4.5.1 Elaborating branches and patterns
The judgement for branches:

Θ; ∆; Γ ` Hb ; θI : Ts → T2 B/Θ′; ρ

Recall that a branch pat 7→ e consists of the pattern pat and
the body e. We again elaborate a branch under the the refinement
θ, because the body e may contain index variables declared earlier
and which might have been refined in earlier branches.

5 [E and e should be related. -bp]

6 2014/2/27

Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ Elaborate source He ; θI to target expression E checking against type T

Θ; ∆; Γ ` He ; θI E:T ′/Θ′; ρ Θ′; JρK∆ ` T ′ .= JρKT/Θ′′; ρ′

Θ; ∆; Γ ` He ; θI : T Jρ′KE/Θ′′; ρ′ ◦ ρ
el-syn

Θ; ∆; Γ, x:T1 ` He ; θI : T2 E/Θ′; ρ

Θ; ∆; Γ ` Hfnx⇒e ; θI : T1 → T2 fnx⇒E/Θ′; ρ
el-fn

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T E/Θ′; ρ

Θ; ∆; Γ ` He ; θI :
i

ΠX:U. T λX⇒E/Θ′; ρ

el-mlam-i
Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T E/Θ′; ρ

Θ; ∆; Γ ` HλX⇒e ; θI :
e

ΠX:U. T λX⇒E/Θ′; ρ
el-mlam

Θ; ∆; Γ ` He ; θI E:S/·; ρ JρK∆; JρKΓ ` H~b ; JρKθI : S → JρKT ~B

Θ; ∆; Γ ` Hcase e of~b ; θI : T caseE of ~B/·; ρ
el-case

Θ; ∆ ` Hc ; θI : U C/Θ′; ρ

Θ; ∆; Γ ` H[c] ; θI : [U] [C]/Θ′; ρ
el-box

Figure 5. Elaboration of Expressions (Checking Mode)

Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ Elaborate source He ; θI to target E and synthesize type T

Θ; ∆; Γ ` He1 ; θI E1 : S → T / Θ′; ρ Θ′; JρK∆; JρKΓ ` He2 ; JρKθI : JρKS E2 / Θ′′; ρ′

Θ; ∆; Γ ` He1 e2 ; θI E1 E2 : Jρ′KT / Θ′′; ρ′ ◦ ρ
el-app

Θ; ∆; Γ ` He ; θI E:
e

ΠX:U. T/Θ′; ρ Θ′; JρK∆ ` Hc ; JρKθI : U C/Θ′′; ρ′

Θ; ∆; Γ ` He [c] ; θI E [C]:[C/X](Jρ′KT)/Θ′′; ρ′ ◦ ρ
el-mapp

Θ; ∆; Γ ` He ; θI E :
i

ΠX:U. T / Θ′; ρ genHole (?Y : ∆.U) = C

Θ; ∆; Γ ` He ; θI E [C] : [∆.C/X]T / Θ′, ?Y :JρK[∆.U] ; ρ
el-mapp-implicit

Θ; ∆; Γ ` He ; θI E:
e

ΠX:U. T/Θ′; ρ genHole (?Y : ∆.U) = C

Θ; ∆; Γ ` He ; θI E [C] : [∆.C/X]T / Θ′, ?Y :JρK[∆.U] ; ρ
el-mapp-underscore

Θ; ∆ ` Ht ; θI T/Θ′; ρ Θ′; JρK∆; JρK∆ ` He ; JρKθI : T E/Θ′′; ρ′

Θ; ∆; Γ ` He:t ; θI (E:T):T/Θ′′; ρ′ ◦ ρ
el-annotated

Θ; ∆ ` Ht ; θI T/Θ′; ρ Θ′; JρK∆; JρKΓ, f :T ` He ; JρKθI : T E/Θ′′; ρ′

Θ; ∆; Γ ` Hrec f :t = e ; θI rec f :Jρ′KT = E:Jρ′KT/Θ′′; ρ′ ◦ ρ
el-rec

Figure 6. Elaborating of Expressions (Synthesizing Mode)

Intuitively, to elaborate a branch, we need to elaborate the pat-
tern, synthesizing the type of free pattern variables occurring in-
side of it (Γr). In the dependently typed setting, pattern elaboration
needs to do more work: we need to infer implicit arguments which
were omitted by the programmer (∆r) and we need to synthesize
a pattern type Tp which is compatible with the expected type Ts of
the scrutinee, i.e. Tp is an instance of Ts and [θ]pTs = Tp. Elabo-
ration of the pattern is described by the judgment

∆ ` pat : Tp Pat : θr/∆r; Γr

[
• Explain elaboration of patterns here.
• In rb-branch unification is different from the judge-

ment previously mentioned, discuss how and why this
one is different -ff

]

Technically, inferring the type of free variables and reconstruct-
ing most general arguments for omitted parts is done in three steps.

1. First, given pat we elaborate it to a target pattern Pat together
with its type S1 synthesizing the type of index variables ∆p

and the type of pattern variables Γp together with holes (Θp)
which denote omitted arguments. This is accomplished by the
first premise of the rule rb-subst.

·; · ` pat Pat : S1/Θp; ∆p; Γp

2. We now abstract over the hole variables in Θp and replace them
with fresh index variables from ∆′

p. This is accomplished by
the second premise of the rule rb-subst:

7 2014/2/27

∆; Γ ` Hb ; θI : S → T B Elaborate source branch Hb ; θI to target branch B

∆ ` pat : S Π∆r; Γr.Pat : θr | θe ·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T E/·; ·
∆; Γ ` Hpat 7→ e ; θI : S → T Π∆r; Γr.Pat:θr 7→ E

rb-branch

∆ ` pat : T Π∆r; Γr.Pat : θr | θe

·; · ` pat Pat : S/Θp; ∆p; Γp | · ∆′
p ` ρ : Θp ∆, (∆′

p, JρK∆p) ` JρKS + T/∆r; θ

∆ ` pat : T Π∆r; [θp]JρKΓp.[θp]JρKPat : θr | θe
rb-subst

where ∆′
p ` ρ : Θp constructs a ground lifting substitution ρ to new index variables ∆′

p given Θp

· ` · : ·
∆ ` ρ : Θ

∆, X : U, ` ρ, (.X[·])/X : Θ, X : (.U)

where θ = θr, θp s.t. ∆r ` θp : (∆′
p, JρK∆p)

and θp = θi, θe s.t. ∆r ` θi : ∆′
p and ∆r ` θe : JρK∆p

Figure 7. Branches and patterns

∆′
p ` ρ′ : Θp

ρ is the lifting substitution which replaces holes with index
variables bound in ∆′

p

3. Finally, we compute the refinement substitution θR which en-
sures that the type of the pattern JρKS1 is compatible with the
type T1 of the scrutinee. We note that the type of the scrutinee
could also force a refinement of holes in the pattern. This is
accomplished by the judgment

∆, (∆′
p, JρK∆p) ` JρKS1 + T1/∆r; θR θR = θr, θp

We note because θR maps index variables from ∆, (∆′
p, JρK∆p)

to ∆r , it contains two parts: θr provides refinements for vari-
ables ∆ in the type of the scrutinee; θp provides possible refine-
ments of the pattern forced by the scrutinee. This can happen, if
the scrutinee’s type is more specific than the type of the pattern.
The careful reader will notice that our unification judgement is
not the same as the one presented in Section 4.2. In this case, we
need unification for finding instances of index-level variables,
while the judgment form Section 4.2 finds instances of hole
variables6.

[
• top-level pattern is reconstructed while synthesizing its

type, so for some cases a type annotation might be
neededF (Notably, a variable that catches all requires
an annotation, this strikes me as unnecessary, something
might be needed for this case) . We don’t want refine
outer holes with pattern reconstruction (otherwise we
would have to deal with potentially different refinements
of a hole variable from several branches) and because
we require the type of the scrutinee (i.e. T1) to be closed
pattern reconstruction starts with an empty hole context,
and produces an empty substitution and a new context
Θp that may only add new holes. -ff
I don’t understand this paragraph. -bp

6 [Add justification -bp]

• I removed abstraction and replaced it simply by the
lifting substitution. Please take a look and see if it does
what it is supposed to do. I don’t discuss why U must be
closed, i.e. does not depend on ∆. -bp

]

4.5.2 Synthesis versus check in patterns
Currently, the rule for branch reconstruction synthesizes the type
of the pattern, however if the pattern was just a variable, it won’t
be synthesizable, while it should match whatever type we need. To
solve this problem we could provide another rule for branch recon-
struction (e.g. rb-branch-2) and use them according to the avail-
able rules. Another solution would be to generate a type skeleton
and always perform checking against said type.

4.5.3 On the need of mcase
The rule rb-case does pattern matching on computational objects,
and builds the type T ′ → T that is used to reconstruct branches in
the rule rb-branch. However, one needs to be careful, because
the language pattern matches on computational types but also on
boxed items, so if the scrutinee is of a boxed type, morally the type

generated for the branches should be:
e

ΠX:U. T and X may occur
in T and so the refinements that the branches cause.

4.5.4 Reconstructing Patterns
Patterns are also reconstructed with a bidirectional algorithm. Re-
construction starts by checking the type of the pattern against the
type of the scrutinee. Again, note that in rb-case the type of the
scrutinee type cannot contain holes (i.e. the Θ context must be
empty). During pattern reconstruction, new holes will be inserted
for implicit parameters, however this will only happen during the
synthesize phase, so the r-psyn rule will try to instantiate the holes
when unifying the type of the pattern and the scrutinee.

These judgements appear more complex than those for terms
due to the new suffixes of the contexts ∆ and Γ they return. These
extensions of the contexts are required because patterns bind new
variables in those contexts.

8 2014/2/27

Pattern (checking mode) Θ; ∆ ` pat : T Pat/Θ′; ∆′; Γ | ρ

Θ; ∆ ` x : T x/Θ; ∆; ·, x:T | id(Θ)
r-pvar

Θ; ∆ ` c : U C/Θ′; ∆′; ρ

Θ; ∆ ` [c] : [U] [C]/Θ′; ∆′; · | ρ
r-pindex

Θ; ∆ ` pat Pat:S/Θ′; ∆′; Γ | ρ Θ′; ∆′ ` S .
= JρKT/ρ′; Θ′′

Θ; ∆ ` pat : T JρKPat/Θ′′; Jρ′K∆′; Jρ′KΓ | ρ′ ◦ ρ
r-psyn

Pattern (synthesis mode) Θ; ∆ ` pat Pat:T/Θ′; ∆′; Γ | ρ

Σ(c) = T Θ; ∆ ` −→pat : T
−−→
Pat/Θ′; ∆′; Γ | ρ 〉 S

Θ; ∆ ` c−→pat c
−−→
Pat:S/Θ′; ∆′; Γ | ρ

r-pcon

·; · ` Ht ; ·I T/Θ′; ∆′; ρ Θ,Θ′; JρK∆,∆′ ` pat : T Pat/Θ′′; ∆′′; Γ | ρ′

Θ; ∆ ` (pat:t) Pat:Jρ′KT/Θ′′; ∆′′; Γ | ρ′ ◦ ρ
r-pann

Pattern Spines Θ; ∆ ` −→pat : T ~Pat/Θ′; ∆′; Γ | ρ 〉 S

either T = [U] or T = a
−→
[C]

Θ; ∆ ` · : T ·/Θ; ∆; · | id(Θ) 〉 T
r-sp-empty

Θ; ∆ ` pat : T1 Pat/Θ′; ∆′; Γ | ρ Θ′; ∆′ ` −→pat : JρKT2
−−→
Pat/Θ′′; ∆′′; Γ′ | ρ′ 〉 S

Θ; ∆ ` pat −→pat : T1 → T2 (Jρ′KPat)
−−→
Pat/Θ′′; ∆′′; Γ,Γ′ | ρ′ ◦ ρ 〉 S

r-sp-cmp

Θ; ∆ ` c : U C/Θ′; ∆′; ρ Θ′; ∆′ ` −→pat : [C/X]JρKT
−−→
Pat/Θ′′; ∆′′; Γ | ρ′ 〉 S

Θ; ∆ ` [c]
−→
pat :

e

ΠX:U. T (Jρ′K[C])
−−→
Pat/Θ′′; ∆′′; Γ | ρ′ ◦ ρ 〉 S

r-sp-explicit

genHole (?Y :∆.U) = C Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T
−−→
Pat/Θ′; ∆′; Γ | ρ 〉 S

Θ; ∆ ` −→pat :
i

ΠX:U. T (JρKC)
−−→
Pat/Θ′; ∆′; Γ | ρ 〉 S

r-sp-implicit

Figure 8. Elaboration of patterns and pattern spines

Spines

5. Soundness of reconstruction
F Explain the main lemmas, and specifically what properties we
assume of the main judgements

Theorem 1 (Soundness).

• If Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ then for any grounding
hole instantiation ρ′ s.t. · ` ρ′ : Θ′ and ρ0 = ρ′ ◦ ρ, we have
Jρ0K∆; Jρ0KΓ ` Jρ′KE ⇐ Jρ0KT .

• If Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ then for any grounding
hole instantiation ρ′ s.t. · ` ρ′ : Θ′ and ρ0 = ρ′ ◦ ρ, we have
Jρ0K∆; Jρ0KΓ ` Jρ′KE ⇐ Jρ′KT .

Lemma 2 (Branches).
If Θ; ∆; Γ ` Hb ; θI : T1 → T2 B/Θ′; ρ
then Θ′; JρK∆; JρKΓ ` B ⇐ JρKT1 → JρKT2 .

Lemma 3 (Refinement).

• If Θ; ∆ ` pat : T Pat/Θr; ∆r; Γr | ρr then Θr ` ρr:Θ
and Θr; ∆r; Γr ` Pat⇐ JρrKT

• If Θ; ∆ ` pat Pat:T/∆r; Γr | θr then Θ; ∆r ` θr:∆ and
·; ∆r; Γr ` Pat⇐ T

6. Related work
Our language contains indexed families of types that are related to
Zenger’s work (Zenger 1997) and the Dependent ML (DML) (Xi
2007) and Applied Type System (ATS) (Xi 2004; Chen and Xi
2005). The objective in these systems is: a program that is typable
in the extended indexed type system is already typable in ML. By
essentially erasing all the type annotations necessary for verify-
ing the given program is dependently typed, we obtain a simply
typed ML-like program. In contrast, our language we support pat-
tern matching on index objects. Our elaboration, in contrast to the
elaboration given in (Xi 2007), inserts omitted arguments produc-
ing programs in a fully explicit dependently typed core language.
This is different from DML-like systems which treat all index ar-
guments as implicit and do not provide a way for programmers to
manipulate and pattern match directly on index objects. Allowing
users to explicitly access and match on index arguments changes
the game substantially.

Elaboration from implicit to explicit syntax for dependently
typed systems has first been mentioned by Pollack (Pollack 1990)
although no concrete algorithm to reconstruct omitted arguments
was given. Luther (?) refined these ideas as part of the TYPELab
project. He describes an elaboration and reconstruction for the
calculus of construction without treating recursive functions and
pattern matching.

9 2014/2/27

Our approach is different from the one found in Agda (Norell
2007), Idris, Coq or Matita, where all variables occurring in a type
need to be abstracted over when a constant is declared. In all three
systems, abstractions, which denote arguments the user can freely
omit, are statically labelled as such. Both systems give the user the
possibility to locally override the implicit arguments mechanism.

To ease the requirement of declaring all variables occurring in
type, many of these systems such as Agda supports simply listing
the variables occurring in a declaration without the type. This
however can be brittle since it requires that the user chose the right
order.

There is little work on elaborating dependently-typed source
language supporting recursion and pattern matching. (Norell 2007)
for example describes the bi-directional type inference algorithm
implemented in the Agda. However, he concentrates on a core de-
pendently typed calculus enriched with dependent pairs, but omits
the rules for its extension with recursion and pattern matching.

A notable exception, is the work by (Asperti et al. 2012) on
describing a bi-directional elaboration algorithm for the Calculus
of (Co)Inductive Constructions implemented in for Matita. Their
setting is very different from ours: they are much more ambitious
since the language of recursive programs can occur in types and
there is no distinction between the index language and the program-
ming language itself. Moreover, we are only allowed to write total
programs and all types must be positive. For these reasons their
source language is more verbose than ours; in particular when writ-
ing case-expressions, the programmer needs to supply the overall
type7 as an annotation. And the target language is very different as
well; while we have simple decidable type checking algorithm and
store the refinement substitutions in each branch, their system ??? .
The elaboration to the target language is more complex than ours.

[
• Does Matita impose similar “closed” requirements as

we do on the type of the scrutinee of a pattern?

]

Another related work is the elaboration of Idris (Brady 2013)
which uses a different technique. Idris starts by adding holes at all
the implicit variables and it tries to instantiate these holes using
unification. However, the language uses internally a tactic based
elaborator that is exposed to the user who can interactively fill the
holes using tactics. They do not prove soundness of the elaboration,
still they propose an a reverse elaboration phase. The authors con-
jecture that given a type correct program its elaboration followed by
a reverse elaboration produces a matching source level program.

7. Conclusion
This paper concludes.

References
A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. A bi-directional refine-

ment algorithm for the calculus of (co)inductive constructions. Logical
Methods in Computer Science, 8:1–49, 2012.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Program-
ming, 23:552–593, 9 2013.

A. Cave and B. Pientka. Programming with binders and indexed data-
types. In 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’12), pages 413–424. ACM
Press, 2012.

7 [Check -bp]

C. Chen and H. Xi. Combining programming with theorem proving. In
O. Danvy and B. C. Pierce, editors, 10th International Conference on
Functional Programming, pages 66–77, 2005.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit
substitutions: The case of higher-order patterns. In M. Maher, editor,
Joint International Conference and Symposium on Logic Programming,
pages 259–273. MIT Press, Sept. 1996.

J. Dunfield and B. Pientka. Case analysis of higher-order data. In Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP’08), volume 228 of Electronic Notes in Theoreti-
cal Computer Science (ENTCS), pages 69–84. Elsevier, June 2009.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

D. Miller. Unification of simply typed lambda-terms as logic programming.
In 8th International Logic Programming Conference, pages 255–269.
MIT Press, 1991.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Sept. 2007. Technical Report
33D.

F. Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Sci-
ence, pages 313–322, Pacific Grove, California, June 1989. IEEE Com-
puter Society Press.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, 16th
International Conference on Automated Deduction (CADE-16), Lecture
Notes in Artificial Intelligence (LNAI 1632), pages 202–206. Springer,
1999.

B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’08), pages 371–382. ACM Press, 2008.

B. Pientka. An insider’s look at LF type reconstruction: Everything you
(n)ever wanted to know. Journal of Functional Programming, 1(1–37),
2013.

B. Pientka and J. Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In J. Giesl and
R. Haehnle, editors, 5th International Joint Conference on Automated
Reasoning (IJCAR’10), Lecture Notes in Artificial Intelligence (LNAI
6173), pages 15–21. Springer-Verlag, 2010.

B. Pientka, S. S. Ruan, and A. Abel. Structural recursion over contextual
objects. Technical report, School of Computer Science, McGill, January
2014.

R. Pollack. Implicit syntax. Informal Proceedings of First Workshop on
Logical Frameworks, Antibes, 1990.

H. Xi. Applied type system. In TYPES 2003, volume 3085 of Lecture Notes
in Computer Science, pages 394–408. Springer, 2004.

H. Xi. Dependent ml an approach to practical programming with dependent
types. Journal of Functional Programming, 17:215–286, 3 2007.

H. Xi and F. Pfenning. Dependent types in practical programming. In
26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’99), pages 214–227. ACM Press, 1999.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–
165, 1997.

10 2014/2/27

A. Soundness Proof
Theorem 4 (Soundness).

1. If Θ; ∆; Γ ` He ; θI : T E/Θ′; ρ then for any grounding hole instantiation ρ′ s.t. · ` ρ′ : Θ′ and ρ0 = ρ′ ◦ ρ, we have
Jρ0K∆; Jρ0KΓ ` Jρ′KE ⇐ Jρ0KT .

2. If Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ then for any grounding hole instantiation ρ′ s.t. · ` ρ′ : Θ′ and ρ0 = ρ′ ◦ ρ, we have
Jρ0K∆; Jρ0KΓ ` Jρ′KE ⇒ Jρ′KT .

3. If ∆; Γ ` Hpat 7→ e ; θI : S → T Π∆′; Γ′.Pat : θ 7→ E then ∆; Γ ` Π∆′; Γ′.Pat : θ 7→ E ⇐ S → T .

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆; Γ ` Hcase e of
−→
b ; θI : T caseE of

−→
B/Θ′; ρ

Θ; ∆; Γ ` He ; θI E:S/·; ρ by inversion on el-case

JρK∆; JρKΓ ` H
−→
b ; JρKθI : S → JρKT

−→
B by inversion on el-case

for any grounding hole inst. ρ′ we have JρK∆; JρKΓ ` E ⇒ S by I.H. noting ρ′ = · and ρ′ ◦ ρ = ρ

[ρ]∆; [ρ]Γ ` B:S → [ρ]T for every branch by (3)

[ρ]∆; [ρ]Γ ` caseE of
−→
B ⇐ JρKT by t-case

Note that because E is ground then the only grounding hole inst. is the empty substitution.

For (3):

Case F : ∆; Γ ` Hpat 7→ e ; θI : S → T Π∆r; Γr.Pat
′:θ 7→ E

∆ ` pat : S Π∆r; Γr.Pat:θr | θe by assumption

·; · ` pat Pat : S′/Θp; ∆p; Γp | ·
∆′
p ` ρ : Θp and Γr = [θp]JρKΓp, Pat′ = [θp]JρKPat by inversion on rb-subst

∆′
p, JρK∆p; JρKΓp ` JρKPat⇐ JρKS′ by pattern elaboration lemma

∆,∆′
p, JρK∆p ` JρKS′ + S/∆r, θ by inversion on rb-subst

where we can split θ as θ = θr, θi, θe so that:

 ∆r ` θr:∆
∆r ` θi:∆′

p

∆r ` θi, θe:∆′
p, JρK∆p

let θp = θi, θe

[θi, θe︸ ︷︷ ︸
θp

]JρKS′ = [θr]S by soundness of unification and the fact that ∆ and ∆′
p, JρK∆p are distinct

∆r; [θp]JρKΓp ` [θp]JρKPat⇐ [θp]JρKS′ by substitution lemma

∆r; [θp]JρKΓp︸ ︷︷ ︸
Γr

` [θp]JρKPat︸ ︷︷ ︸
Pat′

⇐ [θr]S by [θ]JρKS′ = [θr]S

·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T E/·; · by assumption

∆r; [θr]Γ,Γr ` E ⇐ [θr]T by (1)

∆; Γ ` Π∆r; Γr.Pat
′:θr 7→ E ⇐ S → T by t-branch

which is what we wanted to show.

Lemma 5 (Pattern elaboration).

1. If Θ; ∆ ` pat Pat:T/Θ1; ∆1; Γ1 | ρ1 and
ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ2

then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρrKT .

11 2014/2/27

2. If Θ; ∆ ` pat : T Pat/Θ1; ∆1; Γ1 | ρ1 and
ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ2

then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρr ◦ ρ1KT .
3. If Θ; ∆ ` −→pat : T

−−→
Pat/Θ1; ∆1; Γ1 | ρ1 〉 S and

ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ2

then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS.

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆ ` c−→pat c
−−→
Pat:S/Θ1; ∆1; Γ1 | ρ1

Σ(c) = T

Θ; ∆ ` −→pat : T
−−→
Pat/Θ1; ∆1; Γ1 | ρ1 〉 S by assumption

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS by i.h. (3)

Note that types in the signature (i.e. Σ) are ground so JεKJρr ◦ ρ1KT = T

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` c (JεKJρrK
−−→
Pat)⇐ JεKJρrKS by t-pcon.

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK(c
−−→
Pat)⇐ JεKJρrKS by properties of substitution

which is what we wanted to show.

For (3):

Case F : Θ; ∆ ` pat −→pat : T1 → T2 (Jρ′KPat)
−−→
Pat/Θ2; ∆2; Γ1,Γ2 | ρ2 ◦ ρ1 〉 S

Θ; ∆ ` pat : T1 Pat/Θ1; ∆1; Γ1 | ρ1

Θ1; ∆1 `
−→
pat : JρKT2

−−→
Pat/Θ2; ∆2; Γ2 | ρ2 〉 S by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1; JεKJρ3 ◦ ρ2KΓ1 ` JεKJρ3 ◦ ρ2KPat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 by i.h. on (1). [*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by i.h. on (2)

we note that in pattern elaboration we have:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′

2).

and Γ2 = Jρ2KΓ1,Γ
′
2 Γ2 is the context Γ1 with the hole instantiation applied and some extra assumptions(i.e. Γ′

2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′
2; JεKJρ3 ◦ ρ2KΓ1, JεKJρ3KΓ′

2 ` JεKJρ3 ◦ ρ2KPat⇐ JρKJρ3 ◦ ρ2 ◦ ρ1KT1

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` (JεKJρ3 ◦ ρ2KPat)(JεKJρ3K
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 → JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by t-sarr.

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K(Jρ2KPat
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(T1 → T2) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ ` [c]
−→
pat :

e

ΠX:U. T (Jρ1K[C])
−−→
Pat/Θ2; ∆2; Γ2 | ρ2 ◦ ρ1 〉 S

Θ; ∆ ` c : U C/Θ1; ∆1; ρ1

Θ1; ∆1 `
−→
pat : [C/X]Jρ1KT

−−→
Pat/Θ2; ∆2; Γ2 | ρ2 〉 S by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

12 2014/2/27

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU by property of the index language[*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2K([C/X]Jρ1KT) 〉 JεKJρ3KS by i.h. (3)

as before, we note that:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′

2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′
2 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU

Note that JεKJρ3 ◦ ρ2K([C/X]Jρ1KT) = [(JεKJρ3 ◦ ρ2KC)/X](JεKJρ3 ◦ ρ2 ◦ ρ1KT) by properties of substitution

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` [JεKJρ3 ◦ ρ2KC] (JεKJρ3K
−−→
Pat)⇐

e

ΠX:(JεKJρ3 ◦ ρ2 ◦ ρ1KU). (JεKJρ3 ◦ ρ2 ◦ ρ1KT) 〉 JεKJρ3KS by t-spi

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K([Jρ2KC]
−−→
Pat))⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(

e

ΠX:U. T) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ ` −→pat :
i

ΠX:U. T (Jρ1KC)
−−→
Pat/Θ1; ∆1; Γ1 | ρ1 〉 S

genHole (?Y : ∆.U) = C

Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T
−−→
Pat/Θ′; ∆′; Γ | ρ 〉 S by assumption

Θ, ?Y :∆.U ; ∆ ` C ⇐ U by genhole invariant

∆i, JεKJρr ◦ ρ1K∆ ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU applying substitutions ε, ρrandρ1

noting that ∆1 = Jρ1K∆,∆′
1

∆i, JεKJρrK(Jρ1K∆,∆′
1) ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU by weakening

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1K[C/X]T 〉 JεKJρrKS by i.h. (3)

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ [JεKJρr ◦ ρ1KC/X](JεKJρr ◦ ρ1KT) 〉 JεKJρrKS by properties of substitution

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` [JεKJρr ◦ ρ1KC] JεKJρrK
−−→
Pat⇐

i

ΠX:JεKJρr ◦ ρ1KU. (JεKJρr ◦ ρ1KT) 〉 JεKJρrKS by t-spi

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK[Jρ1KC]
−−→
Pat⇐ JεKJρr ◦ ρ1K(

i

ΠX:U. T) 〉 JεKJρrKS by properties of substitution

which is what we wanted to show

13 2014/2/27

